mirror of
https://github.com/moparisthebest/mailiverse
synced 2024-12-02 04:52:16 -05:00
155 lines
3.0 KiB
C++
155 lines
3.0 KiB
C++
/*
|
|
* (C) 2009-2010 Jack Lloyd
|
|
*
|
|
* Distributed under the terms of the Botan license
|
|
*
|
|
* Factor integers using a combination of trial division by small
|
|
* primes, and Pollard's Rho algorithm
|
|
*/
|
|
|
|
#include <botan/botan.h>
|
|
#include <botan/reducer.h>
|
|
#include <botan/numthry.h>
|
|
using namespace Botan;
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
|
|
namespace {
|
|
|
|
/*
|
|
* Pollard's Rho algorithm, as described in the MIT algorithms book. We
|
|
* use (x^2+x) mod n instead of (x*2-1) mod n as the random function,
|
|
* it _seems_ to lead to faster factorization for the values I tried.
|
|
*/
|
|
BigInt rho(const BigInt& n, RandomNumberGenerator& rng)
|
|
{
|
|
BigInt x = BigInt::random_integer(rng, 0, n-1);
|
|
BigInt y = x;
|
|
BigInt d = 0;
|
|
|
|
Modular_Reducer mod_n(n);
|
|
|
|
u32bit i = 1, k = 2;
|
|
while(true)
|
|
{
|
|
i++;
|
|
|
|
if(i == 0) // overflow, bail out
|
|
break;
|
|
|
|
x = mod_n.multiply((x + 1), x);
|
|
|
|
d = gcd(y - x, n);
|
|
if(d != 1 && d != n)
|
|
return d;
|
|
|
|
if(i == k)
|
|
{
|
|
y = x;
|
|
k = 2*k;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Remove (and return) any small (< 2^16) factors
|
|
std::vector<BigInt> remove_small_factors(BigInt& n)
|
|
{
|
|
std::vector<BigInt> factors;
|
|
|
|
while(n.is_even())
|
|
{
|
|
factors.push_back(2);
|
|
n /= 2;
|
|
}
|
|
|
|
for(u32bit j = 0; j != PRIME_TABLE_SIZE; j++)
|
|
{
|
|
if(n < PRIMES[j])
|
|
break;
|
|
|
|
BigInt x = gcd(n, PRIMES[j]);
|
|
|
|
if(x != 1)
|
|
{
|
|
n /= x;
|
|
|
|
u32bit occurs = 0;
|
|
while(x != 1)
|
|
{
|
|
x /= PRIMES[j];
|
|
occurs++;
|
|
}
|
|
|
|
for(u32bit k = 0; k != occurs; k++)
|
|
factors.push_back(PRIMES[j]);
|
|
}
|
|
}
|
|
|
|
return factors;
|
|
}
|
|
|
|
std::vector<BigInt> factorize(const BigInt& n_in,
|
|
RandomNumberGenerator& rng)
|
|
{
|
|
BigInt n = n_in;
|
|
std::vector<BigInt> factors = remove_small_factors(n);
|
|
|
|
while(n != 1)
|
|
{
|
|
if(check_prime(n, rng))
|
|
{
|
|
factors.push_back(n);
|
|
break;
|
|
}
|
|
|
|
BigInt a_factor = 0;
|
|
while(a_factor == 0)
|
|
a_factor = rho(n, rng);
|
|
|
|
std::vector<BigInt> rho_factored = factorize(a_factor, rng);
|
|
for(u32bit j = 0; j != rho_factored.size(); j++)
|
|
factors.push_back(rho_factored[j]);
|
|
|
|
n /= a_factor;
|
|
}
|
|
return factors;
|
|
}
|
|
|
|
}
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
if(argc != 2)
|
|
{
|
|
std::cerr << "Usage: " << argv[0] << " integer\n";
|
|
return 1;
|
|
}
|
|
|
|
Botan::LibraryInitializer init;
|
|
|
|
try
|
|
{
|
|
BigInt n(argv[1]);
|
|
|
|
AutoSeeded_RNG rng;
|
|
|
|
std::vector<BigInt> factors = factorize(n, rng);
|
|
std::sort(factors.begin(), factors.end());
|
|
|
|
std::cout << n << ": ";
|
|
std::copy(factors.begin(),
|
|
factors.end(),
|
|
std::ostream_iterator<BigInt>(std::cout, " "));
|
|
std::cout << "\n";
|
|
}
|
|
catch(std::exception& e)
|
|
{
|
|
std::cout << e.what() << std::endl;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|