mirror of
https://github.com/moparisthebest/mailiverse
synced 2024-11-19 07:25:05 -05:00
781 lines
20 KiB
JavaScript
Executable File
781 lines
20 KiB
JavaScript
Executable File
/*
|
|
* Port of a script by Masanao Izumo.
|
|
*
|
|
* Only changes : wrap all the variables in a function and add the
|
|
* main function to JSZip (DEFLATE compression method).
|
|
* Everything else was written by M. Izumo.
|
|
*
|
|
* Original code can be found here: http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
|
|
*/
|
|
|
|
if(!JSZip) {
|
|
throw "JSZip not defined";
|
|
}
|
|
|
|
/*
|
|
* Original:
|
|
* http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
|
|
*/
|
|
|
|
(function(){
|
|
// the original implementation leaks a global variable.
|
|
// Defining the variable here doesn't break anything.
|
|
var zip_fixed_bd;
|
|
|
|
/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
|
|
* Version: 1.0.0.1
|
|
* LastModified: Dec 25 1999
|
|
*/
|
|
|
|
/* Interface:
|
|
* data = zip_inflate(src);
|
|
*/
|
|
|
|
/* constant parameters */
|
|
var zip_WSIZE = 32768; // Sliding Window size
|
|
var zip_STORED_BLOCK = 0;
|
|
var zip_STATIC_TREES = 1;
|
|
var zip_DYN_TREES = 2;
|
|
|
|
/* for inflate */
|
|
var zip_lbits = 9; // bits in base literal/length lookup table
|
|
var zip_dbits = 6; // bits in base distance lookup table
|
|
var zip_INBUFSIZ = 32768; // Input buffer size
|
|
var zip_INBUF_EXTRA = 64; // Extra buffer
|
|
|
|
/* variables (inflate) */
|
|
var zip_slide;
|
|
var zip_wp; // current position in slide
|
|
var zip_fixed_tl = null; // inflate static
|
|
var zip_fixed_td; // inflate static
|
|
var zip_fixed_bl, fixed_bd; // inflate static
|
|
var zip_bit_buf; // bit buffer
|
|
var zip_bit_len; // bits in bit buffer
|
|
var zip_method;
|
|
var zip_eof;
|
|
var zip_copy_leng;
|
|
var zip_copy_dist;
|
|
var zip_tl, zip_td; // literal/length and distance decoder tables
|
|
var zip_bl, zip_bd; // number of bits decoded by tl and td
|
|
|
|
var zip_inflate_data;
|
|
var zip_inflate_pos;
|
|
|
|
|
|
/* constant tables (inflate) */
|
|
var zip_MASK_BITS = new Array(
|
|
0x0000,
|
|
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
|
|
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff);
|
|
// Tables for deflate from PKZIP's appnote.txt.
|
|
var zip_cplens = new Array( // Copy lengths for literal codes 257..285
|
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
|
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0);
|
|
/* note: see note #13 above about the 258 in this list. */
|
|
var zip_cplext = new Array( // Extra bits for literal codes 257..285
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99); // 99==invalid
|
|
var zip_cpdist = new Array( // Copy offsets for distance codes 0..29
|
|
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
|
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
|
8193, 12289, 16385, 24577);
|
|
var zip_cpdext = new Array( // Extra bits for distance codes
|
|
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
|
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
|
12, 12, 13, 13);
|
|
var zip_border = new Array( // Order of the bit length code lengths
|
|
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15);
|
|
/* objects (inflate) */
|
|
|
|
function zip_HuftList() {
|
|
this.next = null;
|
|
this.list = null;
|
|
}
|
|
|
|
function zip_HuftNode() {
|
|
this.e = 0; // number of extra bits or operation
|
|
this.b = 0; // number of bits in this code or subcode
|
|
|
|
// union
|
|
this.n = 0; // literal, length base, or distance base
|
|
this.t = null; // (zip_HuftNode) pointer to next level of table
|
|
}
|
|
|
|
function zip_HuftBuild(b, // code lengths in bits (all assumed <= BMAX)
|
|
n, // number of codes (assumed <= N_MAX)
|
|
s, // number of simple-valued codes (0..s-1)
|
|
d, // list of base values for non-simple codes
|
|
e, // list of extra bits for non-simple codes
|
|
mm // maximum lookup bits
|
|
) {
|
|
this.BMAX = 16; // maximum bit length of any code
|
|
this.N_MAX = 288; // maximum number of codes in any set
|
|
this.status = 0; // 0: success, 1: incomplete table, 2: bad input
|
|
this.root = null; // (zip_HuftList) starting table
|
|
this.m = 0; // maximum lookup bits, returns actual
|
|
|
|
/* Given a list of code lengths and a maximum table size, make a set of
|
|
tables to decode that set of codes. Return zero on success, one if
|
|
the given code set is incomplete (the tables are still built in this
|
|
case), two if the input is invalid (all zero length codes or an
|
|
oversubscribed set of lengths), and three if not enough memory.
|
|
The code with value 256 is special, and the tables are constructed
|
|
so that no bits beyond that code are fetched when that code is
|
|
decoded. */
|
|
{
|
|
var a; // counter for codes of length k
|
|
var c = new Array(this.BMAX+1); // bit length count table
|
|
var el; // length of EOB code (value 256)
|
|
var f; // i repeats in table every f entries
|
|
var g; // maximum code length
|
|
var h; // table level
|
|
var i; // counter, current code
|
|
var j; // counter
|
|
var k; // number of bits in current code
|
|
var lx = new Array(this.BMAX+1); // stack of bits per table
|
|
var p; // pointer into c[], b[], or v[]
|
|
var pidx; // index of p
|
|
var q; // (zip_HuftNode) points to current table
|
|
var r = new zip_HuftNode(); // table entry for structure assignment
|
|
var u = new Array(this.BMAX); // zip_HuftNode[BMAX][] table stack
|
|
var v = new Array(this.N_MAX); // values in order of bit length
|
|
var w;
|
|
var x = new Array(this.BMAX+1);// bit offsets, then code stack
|
|
var xp; // pointer into x or c
|
|
var y; // number of dummy codes added
|
|
var z; // number of entries in current table
|
|
var o;
|
|
var tail; // (zip_HuftList)
|
|
|
|
tail = this.root = null;
|
|
for(i = 0; i < c.length; i++)
|
|
c[i] = 0;
|
|
for(i = 0; i < lx.length; i++)
|
|
lx[i] = 0;
|
|
for(i = 0; i < u.length; i++)
|
|
u[i] = null;
|
|
for(i = 0; i < v.length; i++)
|
|
v[i] = 0;
|
|
for(i = 0; i < x.length; i++)
|
|
x[i] = 0;
|
|
|
|
// Generate counts for each bit length
|
|
el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
|
|
p = b; pidx = 0;
|
|
i = n;
|
|
do {
|
|
c[p[pidx]]++; // assume all entries <= BMAX
|
|
pidx++;
|
|
} while(--i > 0);
|
|
if(c[0] == n) { // null input--all zero length codes
|
|
this.root = null;
|
|
this.m = 0;
|
|
this.status = 0;
|
|
return;
|
|
}
|
|
|
|
// Find minimum and maximum length, bound *m by those
|
|
for(j = 1; j <= this.BMAX; j++)
|
|
if(c[j] != 0)
|
|
break;
|
|
k = j; // minimum code length
|
|
if(mm < j)
|
|
mm = j;
|
|
for(i = this.BMAX; i != 0; i--)
|
|
if(c[i] != 0)
|
|
break;
|
|
g = i; // maximum code length
|
|
if(mm > i)
|
|
mm = i;
|
|
|
|
// Adjust last length count to fill out codes, if needed
|
|
for(y = 1 << j; j < i; j++, y <<= 1)
|
|
if((y -= c[j]) < 0) {
|
|
this.status = 2; // bad input: more codes than bits
|
|
this.m = mm;
|
|
return;
|
|
}
|
|
if((y -= c[i]) < 0) {
|
|
this.status = 2;
|
|
this.m = mm;
|
|
return;
|
|
}
|
|
c[i] += y;
|
|
|
|
// Generate starting offsets into the value table for each length
|
|
x[1] = j = 0;
|
|
p = c;
|
|
pidx = 1;
|
|
xp = 2;
|
|
while(--i > 0) // note that i == g from above
|
|
x[xp++] = (j += p[pidx++]);
|
|
|
|
// Make a table of values in order of bit lengths
|
|
p = b; pidx = 0;
|
|
i = 0;
|
|
do {
|
|
if((j = p[pidx++]) != 0)
|
|
v[x[j]++] = i;
|
|
} while(++i < n);
|
|
n = x[g]; // set n to length of v
|
|
|
|
// Generate the Huffman codes and for each, make the table entries
|
|
x[0] = i = 0; // first Huffman code is zero
|
|
p = v; pidx = 0; // grab values in bit order
|
|
h = -1; // no tables yet--level -1
|
|
w = lx[0] = 0; // no bits decoded yet
|
|
q = null; // ditto
|
|
z = 0; // ditto
|
|
|
|
// go through the bit lengths (k already is bits in shortest code)
|
|
for(; k <= g; k++) {
|
|
a = c[k];
|
|
while(a-- > 0) {
|
|
// here i is the Huffman code of length k bits for value p[pidx]
|
|
// make tables up to required level
|
|
while(k > w + lx[1 + h]) {
|
|
w += lx[1 + h]; // add bits already decoded
|
|
h++;
|
|
|
|
// compute minimum size table less than or equal to *m bits
|
|
z = (z = g - w) > mm ? mm : z; // upper limit
|
|
if((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
|
|
// too few codes for k-w bit table
|
|
f -= a + 1; // deduct codes from patterns left
|
|
xp = k;
|
|
while(++j < z) { // try smaller tables up to z bits
|
|
if((f <<= 1) <= c[++xp])
|
|
break; // enough codes to use up j bits
|
|
f -= c[xp]; // else deduct codes from patterns
|
|
}
|
|
}
|
|
if(w + j > el && w < el)
|
|
j = el - w; // make EOB code end at table
|
|
z = 1 << j; // table entries for j-bit table
|
|
lx[1 + h] = j; // set table size in stack
|
|
|
|
// allocate and link in new table
|
|
q = new Array(z);
|
|
for(o = 0; o < z; o++) {
|
|
q[o] = new zip_HuftNode();
|
|
}
|
|
|
|
if(tail == null)
|
|
tail = this.root = new zip_HuftList();
|
|
else
|
|
tail = tail.next = new zip_HuftList();
|
|
tail.next = null;
|
|
tail.list = q;
|
|
u[h] = q; // table starts after link
|
|
|
|
/* connect to last table, if there is one */
|
|
if(h > 0) {
|
|
x[h] = i; // save pattern for backing up
|
|
r.b = lx[h]; // bits to dump before this table
|
|
r.e = 16 + j; // bits in this table
|
|
r.t = q; // pointer to this table
|
|
j = (i & ((1 << w) - 1)) >> (w - lx[h]);
|
|
u[h-1][j].e = r.e;
|
|
u[h-1][j].b = r.b;
|
|
u[h-1][j].n = r.n;
|
|
u[h-1][j].t = r.t;
|
|
}
|
|
}
|
|
|
|
// set up table entry in r
|
|
r.b = k - w;
|
|
if(pidx >= n)
|
|
r.e = 99; // out of values--invalid code
|
|
else if(p[pidx] < s) {
|
|
r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
|
|
r.n = p[pidx++]; // simple code is just the value
|
|
} else {
|
|
r.e = e[p[pidx] - s]; // non-simple--look up in lists
|
|
r.n = d[p[pidx++] - s];
|
|
}
|
|
|
|
// fill code-like entries with r //
|
|
f = 1 << (k - w);
|
|
for(j = i >> w; j < z; j += f) {
|
|
q[j].e = r.e;
|
|
q[j].b = r.b;
|
|
q[j].n = r.n;
|
|
q[j].t = r.t;
|
|
}
|
|
|
|
// backwards increment the k-bit code i
|
|
for(j = 1 << (k - 1); (i & j) != 0; j >>= 1)
|
|
i ^= j;
|
|
i ^= j;
|
|
|
|
// backup over finished tables
|
|
while((i & ((1 << w) - 1)) != x[h]) {
|
|
w -= lx[h]; // don't need to update q
|
|
h--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* return actual size of base table */
|
|
this.m = lx[1];
|
|
|
|
/* Return true (1) if we were given an incomplete table */
|
|
this.status = ((y != 0 && g != 1) ? 1 : 0);
|
|
} /* end of constructor */
|
|
}
|
|
|
|
|
|
/* routines (inflate) */
|
|
|
|
function zip_GET_BYTE() {
|
|
if(zip_inflate_data.length == zip_inflate_pos)
|
|
return -1;
|
|
return zip_inflate_data.charCodeAt(zip_inflate_pos++) & 0xff;
|
|
}
|
|
|
|
function zip_NEEDBITS(n) {
|
|
while(zip_bit_len < n) {
|
|
zip_bit_buf |= zip_GET_BYTE() << zip_bit_len;
|
|
zip_bit_len += 8;
|
|
}
|
|
}
|
|
|
|
function zip_GETBITS(n) {
|
|
return zip_bit_buf & zip_MASK_BITS[n];
|
|
}
|
|
|
|
function zip_DUMPBITS(n) {
|
|
zip_bit_buf >>= n;
|
|
zip_bit_len -= n;
|
|
}
|
|
|
|
function zip_inflate_codes(buff, off, size) {
|
|
/* inflate (decompress) the codes in a deflated (compressed) block.
|
|
Return an error code or zero if it all goes ok. */
|
|
var e; // table entry flag/number of extra bits
|
|
var t; // (zip_HuftNode) pointer to table entry
|
|
var n;
|
|
|
|
if(size == 0)
|
|
return 0;
|
|
|
|
// inflate the coded data
|
|
n = 0;
|
|
for(;;) { // do until end of block
|
|
zip_NEEDBITS(zip_bl);
|
|
t = zip_tl.list[zip_GETBITS(zip_bl)];
|
|
e = t.e;
|
|
while(e > 16) {
|
|
if(e == 99)
|
|
return -1;
|
|
zip_DUMPBITS(t.b);
|
|
e -= 16;
|
|
zip_NEEDBITS(e);
|
|
t = t.t[zip_GETBITS(e)];
|
|
e = t.e;
|
|
}
|
|
zip_DUMPBITS(t.b);
|
|
|
|
if(e == 16) { // then it's a literal
|
|
zip_wp &= zip_WSIZE - 1;
|
|
buff[off + n++] = zip_slide[zip_wp++] = t.n;
|
|
if(n == size)
|
|
return size;
|
|
continue;
|
|
}
|
|
|
|
// exit if end of block
|
|
if(e == 15)
|
|
break;
|
|
|
|
// it's an EOB or a length
|
|
|
|
// get length of block to copy
|
|
zip_NEEDBITS(e);
|
|
zip_copy_leng = t.n + zip_GETBITS(e);
|
|
zip_DUMPBITS(e);
|
|
|
|
// decode distance of block to copy
|
|
zip_NEEDBITS(zip_bd);
|
|
t = zip_td.list[zip_GETBITS(zip_bd)];
|
|
e = t.e;
|
|
|
|
while(e > 16) {
|
|
if(e == 99)
|
|
return -1;
|
|
zip_DUMPBITS(t.b);
|
|
e -= 16;
|
|
zip_NEEDBITS(e);
|
|
t = t.t[zip_GETBITS(e)];
|
|
e = t.e;
|
|
}
|
|
zip_DUMPBITS(t.b);
|
|
zip_NEEDBITS(e);
|
|
zip_copy_dist = zip_wp - t.n - zip_GETBITS(e);
|
|
zip_DUMPBITS(e);
|
|
|
|
// do the copy
|
|
while(zip_copy_leng > 0 && n < size) {
|
|
zip_copy_leng--;
|
|
zip_copy_dist &= zip_WSIZE - 1;
|
|
zip_wp &= zip_WSIZE - 1;
|
|
buff[off + n++] = zip_slide[zip_wp++]
|
|
= zip_slide[zip_copy_dist++];
|
|
}
|
|
|
|
if(n == size)
|
|
return size;
|
|
}
|
|
|
|
zip_method = -1; // done
|
|
return n;
|
|
}
|
|
|
|
function zip_inflate_stored(buff, off, size) {
|
|
/* "decompress" an inflated type 0 (stored) block. */
|
|
var n;
|
|
|
|
// go to byte boundary
|
|
n = zip_bit_len & 7;
|
|
zip_DUMPBITS(n);
|
|
|
|
// get the length and its complement
|
|
zip_NEEDBITS(16);
|
|
n = zip_GETBITS(16);
|
|
zip_DUMPBITS(16);
|
|
zip_NEEDBITS(16);
|
|
if(n != ((~zip_bit_buf) & 0xffff))
|
|
return -1; // error in compressed data
|
|
zip_DUMPBITS(16);
|
|
|
|
// read and output the compressed data
|
|
zip_copy_leng = n;
|
|
|
|
n = 0;
|
|
while(zip_copy_leng > 0 && n < size) {
|
|
zip_copy_leng--;
|
|
zip_wp &= zip_WSIZE - 1;
|
|
zip_NEEDBITS(8);
|
|
buff[off + n++] = zip_slide[zip_wp++] =
|
|
zip_GETBITS(8);
|
|
zip_DUMPBITS(8);
|
|
}
|
|
|
|
if(zip_copy_leng == 0)
|
|
zip_method = -1; // done
|
|
return n;
|
|
}
|
|
|
|
function zip_inflate_fixed(buff, off, size) {
|
|
/* decompress an inflated type 1 (fixed Huffman codes) block. We should
|
|
either replace this with a custom decoder, or at least precompute the
|
|
Huffman tables. */
|
|
|
|
// if first time, set up tables for fixed blocks
|
|
if(zip_fixed_tl == null) {
|
|
var i; // temporary variable
|
|
var l = new Array(288); // length list for huft_build
|
|
var h; // zip_HuftBuild
|
|
|
|
// literal table
|
|
for(i = 0; i < 144; i++)
|
|
l[i] = 8;
|
|
for(; i < 256; i++)
|
|
l[i] = 9;
|
|
for(; i < 280; i++)
|
|
l[i] = 7;
|
|
for(; i < 288; i++) // make a complete, but wrong code set
|
|
l[i] = 8;
|
|
zip_fixed_bl = 7;
|
|
|
|
h = new zip_HuftBuild(l, 288, 257, zip_cplens, zip_cplext,
|
|
zip_fixed_bl);
|
|
if(h.status != 0) {
|
|
alert("HufBuild error: "+h.status);
|
|
return -1;
|
|
}
|
|
zip_fixed_tl = h.root;
|
|
zip_fixed_bl = h.m;
|
|
|
|
// distance table
|
|
for(i = 0; i < 30; i++) // make an incomplete code set
|
|
l[i] = 5;
|
|
zip_fixed_bd = 5;
|
|
|
|
h = new zip_HuftBuild(l, 30, 0, zip_cpdist, zip_cpdext, zip_fixed_bd);
|
|
if(h.status > 1) {
|
|
zip_fixed_tl = null;
|
|
alert("HufBuild error: "+h.status);
|
|
return -1;
|
|
}
|
|
zip_fixed_td = h.root;
|
|
zip_fixed_bd = h.m;
|
|
}
|
|
|
|
zip_tl = zip_fixed_tl;
|
|
zip_td = zip_fixed_td;
|
|
zip_bl = zip_fixed_bl;
|
|
zip_bd = zip_fixed_bd;
|
|
return zip_inflate_codes(buff, off, size);
|
|
}
|
|
|
|
function zip_inflate_dynamic(buff, off, size) {
|
|
// decompress an inflated type 2 (dynamic Huffman codes) block.
|
|
var i; // temporary variables
|
|
var j;
|
|
var l; // last length
|
|
var n; // number of lengths to get
|
|
var t; // (zip_HuftNode) literal/length code table
|
|
var nb; // number of bit length codes
|
|
var nl; // number of literal/length codes
|
|
var nd; // number of distance codes
|
|
var ll = new Array(286+30); // literal/length and distance code lengths
|
|
var h; // (zip_HuftBuild)
|
|
|
|
for(i = 0; i < ll.length; i++)
|
|
ll[i] = 0;
|
|
|
|
// read in table lengths
|
|
zip_NEEDBITS(5);
|
|
nl = 257 + zip_GETBITS(5); // number of literal/length codes
|
|
zip_DUMPBITS(5);
|
|
zip_NEEDBITS(5);
|
|
nd = 1 + zip_GETBITS(5); // number of distance codes
|
|
zip_DUMPBITS(5);
|
|
zip_NEEDBITS(4);
|
|
nb = 4 + zip_GETBITS(4); // number of bit length codes
|
|
zip_DUMPBITS(4);
|
|
if(nl > 286 || nd > 30)
|
|
return -1; // bad lengths
|
|
|
|
// read in bit-length-code lengths
|
|
for(j = 0; j < nb; j++)
|
|
{
|
|
zip_NEEDBITS(3);
|
|
ll[zip_border[j]] = zip_GETBITS(3);
|
|
zip_DUMPBITS(3);
|
|
}
|
|
for(; j < 19; j++)
|
|
ll[zip_border[j]] = 0;
|
|
|
|
// build decoding table for trees--single level, 7 bit lookup
|
|
zip_bl = 7;
|
|
h = new zip_HuftBuild(ll, 19, 19, null, null, zip_bl);
|
|
if(h.status != 0)
|
|
return -1; // incomplete code set
|
|
|
|
zip_tl = h.root;
|
|
zip_bl = h.m;
|
|
|
|
// read in literal and distance code lengths
|
|
n = nl + nd;
|
|
i = l = 0;
|
|
while(i < n) {
|
|
zip_NEEDBITS(zip_bl);
|
|
t = zip_tl.list[zip_GETBITS(zip_bl)];
|
|
j = t.b;
|
|
zip_DUMPBITS(j);
|
|
j = t.n;
|
|
if(j < 16) // length of code in bits (0..15)
|
|
ll[i++] = l = j; // save last length in l
|
|
else if(j == 16) { // repeat last length 3 to 6 times
|
|
zip_NEEDBITS(2);
|
|
j = 3 + zip_GETBITS(2);
|
|
zip_DUMPBITS(2);
|
|
if(i + j > n)
|
|
return -1;
|
|
while(j-- > 0)
|
|
ll[i++] = l;
|
|
} else if(j == 17) { // 3 to 10 zero length codes
|
|
zip_NEEDBITS(3);
|
|
j = 3 + zip_GETBITS(3);
|
|
zip_DUMPBITS(3);
|
|
if(i + j > n)
|
|
return -1;
|
|
while(j-- > 0)
|
|
ll[i++] = 0;
|
|
l = 0;
|
|
} else { // j == 18: 11 to 138 zero length codes
|
|
zip_NEEDBITS(7);
|
|
j = 11 + zip_GETBITS(7);
|
|
zip_DUMPBITS(7);
|
|
if(i + j > n)
|
|
return -1;
|
|
while(j-- > 0)
|
|
ll[i++] = 0;
|
|
l = 0;
|
|
}
|
|
}
|
|
|
|
// build the decoding tables for literal/length and distance codes
|
|
zip_bl = zip_lbits;
|
|
h = new zip_HuftBuild(ll, nl, 257, zip_cplens, zip_cplext, zip_bl);
|
|
if(zip_bl == 0) // no literals or lengths
|
|
h.status = 1;
|
|
if(h.status != 0) {
|
|
if(h.status == 1)
|
|
;// **incomplete literal tree**
|
|
return -1; // incomplete code set
|
|
}
|
|
zip_tl = h.root;
|
|
zip_bl = h.m;
|
|
|
|
for(i = 0; i < nd; i++)
|
|
ll[i] = ll[i + nl];
|
|
zip_bd = zip_dbits;
|
|
h = new zip_HuftBuild(ll, nd, 0, zip_cpdist, zip_cpdext, zip_bd);
|
|
zip_td = h.root;
|
|
zip_bd = h.m;
|
|
|
|
if(zip_bd == 0 && nl > 257) { // lengths but no distances
|
|
// **incomplete distance tree**
|
|
return -1;
|
|
}
|
|
|
|
if(h.status == 1) {
|
|
;// **incomplete distance tree**
|
|
}
|
|
if(h.status != 0)
|
|
return -1;
|
|
|
|
// decompress until an end-of-block code
|
|
return zip_inflate_codes(buff, off, size);
|
|
}
|
|
|
|
function zip_inflate_start() {
|
|
var i;
|
|
|
|
if(zip_slide == null)
|
|
zip_slide = new Array(2 * zip_WSIZE);
|
|
zip_wp = 0;
|
|
zip_bit_buf = 0;
|
|
zip_bit_len = 0;
|
|
zip_method = -1;
|
|
zip_eof = false;
|
|
zip_copy_leng = zip_copy_dist = 0;
|
|
zip_tl = null;
|
|
}
|
|
|
|
function zip_inflate_internal(buff, off, size) {
|
|
// decompress an inflated entry
|
|
var n, i;
|
|
|
|
n = 0;
|
|
while(n < size) {
|
|
if(zip_eof && zip_method == -1)
|
|
return n;
|
|
|
|
if(zip_copy_leng > 0) {
|
|
if(zip_method != zip_STORED_BLOCK) {
|
|
// STATIC_TREES or DYN_TREES
|
|
while(zip_copy_leng > 0 && n < size) {
|
|
zip_copy_leng--;
|
|
zip_copy_dist &= zip_WSIZE - 1;
|
|
zip_wp &= zip_WSIZE - 1;
|
|
buff[off + n++] = zip_slide[zip_wp++] =
|
|
zip_slide[zip_copy_dist++];
|
|
}
|
|
} else {
|
|
while(zip_copy_leng > 0 && n < size) {
|
|
zip_copy_leng--;
|
|
zip_wp &= zip_WSIZE - 1;
|
|
zip_NEEDBITS(8);
|
|
buff[off + n++] = zip_slide[zip_wp++] = zip_GETBITS(8);
|
|
zip_DUMPBITS(8);
|
|
}
|
|
if(zip_copy_leng == 0)
|
|
zip_method = -1; // done
|
|
}
|
|
if(n == size)
|
|
return n;
|
|
}
|
|
|
|
if(zip_method == -1) {
|
|
if(zip_eof)
|
|
break;
|
|
|
|
// read in last block bit
|
|
zip_NEEDBITS(1);
|
|
if(zip_GETBITS(1) != 0)
|
|
zip_eof = true;
|
|
zip_DUMPBITS(1);
|
|
|
|
// read in block type
|
|
zip_NEEDBITS(2);
|
|
zip_method = zip_GETBITS(2);
|
|
zip_DUMPBITS(2);
|
|
zip_tl = null;
|
|
zip_copy_leng = 0;
|
|
}
|
|
|
|
switch(zip_method) {
|
|
case 0: // zip_STORED_BLOCK
|
|
i = zip_inflate_stored(buff, off + n, size - n);
|
|
break;
|
|
|
|
case 1: // zip_STATIC_TREES
|
|
if(zip_tl != null)
|
|
i = zip_inflate_codes(buff, off + n, size - n);
|
|
else
|
|
i = zip_inflate_fixed(buff, off + n, size - n);
|
|
break;
|
|
|
|
case 2: // zip_DYN_TREES
|
|
if(zip_tl != null)
|
|
i = zip_inflate_codes(buff, off + n, size - n);
|
|
else
|
|
i = zip_inflate_dynamic(buff, off + n, size - n);
|
|
break;
|
|
|
|
default: // error
|
|
i = -1;
|
|
break;
|
|
}
|
|
|
|
if(i == -1) {
|
|
if(zip_eof)
|
|
return 0;
|
|
return -1;
|
|
}
|
|
n += i;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
function zip_inflate(str) {
|
|
var out, buff;
|
|
var i, j;
|
|
|
|
zip_inflate_start();
|
|
zip_inflate_data = str;
|
|
zip_inflate_pos = 0;
|
|
|
|
buff = new Array(1024);
|
|
out = "";
|
|
while((i = zip_inflate_internal(buff, 0, buff.length)) > 0) {
|
|
for(j = 0; j < i; j++)
|
|
out += String.fromCharCode(buff[j]);
|
|
}
|
|
zip_inflate_data = null; // G.C.
|
|
return out;
|
|
}
|
|
|
|
//
|
|
// end of the script of Masanao Izumo.
|
|
//
|
|
|
|
// we add the compression method for JSZip
|
|
if(!JSZip.compressions["DEFLATE"]) {
|
|
JSZip.compressions["DEFLATE"] = {
|
|
magic : "\x08\x00",
|
|
uncompress : zip_inflate
|
|
}
|
|
} else {
|
|
JSZip.compressions["DEFLATE"].uncompress = zip_inflate;
|
|
}
|
|
|
|
})();
|
|
|
|
// enforcing Stuk's coding style
|
|
// vim: set shiftwidth=3 softtabstop=3:
|