mailiverse/cpp/Lib/xcode-botan/Botan-1.10.3/checks/ec_tests.cpp
2013-07-25 22:51:23 -04:00

828 lines
30 KiB
C++

/*
* (C) 2009 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#include <botan/rng.h>
#if defined(BOTAN_HAS_ECC_GROUP)
#include <botan/bigint.h>
#include <botan/numthry.h>
#include <botan/curve_gfp.h>
#include <botan/point_gfp.h>
#include <botan/ec_group.h>
#include <botan/reducer.h>
#include <botan/oids.h>
using namespace Botan;
#include <iostream>
#include <memory>
#include "getopt.h"
#include "validate.h"
#include "common.h"
#define CHECK_MESSAGE(expr, print) try { if(!(expr)) std::cout << print << "\n"; } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
#define CHECK(expr) try { if(!(expr)) std::cout << #expr << "\n"; } catch(std::exception& e) { std::cout << __FUNCTION__ << ": " << e.what() << "\n"; }
namespace {
std::ostream& operator<<(std::ostream& out, const PointGFp& point)
{
out << "(" << point.get_affine_x() << " " << point.get_affine_y() << ")";
return out;
}
PointGFp create_random_point(RandomNumberGenerator& rng,
const CurveGFp& curve)
{
const BigInt& p = curve.get_p();
Modular_Reducer mod_p(p);
while(true)
{
BigInt x(rng, p.bits());
BigInt x3 = mod_p.multiply(x, mod_p.square(x));
BigInt ax = mod_p.multiply(curve.get_a(), x);
BigInt bx3 = mod_p.multiply(curve.get_b(), x3);
BigInt y = mod_p.reduce(ax + bx3);
if(ressol(y, p) > 0)
return PointGFp(curve, x, y);
}
}
void test_point_turn_on_sp_red_mul()
{
std::cout << "." << std::flush;
// setting up expected values
BigInt exp_Qx(std::string("466448783855397898016055842232266600516272889280"));
BigInt exp_Qy(std::string("1110706324081757720403272427311003102474457754220"));
BigInt exp_Qz(1);
// performing calculation to test
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode(p_secp);
SecureVector<byte> sv_a_secp = hex_decode(a_secp);
SecureVector<byte> sv_b_secp = hex_decode(b_secp);
SecureVector<byte> sv_G_secp_comp = hex_decode(G_secp_comp);
BigInt bi_p_secp = BigInt::decode(&sv_p_secp[0], sv_p_secp.size());
BigInt bi_a_secp = BigInt::decode(&sv_a_secp[0], sv_a_secp.size());
BigInt bi_b_secp = BigInt::decode(&sv_b_secp[0], sv_b_secp.size());
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP(sv_G_secp_comp, secp160r1);
BigInt d("459183204582304");
PointGFp r1 = d * p_G;
CHECK(r1.get_affine_x() != 0);
PointGFp p_G2(p_G);
PointGFp r2 = d * p_G2;
CHECK_MESSAGE(r1 == r2, "error with point mul after extra turn on sp red mul");
CHECK(r1.get_affine_x() != 0);
PointGFp p_r1 = r1;
PointGFp p_r2 = r2;
p_r1 *= 2;
p_r2 *= 2;
CHECK_MESSAGE(p_r1.get_affine_x() == p_r2.get_affine_x(), "error with mult2 after extra turn on sp red mul");
CHECK(p_r1.get_affine_x() != 0);
CHECK(p_r2.get_affine_x() != 0);
r1 *= 2;
r2 *= 2;
CHECK_MESSAGE(r1 == r2, "error with mult2 after extra turn on sp red mul");
CHECK_MESSAGE(r1.get_affine_x() == r2.get_affine_x(), "error with mult2 after extra turn on sp red mul");
CHECK(r1.get_affine_x() != 0);
r1 += p_G;
r2 += p_G2;
CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul");
r1 += p_G;
r2 += p_G2;
CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul for both operands");
r1 += p_G;
r2 += p_G2;
CHECK_MESSAGE(r1 == r2, "error with op+= after extra turn on sp red mul for both operands");
}
void test_coordinates()
{
std::cout << "." << std::flush;
BigInt exp_affine_x(std::string("16984103820118642236896513183038186009872590470"));
BigInt exp_affine_y(std::string("1373093393927139016463695321221277758035357890939"));
// precalculation
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1 (bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p0 = p_G;
PointGFp p1 = p_G * 2;
PointGFp point_exp(secp160r1, exp_affine_x, exp_affine_y);
if(!point_exp.on_the_curve())
throw Internal_Error("Point not on the curve");
CHECK_MESSAGE( p1.get_affine_x() == exp_affine_x, " p1_x = " << p1.get_affine_x() << "\n" << "exp_x = " << exp_affine_x << "\n");
CHECK_MESSAGE( p1.get_affine_y() == exp_affine_y, " p1_y = " << p1.get_affine_y() << "\n" << "exp_y = " << exp_affine_y << "\n");
}
/**
Test point multiplication according to
--------
SEC 2: Test Vectors for SEC 1
Certicom Research
Working Draft
September, 1999
Version 0.3;
Section 2.1.2
--------
*/
void test_point_transformation ()
{
std::cout << "." << std::flush;
// get a vailid point
EC_Group dom_pars(OID("1.3.132.0.8"));
PointGFp p = dom_pars.get_base_point();
// get a copy
PointGFp q = p;
CHECK_MESSAGE( p.get_affine_x() == q.get_affine_x(), "affine_x changed during copy");
CHECK_MESSAGE( p.get_affine_y() == q.get_affine_y(), "affine_y changed during copy");
}
void test_point_mult ()
{
std::cout << "." << std::flush;
EC_Group secp160r1(OIDS::lookup("secp160r1"));
const CurveGFp& curve = secp160r1.get_curve();
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_G_secp_comp = hex_decode(G_secp_comp);
PointGFp p_G = OS2ECP(sv_G_secp_comp, curve);
BigInt d_U("0xaa374ffc3ce144e6b073307972cb6d57b2a4e982");
PointGFp Q_U = d_U * p_G;
CHECK(Q_U.get_affine_x() == BigInt("466448783855397898016055842232266600516272889280"));
CHECK(Q_U.get_affine_y() == BigInt("1110706324081757720403272427311003102474457754220"));
}
void test_point_negative()
{
std::cout << "." << std::flush;
// performing calculation to test
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p1 = p_G *= 2;
CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));
PointGFp p1_neg = p1.negate();
CHECK(p1_neg.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
CHECK(p1_neg.get_affine_y() == BigInt("88408243403763901739989511495005261618427168388"));
}
void test_zeropoint()
{
std::cout << "." << std::flush;
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p1(secp160r1,
BigInt("16984103820118642236896513183038186009872590470"),
BigInt("1373093393927139016463695321221277758035357890939"));
if(!p1.on_the_curve())
throw Internal_Error("Point not on the curve");
p1 -= p1;
CHECK_MESSAGE( p1.is_zero(), "p - q with q = p is not zero!");
}
void test_zeropoint_enc_dec()
{
std::cout << "." << std::flush;
BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p(curve);
CHECK_MESSAGE( p.is_zero(), "by constructor created zeropoint is no zeropoint!");
SecureVector<byte> sv_p = EC2OSP(p, PointGFp::UNCOMPRESSED);
PointGFp p_encdec = OS2ECP(sv_p, curve);
CHECK_MESSAGE( p == p_encdec, "encoded-decoded (uncompressed) point is not equal the original!");
sv_p = EC2OSP(p, PointGFp::UNCOMPRESSED);
p_encdec = OS2ECP(sv_p, curve);
CHECK_MESSAGE( p == p_encdec, "encoded-decoded (compressed) point is not equal the original!");
sv_p = EC2OSP(p, PointGFp::HYBRID);
p_encdec = OS2ECP(sv_p, curve);
CHECK_MESSAGE( p == p_encdec, "encoded-decoded (hybrid) point is not equal the original!");
}
void test_calc_with_zeropoint()
{
std::cout << "." << std::flush;
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp("0xffffffffffffffffffffffffffffffff7fffffff");
BigInt bi_a_secp("0xffffffffffffffffffffffffffffffff7ffffffc");
BigInt bi_b_secp("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p(curve,
BigInt("16984103820118642236896513183038186009872590470"),
BigInt("1373093393927139016463695321221277758035357890939"));
if(!p.on_the_curve())
throw Internal_Error("Point not on the curve");
CHECK_MESSAGE( !p.is_zero(), "created is zeropoint, shouldn't be!");
PointGFp zero(curve);
CHECK_MESSAGE( zero.is_zero(), "by constructor created zeropoint is no zeropoint!");
PointGFp res = p + zero;
CHECK_MESSAGE( res == p, "point + zeropoint is not equal the point");
res = p - zero;
CHECK_MESSAGE( res == p, "point - zeropoint is not equal the point");
res = zero * 32432243;
CHECK_MESSAGE( res.is_zero(), "zeropoint * skalar is not a zero-point!");
}
void test_add_point()
{
std::cout << "." << std::flush;
// precalculation
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p0 = p_G;
PointGFp p1 = p_G *= 2;
p1 += p0;
PointGFp expected(secp160r1,
BigInt("704859595002530890444080436569091156047721708633"),
BigInt("1147993098458695153857594941635310323215433166682"));
CHECK(p1 == expected);
}
void test_sub_point()
{
std::cout << "." << std::flush;
//Setting up expected values
BigInt exp_sub_x(std::string("112913490230515010376958384252467223283065196552"));
BigInt exp_sub_y(std::string("143464803917389475471159193867377888720776527730"));
BigInt exp_sub_z(std::string("562006223742588575209908669014372619804457947208"));
// precalculation
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p0 = p_G;
PointGFp p1 = p_G *= 2;
p1 -= p0;
PointGFp expected(secp160r1,
BigInt("425826231723888350446541592701409065913635568770"),
BigInt("203520114162904107873991457957346892027982641970"));
CHECK(p1 == expected);
}
void test_mult_point()
{
std::cout << "." << std::flush;
//Setting up expected values
BigInt exp_mult_x(std::string("967697346845926834906555988570157345422864716250"));
BigInt exp_mult_y(std::string("512319768365374654866290830075237814703869061656"));
// precalculation
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p0 = p_G;
PointGFp p1 = p_G *= 2;
p1 *= p0.get_affine_x();
PointGFp expected(secp160r1, exp_mult_x, exp_mult_y);
CHECK(p1 == expected);
}
void test_basic_operations()
{
std::cout << "." << std::flush;
// precalculation
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffc";
std::string b_secp = "1c97befc54bd7a8b65acf89f81d4d4adc565fa45";
std::string G_secp_comp = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
PointGFp p0 = p_G;
PointGFp expected(secp160r1,
BigInt("425826231723888350446541592701409065913635568770"),
BigInt("203520114162904107873991457957346892027982641970"));
CHECK(p0 == expected);
PointGFp p1 = p_G *= 2;
CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));
PointGFp simplePlus= p1 + p0;
PointGFp exp_simplePlus(secp160r1,
BigInt("704859595002530890444080436569091156047721708633"),
BigInt("1147993098458695153857594941635310323215433166682"));
if(simplePlus != exp_simplePlus)
std::cout << simplePlus << " != " << exp_simplePlus << "\n";
PointGFp simpleMinus= p1 - p0;
PointGFp exp_simpleMinus(secp160r1,
BigInt("425826231723888350446541592701409065913635568770"),
BigInt("203520114162904107873991457957346892027982641970"));
CHECK(simpleMinus == exp_simpleMinus);
PointGFp simpleMult= p1 * 123456789;
CHECK(simpleMult.get_affine_x() == BigInt("43638877777452195295055270548491599621118743290"));
CHECK(simpleMult.get_affine_y() == BigInt("56841378500012376527163928510402662349220202981"));
// check that all initial points hasn't changed
CHECK(p1.get_affine_x() == BigInt("16984103820118642236896513183038186009872590470"));
CHECK(p1.get_affine_y() == BigInt("1373093393927139016463695321221277758035357890939"));
CHECK(p0.get_affine_x() == BigInt("425826231723888350446541592701409065913635568770"));
CHECK(p0.get_affine_y() == BigInt("203520114162904107873991457957346892027982641970"));
}
void test_enc_dec_compressed_160()
{
std::cout << "." << std::flush;
// Test for compressed conversion (02/03) 160bit
std::string p_secp = "ffffffffffffffffffffffffffffffff7fffffff";
std::string a_secp = "ffffffffffffffffffffffffffffffff7ffffffC";
std::string b_secp = "1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45";
std::string G_secp_comp = "024A96B5688EF573284664698968C38BB913CBFC82";
std::string G_order_secp_comp = "0100000000000000000001F4C8F927AED3CA752257";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
SecureVector<byte> sv_result = EC2OSP(p_G, PointGFp::COMPRESSED);
CHECK( sv_result == sv_G_secp_comp);
}
void test_enc_dec_compressed_256()
{
std::cout << "." << std::flush;
// Test for compressed conversion (02/03) 256bit
std::string p_secp = "ffffffff00000001000000000000000000000000ffffffffffffffffffffffff";
std::string a_secp = "ffffffff00000001000000000000000000000000ffffffffffffffffffffffFC";
std::string b_secp = "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B";
std::string G_secp_comp = "036B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296";
std::string G_order_secp_comp = "ffffffff00000000ffffffffffffffffBCE6FAADA7179E84F3B9CAC2FC632551";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_comp = hex_decode ( G_secp_comp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_comp, secp160r1 );
SecureVector<byte> sv_result = EC2OSP(p_G, PointGFp::COMPRESSED);
CHECK( sv_result == sv_G_secp_comp);
}
void test_enc_dec_uncompressed_112()
{
std::cout << "." << std::flush;
// Test for uncompressed conversion (04) 112bit
std::string p_secp = "db7c2abf62e35e668076bead208b";
std::string a_secp = "6127C24C05F38A0AAAF65C0EF02C";
std::string b_secp = "51DEF1815DB5ED74FCC34C85D709";
std::string G_secp_uncomp = "044BA30AB5E892B4E1649DD0928643ADCD46F5882E3747DEF36E956E97";
std::string G_order_secp_uncomp = "36DF0AAFD8B8D7597CA10520D04B";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_uncomp, secp160r1 );
SecureVector<byte> sv_result = EC2OSP(p_G, PointGFp::UNCOMPRESSED);
CHECK( sv_result == sv_G_secp_uncomp);
}
void test_enc_dec_uncompressed_521()
{
std::cout << "." << std::flush;
// Test for uncompressed conversion(04) with big values(521 bit)
std::string p_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff";
std::string a_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFC";
std::string b_secp = "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00";
std::string G_secp_uncomp = "0400C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2ffA8DE3348B3C1856A429BF97E7E31C2E5BD66011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650";
std::string G_order_secp_uncomp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp160r1(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_secp_uncomp, secp160r1 );
SecureVector<byte> sv_result = EC2OSP(p_G, PointGFp::UNCOMPRESSED);
std::string result = hex_encode(&sv_result[0], sv_result.size());
std::string exp_result = hex_encode(&sv_G_secp_uncomp[0], sv_G_secp_uncomp.size());
CHECK_MESSAGE( sv_result == sv_G_secp_uncomp, "\ncalc. result = " << result << "\nexp. result = " << exp_result << "\n");
}
void test_enc_dec_uncompressed_521_prime_too_large()
{
std::cout << "." << std::flush;
// Test for uncompressed conversion(04) with big values(521 bit)
std::string p_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"; // length increased by "ff"
std::string a_secp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFC";
std::string b_secp = "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00";
std::string G_secp_uncomp = "0400C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2ffA8DE3348B3C1856A429BF97E7E31C2E5BD66011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650";
std::string G_order_secp_uncomp = "01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409";
SecureVector<byte> sv_p_secp = hex_decode ( p_secp );
SecureVector<byte> sv_a_secp = hex_decode ( a_secp );
SecureVector<byte> sv_b_secp = hex_decode ( b_secp );
SecureVector<byte> sv_G_secp_uncomp = hex_decode ( G_secp_uncomp );
BigInt bi_p_secp = BigInt::decode ( &sv_p_secp[0], sv_p_secp.size() );
BigInt bi_a_secp = BigInt::decode ( &sv_a_secp[0], sv_a_secp.size() );
BigInt bi_b_secp = BigInt::decode ( &sv_b_secp[0], sv_b_secp.size() );
CurveGFp secp521r1 (bi_p_secp, bi_a_secp, bi_b_secp);
std::auto_ptr<PointGFp> p_G;
bool exc = false;
try
{
p_G = std::auto_ptr<PointGFp>(new PointGFp(OS2ECP ( sv_G_secp_uncomp, secp521r1)));
if(!p_G->on_the_curve())
throw Internal_Error("Point not on the curve");
}
catch (std::exception e)
{
exc = true;
}
CHECK_MESSAGE(exc, "attempt of creation of point on curve with too high prime did not throw an exception");
}
void test_gfp_store_restore()
{
std::cout << "." << std::flush;
// generate point
//EC_Group dom_pars = global_config().get_ec_dompar("1.3.132.0.8");
//EC_Group dom_pars("1.3.132.0.8");
EC_Group dom_pars(OID("1.3.132.0.8"));
PointGFp p = dom_pars.get_base_point();
//store point (to std::string)
SecureVector<byte> sv_mes = EC2OSP(p, PointGFp::COMPRESSED);
PointGFp new_p = OS2ECP(sv_mes, dom_pars.get_curve());
CHECK_MESSAGE( p == new_p, "original and restored point are different!");
}
// maybe move this test
void test_cdc_curve_33()
{
std::cout << "." << std::flush;
std::string G_secp_uncomp = "04081523d03d4f12cd02879dea4bf6a4f3a7df26ed888f10c5b2235a1274c386a2f218300dee6ed217841164533bcdc903f07a096f9fbf4ee95bac098a111f296f5830fe5c35b3e344d5df3a2256985f64fbe6d0edcc4c61d18bef681dd399df3d0194c5a4315e012e0245ecea56365baa9e8be1f7";
SecureVector<byte> sv_G_uncomp = hex_decode ( G_secp_uncomp );
BigInt bi_p_secp = BigInt("2117607112719756483104013348936480976596328609518055062007450442679169492999007105354629105748524349829824407773719892437896937279095106809");
BigInt bi_a_secp("0xa377dede6b523333d36c78e9b0eaa3bf48ce93041f6d4fc34014d08f6833807498deedd4290101c5866e8dfb589485d13357b9e78c2d7fbe9fe");
BigInt bi_b_secp("0xa9acf8c8ba617777e248509bcb4717d4db346202bf9e352cd5633731dd92a51b72a4dc3b3d17c823fcc8fbda4da08f25dea89046087342595a7");
CurveGFp curve(bi_p_secp, bi_a_secp, bi_b_secp);
PointGFp p_G = OS2ECP ( sv_G_uncomp, curve);
bool exc = false;
try
{
if(!p_G.on_the_curve())
throw Internal_Error("Point not on the curve");
}
catch (std::exception)
{
exc = true;
}
CHECK(!exc);
}
void test_more_zeropoint()
{
std::cout << "." << std::flush;
// by Falko
std::string G = "024a96b5688ef573284664698968c38bb913cbfc82";
SecureVector<byte> sv_G_secp_comp = hex_decode ( G );
BigInt bi_p("0xffffffffffffffffffffffffffffffff7fffffff");
BigInt bi_a("0xffffffffffffffffffffffffffffffff7ffffffc");
BigInt bi_b("0x1c97befc54bd7a8b65acf89f81d4d4adc565fa45");
CurveGFp curve(bi_p, bi_a, bi_b);
PointGFp p1(curve,
BigInt("16984103820118642236896513183038186009872590470"),
BigInt("1373093393927139016463695321221277758035357890939"));
if(!p1.on_the_curve())
throw Internal_Error("Point not on the curve");
PointGFp minus_p1 = -p1;
if(!minus_p1.on_the_curve())
throw Internal_Error("Point not on the curve");
PointGFp shouldBeZero = p1 + minus_p1;
if(!shouldBeZero.on_the_curve())
throw Internal_Error("Point not on the curve");
BigInt y1 = p1.get_affine_y();
y1 = curve.get_p() - y1;
CHECK_MESSAGE(p1.get_affine_x() == minus_p1.get_affine_x(),
"problem with minus_p1 : x");
CHECK_MESSAGE(minus_p1.get_affine_y() == y1,
"problem with minus_p1 : y");
PointGFp zero(curve);
if(!zero.on_the_curve())
throw Internal_Error("Point not on the curve");
CHECK_MESSAGE(p1 + zero == p1, "addition of zero modified point");
CHECK_MESSAGE( shouldBeZero.is_zero(), "p - q with q = p is not zero!");
}
void test_mult_by_order()
{
std::cout << "." << std::flush;
// generate point
EC_Group dom_pars(OID("1.3.132.0.8"));
PointGFp p = dom_pars.get_base_point();
PointGFp shouldBeZero = p * dom_pars.get_order();
CHECK_MESSAGE(shouldBeZero.is_zero(), "G * order != O");
}
void test_point_swap(RandomNumberGenerator& rng)
{
std::cout << "." << std::flush;
EC_Group dom_pars(OID("1.3.132.0.8"));
PointGFp a(create_random_point(rng, dom_pars.get_curve()));
PointGFp b(create_random_point(rng, dom_pars.get_curve()));
b *= BigInt(20);
PointGFp c(a);
PointGFp d(b);
d.swap(c);
CHECK(a == d);
CHECK(b == c);
}
/**
* This test verifies that the side channel attack resistant multiplication function
* yields the same result as the normal (insecure) multiplication via operator*=
*/
void test_mult_sec_mass(RandomNumberGenerator& rng)
{
EC_Group dom_pars(OID("1.3.132.0.8"));
for(int i = 0; i<50; i++)
{
std::cout << "." << std::flush;
std::cout.flush();
PointGFp a(create_random_point(rng, dom_pars.get_curve()));
BigInt scal(BigInt(rng, 40));
PointGFp b = a * scal;
PointGFp c(a);
c *= scal;
CHECK(b == c);
}
}
void test_curve_cp_ctor()
{
std::cout << "." << std::flush;
EC_Group dom_pars(OID("1.3.132.0.8"));
CurveGFp curve(dom_pars.get_curve());
}
}
void do_ec_tests(RandomNumberGenerator& rng)
{
std::cout << "Testing ECC: " << std::flush;
test_point_turn_on_sp_red_mul();
test_coordinates();
test_point_transformation ();
test_point_mult ();
test_point_negative();
test_zeropoint();
test_zeropoint_enc_dec();
test_calc_with_zeropoint();
test_add_point();
test_sub_point();
test_mult_point();
test_basic_operations();
test_enc_dec_compressed_160();
test_enc_dec_compressed_256();
test_enc_dec_uncompressed_112();
test_enc_dec_uncompressed_521();
test_enc_dec_uncompressed_521_prime_too_large();
test_gfp_store_restore();
test_cdc_curve_33();
test_more_zeropoint();
test_mult_by_order();
test_point_swap(rng);
test_mult_sec_mass(rng);
test_curve_cp_ctor();
std::cout << std::endl;
}
#else
void do_ec_tests(Botan::RandomNumberGenerator& rng)
{
}
#endif