mirror of
https://github.com/moparisthebest/mailiverse
synced 2024-11-18 15:05:02 -05:00
331 lines
9.1 KiB
JavaScript
331 lines
9.1 KiB
JavaScript
/*
|
|
* A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
|
|
* in FIPS 180-1
|
|
* Version 2.2 Copyright Paul Johnston 2000 - 2009.
|
|
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
|
|
* Distributed under the BSD License
|
|
* See http://pajhome.org.uk/crypt/md5 for details.
|
|
*/
|
|
|
|
/*
|
|
* Configurable variables. You may need to tweak these to be compatible with
|
|
* the server-side, but the defaults work in most cases.
|
|
*/
|
|
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
|
|
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
|
|
|
|
/*
|
|
* These are the functions you'll usually want to call
|
|
* They take string arguments and return either hex or base-64 encoded strings
|
|
*/
|
|
function hex_sha1(s) { return rstr2hex(rstr_sha1(str2rstr_utf8(s))); }
|
|
function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); }
|
|
function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); }
|
|
function hex_hmac_sha1(k, d)
|
|
{ return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
|
function b64_hmac_sha1(k, d)
|
|
{ return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
|
function any_hmac_sha1(k, d, e)
|
|
{ return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
|
|
|
|
/*
|
|
* Perform a simple self-test to see if the VM is working
|
|
*/
|
|
function sha1_vm_test()
|
|
{
|
|
return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d";
|
|
}
|
|
|
|
/*
|
|
* Calculate the SHA1 of a raw string
|
|
*/
|
|
function rstr_sha1(s)
|
|
{
|
|
return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8));
|
|
}
|
|
|
|
/*
|
|
* Calculate the HMAC-SHA1 of a key and some data (raw strings)
|
|
*/
|
|
function rstr_hmac_sha1(key, data)
|
|
{
|
|
var bkey = rstr2binb(key);
|
|
if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8);
|
|
|
|
var ipad = Array(16), opad = Array(16);
|
|
for(var i = 0; i < 16; i++)
|
|
{
|
|
ipad[i] = bkey[i] ^ 0x36363636;
|
|
opad[i] = bkey[i] ^ 0x5C5C5C5C;
|
|
}
|
|
|
|
var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
|
|
return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160));
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to a hex string
|
|
*/
|
|
function rstr2hex(input)
|
|
{
|
|
try { hexcase } catch(e) { hexcase=0; }
|
|
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
|
|
var output = "";
|
|
var x;
|
|
for(var i = 0; i < input.length; i++)
|
|
{
|
|
x = input.charCodeAt(i);
|
|
output += hex_tab.charAt((x >>> 4) & 0x0F)
|
|
+ hex_tab.charAt( x & 0x0F);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to a base-64 string
|
|
*/
|
|
function rstr2b64(input)
|
|
{
|
|
try { b64pad } catch(e) { b64pad=''; }
|
|
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
var output = "";
|
|
var len = input.length;
|
|
for(var i = 0; i < len; i += 3)
|
|
{
|
|
var triplet = (input.charCodeAt(i) << 16)
|
|
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
|
|
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
|
|
for(var j = 0; j < 4; j++)
|
|
{
|
|
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
|
|
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
|
|
}
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to an arbitrary string encoding
|
|
*/
|
|
function rstr2any(input, encoding)
|
|
{
|
|
var divisor = encoding.length;
|
|
var remainders = Array();
|
|
var i, q, x, quotient;
|
|
|
|
/* Convert to an array of 16-bit big-endian values, forming the dividend */
|
|
var dividend = Array(Math.ceil(input.length / 2));
|
|
for(i = 0; i < dividend.length; i++)
|
|
{
|
|
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
|
|
}
|
|
|
|
/*
|
|
* Repeatedly perform a long division. The binary array forms the dividend,
|
|
* the length of the encoding is the divisor. Once computed, the quotient
|
|
* forms the dividend for the next step. We stop when the dividend is zero.
|
|
* All remainders are stored for later use.
|
|
*/
|
|
while(dividend.length > 0)
|
|
{
|
|
quotient = Array();
|
|
x = 0;
|
|
for(i = 0; i < dividend.length; i++)
|
|
{
|
|
x = (x << 16) + dividend[i];
|
|
q = Math.floor(x / divisor);
|
|
x -= q * divisor;
|
|
if(quotient.length > 0 || q > 0)
|
|
quotient[quotient.length] = q;
|
|
}
|
|
remainders[remainders.length] = x;
|
|
dividend = quotient;
|
|
}
|
|
|
|
/* Convert the remainders to the output string */
|
|
var output = "";
|
|
for(i = remainders.length - 1; i >= 0; i--)
|
|
output += encoding.charAt(remainders[i]);
|
|
|
|
/* Append leading zero equivalents */
|
|
var full_length = Math.ceil(input.length * 8 /
|
|
(Math.log(encoding.length) / Math.log(2)))
|
|
for(i = output.length; i < full_length; i++)
|
|
output = encoding[0] + output;
|
|
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Encode a string as utf-8.
|
|
* For efficiency, this assumes the input is valid utf-16.
|
|
*/
|
|
function str2rstr_utf8(input)
|
|
{
|
|
var output = "";
|
|
var i = -1;
|
|
var x, y;
|
|
|
|
while(++i < input.length)
|
|
{
|
|
/* Decode utf-16 surrogate pairs */
|
|
x = input.charCodeAt(i);
|
|
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
|
|
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
|
|
{
|
|
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
|
|
i++;
|
|
}
|
|
|
|
/* Encode output as utf-8 */
|
|
if(x <= 0x7F)
|
|
output += String.fromCharCode(x);
|
|
else if(x <= 0x7FF)
|
|
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
|
|
0x80 | ( x & 0x3F));
|
|
else if(x <= 0xFFFF)
|
|
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
|
|
0x80 | ((x >>> 6 ) & 0x3F),
|
|
0x80 | ( x & 0x3F));
|
|
else if(x <= 0x1FFFFF)
|
|
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
|
|
0x80 | ((x >>> 12) & 0x3F),
|
|
0x80 | ((x >>> 6 ) & 0x3F),
|
|
0x80 | ( x & 0x3F));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Encode a string as utf-16
|
|
*/
|
|
function str2rstr_utf16le(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length; i++)
|
|
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
|
|
(input.charCodeAt(i) >>> 8) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
function str2rstr_utf16be(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length; i++)
|
|
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
|
|
input.charCodeAt(i) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to an array of big-endian words
|
|
* Characters >255 have their high-byte silently ignored.
|
|
*/
|
|
function rstr2binb(input)
|
|
{
|
|
var output = Array(input.length >> 2);
|
|
for(var i = 0; i < output.length; i++)
|
|
output[i] = 0;
|
|
for(var i = 0; i < input.length * 8; i += 8)
|
|
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert an array of big-endian words to a string
|
|
*/
|
|
function binb2rstr(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length * 32; i += 8)
|
|
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Calculate the SHA-1 of an array of big-endian words, and a bit length
|
|
*/
|
|
function binb_sha1(x, len)
|
|
{
|
|
/* append padding */
|
|
x[len >> 5] |= 0x80 << (24 - len % 32);
|
|
x[((len + 64 >> 9) << 4) + 15] = len;
|
|
|
|
var w = Array(80);
|
|
var a = 1732584193;
|
|
var b = -271733879;
|
|
var c = -1732584194;
|
|
var d = 271733878;
|
|
var e = -1009589776;
|
|
|
|
for(var i = 0; i < x.length; i += 16)
|
|
{
|
|
var olda = a;
|
|
var oldb = b;
|
|
var oldc = c;
|
|
var oldd = d;
|
|
var olde = e;
|
|
|
|
for(var j = 0; j < 80; j++)
|
|
{
|
|
if(j < 16) w[j] = x[i + j];
|
|
else w[j] = bit_rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
|
|
var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)),
|
|
safe_add(safe_add(e, w[j]), sha1_kt(j)));
|
|
e = d;
|
|
d = c;
|
|
c = bit_rol(b, 30);
|
|
b = a;
|
|
a = t;
|
|
}
|
|
|
|
a = safe_add(a, olda);
|
|
b = safe_add(b, oldb);
|
|
c = safe_add(c, oldc);
|
|
d = safe_add(d, oldd);
|
|
e = safe_add(e, olde);
|
|
}
|
|
return Array(a, b, c, d, e);
|
|
|
|
}
|
|
|
|
/*
|
|
* Perform the appropriate triplet combination function for the current
|
|
* iteration
|
|
*/
|
|
function sha1_ft(t, b, c, d)
|
|
{
|
|
if(t < 20) return (b & c) | ((~b) & d);
|
|
if(t < 40) return b ^ c ^ d;
|
|
if(t < 60) return (b & c) | (b & d) | (c & d);
|
|
return b ^ c ^ d;
|
|
}
|
|
|
|
/*
|
|
* Determine the appropriate additive constant for the current iteration
|
|
*/
|
|
function sha1_kt(t)
|
|
{
|
|
return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
|
|
(t < 60) ? -1894007588 : -899497514;
|
|
}
|
|
|
|
/*
|
|
* Add integers, wrapping at 2^32. This uses 16-bit operations internally
|
|
* to work around bugs in some JS interpreters.
|
|
*/
|
|
function safe_add(x, y)
|
|
{
|
|
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
|
|
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
|
|
return (msw << 16) | (lsw & 0xFFFF);
|
|
}
|
|
|
|
/*
|
|
* Bitwise rotate a 32-bit number to the left.
|
|
*/
|
|
function bit_rol(num, cnt)
|
|
{
|
|
return (num << cnt) | (num >>> (32 - cnt));
|
|
}
|