mirror of
https://github.com/moparisthebest/mailiverse
synced 2024-12-04 13:52:17 -05:00
338 lines
11 KiB
JavaScript
338 lines
11 KiB
JavaScript
/*
|
|
* A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
|
|
* in FIPS 180-2
|
|
* Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
|
|
* Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
|
|
* Distributed under the BSD License
|
|
* See http://pajhome.org.uk/crypt/md5 for details.
|
|
* Also http://anmar.eu.org/projects/jssha2/
|
|
*/
|
|
|
|
/*
|
|
* Configurable variables. You may need to tweak these to be compatible with
|
|
* the server-side, but the defaults work in most cases.
|
|
*/
|
|
var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
|
|
var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
|
|
|
|
/*
|
|
* These are the functions you'll usually want to call
|
|
* They take string arguments and return either hex or base-64 encoded strings
|
|
*/
|
|
function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
|
|
function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
|
|
function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
|
|
function hex_hmac_sha256(k, d)
|
|
{ return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
|
function b64_hmac_sha256(k, d)
|
|
{ return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
|
|
function any_hmac_sha256(k, d, e)
|
|
{ return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
|
|
|
|
/*
|
|
* Perform a simple self-test to see if the VM is working
|
|
*/
|
|
function sha256_vm_test()
|
|
{
|
|
return hex_sha256("abc").toLowerCase() ==
|
|
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
|
|
}
|
|
|
|
/*
|
|
* Calculate the sha256 of a raw string
|
|
*/
|
|
function rstr_sha256(s)
|
|
{
|
|
return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
|
|
}
|
|
|
|
/*
|
|
* Calculate the HMAC-sha256 of a key and some data (raw strings)
|
|
*/
|
|
function rstr_hmac_sha256(key, data)
|
|
{
|
|
var bkey = rstr2binb(key);
|
|
if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);
|
|
|
|
var ipad = Array(16), opad = Array(16);
|
|
for(var i = 0; i < 16; i++)
|
|
{
|
|
ipad[i] = bkey[i] ^ 0x36363636;
|
|
opad[i] = bkey[i] ^ 0x5C5C5C5C;
|
|
}
|
|
|
|
var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
|
|
return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to a hex string
|
|
*/
|
|
function rstr2hex(input)
|
|
{
|
|
try { hexcase } catch(e) { hexcase=0; }
|
|
var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
|
|
var output = "";
|
|
var x;
|
|
for(var i = 0; i < input.length; i++)
|
|
{
|
|
x = input.charCodeAt(i);
|
|
output += hex_tab.charAt((x >>> 4) & 0x0F)
|
|
+ hex_tab.charAt( x & 0x0F);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to a base-64 string
|
|
*/
|
|
function rstr2b64(input)
|
|
{
|
|
try { b64pad } catch(e) { b64pad=''; }
|
|
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
var output = "";
|
|
var len = input.length;
|
|
for(var i = 0; i < len; i += 3)
|
|
{
|
|
var triplet = (input.charCodeAt(i) << 16)
|
|
| (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
|
|
| (i + 2 < len ? input.charCodeAt(i+2) : 0);
|
|
for(var j = 0; j < 4; j++)
|
|
{
|
|
if(i * 8 + j * 6 > input.length * 8) output += b64pad;
|
|
else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
|
|
}
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to an arbitrary string encoding
|
|
*/
|
|
function rstr2any(input, encoding)
|
|
{
|
|
var divisor = encoding.length;
|
|
var remainders = Array();
|
|
var i, q, x, quotient;
|
|
|
|
/* Convert to an array of 16-bit big-endian values, forming the dividend */
|
|
var dividend = Array(Math.ceil(input.length / 2));
|
|
for(i = 0; i < dividend.length; i++)
|
|
{
|
|
dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
|
|
}
|
|
|
|
/*
|
|
* Repeatedly perform a long division. The binary array forms the dividend,
|
|
* the length of the encoding is the divisor. Once computed, the quotient
|
|
* forms the dividend for the next step. We stop when the dividend is zero.
|
|
* All remainders are stored for later use.
|
|
*/
|
|
while(dividend.length > 0)
|
|
{
|
|
quotient = Array();
|
|
x = 0;
|
|
for(i = 0; i < dividend.length; i++)
|
|
{
|
|
x = (x << 16) + dividend[i];
|
|
q = Math.floor(x / divisor);
|
|
x -= q * divisor;
|
|
if(quotient.length > 0 || q > 0)
|
|
quotient[quotient.length] = q;
|
|
}
|
|
remainders[remainders.length] = x;
|
|
dividend = quotient;
|
|
}
|
|
|
|
/* Convert the remainders to the output string */
|
|
var output = "";
|
|
for(i = remainders.length - 1; i >= 0; i--)
|
|
output += encoding.charAt(remainders[i]);
|
|
|
|
/* Append leading zero equivalents */
|
|
var full_length = Math.ceil(input.length * 8 /
|
|
(Math.log(encoding.length) / Math.log(2)))
|
|
for(i = output.length; i < full_length; i++)
|
|
output = encoding[0] + output;
|
|
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Encode a string as utf-8.
|
|
* For efficiency, this assumes the input is valid utf-16.
|
|
*/
|
|
function str2rstr_utf8(input)
|
|
{
|
|
var output = "";
|
|
var i = -1;
|
|
var x, y;
|
|
|
|
while(++i < input.length)
|
|
{
|
|
/* Decode utf-16 surrogate pairs */
|
|
x = input.charCodeAt(i);
|
|
y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
|
|
if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
|
|
{
|
|
x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
|
|
i++;
|
|
}
|
|
|
|
/* Encode output as utf-8 */
|
|
if(x <= 0x7F)
|
|
output += String.fromCharCode(x);
|
|
else if(x <= 0x7FF)
|
|
output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
|
|
0x80 | ( x & 0x3F));
|
|
else if(x <= 0xFFFF)
|
|
output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
|
|
0x80 | ((x >>> 6 ) & 0x3F),
|
|
0x80 | ( x & 0x3F));
|
|
else if(x <= 0x1FFFFF)
|
|
output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
|
|
0x80 | ((x >>> 12) & 0x3F),
|
|
0x80 | ((x >>> 6 ) & 0x3F),
|
|
0x80 | ( x & 0x3F));
|
|
}
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Encode a string as utf-16
|
|
*/
|
|
function str2rstr_utf16le(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length; i++)
|
|
output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
|
|
(input.charCodeAt(i) >>> 8) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
function str2rstr_utf16be(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length; i++)
|
|
output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
|
|
input.charCodeAt(i) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert a raw string to an array of big-endian words
|
|
* Characters >255 have their high-byte silently ignored.
|
|
*/
|
|
function rstr2binb(input)
|
|
{
|
|
var output = Array(input.length >> 2);
|
|
for(var i = 0; i < output.length; i++)
|
|
output[i] = 0;
|
|
for(var i = 0; i < input.length * 8; i += 8)
|
|
output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Convert an array of big-endian words to a string
|
|
*/
|
|
function binb2rstr(input)
|
|
{
|
|
var output = "";
|
|
for(var i = 0; i < input.length * 32; i += 8)
|
|
output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
|
|
return output;
|
|
}
|
|
|
|
/*
|
|
* Main sha256 function, with its support functions
|
|
*/
|
|
function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
|
|
function sha256_R (X, n) {return ( X >>> n );}
|
|
function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
|
|
function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
|
|
function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
|
|
function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
|
|
function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
|
|
function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
|
|
function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
|
|
function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
|
|
function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
|
|
function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}
|
|
|
|
var sha256_K = new Array
|
|
(
|
|
1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
|
|
-1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
|
|
1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
|
|
264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
|
|
-1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
|
|
113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
|
|
1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
|
|
-1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
|
|
430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
|
|
1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
|
|
-1866530822, -1538233109, -1090935817, -965641998
|
|
);
|
|
|
|
function binb_sha256(m, l)
|
|
{
|
|
var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
|
|
1359893119, -1694144372, 528734635, 1541459225);
|
|
var W = new Array(64);
|
|
var a, b, c, d, e, f, g, h;
|
|
var i, j, T1, T2;
|
|
|
|
/* append padding */
|
|
m[l >> 5] |= 0x80 << (24 - l % 32);
|
|
m[((l + 64 >> 9) << 4) + 15] = l;
|
|
|
|
for(i = 0; i < m.length; i += 16)
|
|
{
|
|
a = HASH[0];
|
|
b = HASH[1];
|
|
c = HASH[2];
|
|
d = HASH[3];
|
|
e = HASH[4];
|
|
f = HASH[5];
|
|
g = HASH[6];
|
|
h = HASH[7];
|
|
|
|
for(j = 0; j < 64; j++)
|
|
{
|
|
if (j < 16) W[j] = m[j + i];
|
|
else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
|
|
sha256_Gamma0256(W[j - 15])), W[j - 16]);
|
|
|
|
T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
|
|
sha256_K[j]), W[j]);
|
|
T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = safe_add(d, T1);
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = safe_add(T1, T2);
|
|
}
|
|
|
|
HASH[0] = safe_add(a, HASH[0]);
|
|
HASH[1] = safe_add(b, HASH[1]);
|
|
HASH[2] = safe_add(c, HASH[2]);
|
|
HASH[3] = safe_add(d, HASH[3]);
|
|
HASH[4] = safe_add(e, HASH[4]);
|
|
HASH[5] = safe_add(f, HASH[5]);
|
|
HASH[6] = safe_add(g, HASH[6]);
|
|
HASH[7] = safe_add(h, HASH[7]);
|
|
}
|
|
return HASH;
|
|
}
|
|
|
|
function safe_add (x, y)
|
|
{
|
|
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
|
|
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
|
|
return (msw << 16) | (lsw & 0xFFFF);
|
|
}
|