mailiverse/cpp/Lib/xcode-botan/Botan-1.10.3-clean/doc/examples/rsa_enc.cpp

152 lines
4.7 KiB
C++
Raw Normal View History

2013-07-25 22:51:23 -04:00
/*
* (C) 2002 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
/*
Grab an RSA public key from the file given as an argument, grab a message
from another file, and encrypt the message.
Algorithms used:
RSA with EME1(SHA-1) padding to encrypt the master key
CAST-128 in CBC mode with PKCS#7 padding to encrypt the message.
HMAC with SHA-1 is used to authenticate the message
The keys+IV used are derived from the master key (the thing that's encrypted
with RSA) using KDF2(SHA-1). The 3 outputs of KDF2 are parameterized by P,
where P is "CAST", "IV" or "MAC", in order to make each key/IV unique.
The format is:
1) First line is the master key, encrypted with the recipients public key
using EME1(SHA-1), and then base64 encoded.
2) Second line is the first 96 bits (12 bytes) of the HMAC(SHA-1) of
the _plaintext_
3) Following lines are base64 encoded ciphertext (CAST-128 as described),
each broken after ~72 characters.
*/
#include <iostream>
#include <fstream>
#include <string>
#include <memory>
#include <botan/botan.h>
#include <botan/pubkey.h>
#include <botan/rsa.h>
using namespace Botan;
std::string b64_encode(const SecureVector<byte>&);
SymmetricKey derive_key(const std::string&, const SymmetricKey&, u32bit);
int main(int argc, char* argv[])
{
if(argc != 3)
{
std::cout << "Usage: " << argv[0] << " keyfile messagefile" << std::endl;
return 1;
}
std::ifstream message(argv[2], std::ios::binary);
if(!message)
{
std::cout << "Couldn't read the message file." << std::endl;
return 1;
}
Botan::LibraryInitializer init;
std::string output_name(argv[2]);
output_name += ".enc";
std::ofstream ciphertext(output_name.c_str());
if(!ciphertext)
{
std::cout << "Couldn't write the ciphertext to " << output_name
<< std::endl;
return 1;
}
try {
std::auto_ptr<X509_PublicKey> key(X509::load_key(argv[1]));
RSA_PublicKey* rsakey = dynamic_cast<RSA_PublicKey*>(key.get());
if(!rsakey)
{
std::cout << "The loaded key is not a RSA key!\n";
return 1;
}
AutoSeeded_RNG rng;
PK_Encryptor_EME encryptor(*rsakey, "EME1(SHA-1)");
/* Generate the master key (the other keys are derived from this)
Basically, make the key as large as can be encrypted by this key, up
to a limit of 256 bits. For 512 bit keys, the master key will be >160
bits. A >600 bit key will use the full 256 bit master key.
In theory, this is not enough, because we derive 16+16+8=40 bytes of
secrets (if you include the IV) using the master key, so they are not
statistically indepedent. Practically speaking I don't think this is
a problem.
*/
SymmetricKey masterkey(rng,
std::min<size_t>(32,
encryptor.maximum_input_size()));
SymmetricKey cast_key = derive_key("CAST", masterkey, 16);
SymmetricKey mac_key = derive_key("MAC", masterkey, 16);
SymmetricKey iv = derive_key("IV", masterkey, 8);
SecureVector<byte> encrypted_key =
encryptor.encrypt(masterkey.bits_of(), rng);
ciphertext << b64_encode(encrypted_key) << std::endl;
Pipe pipe(new Fork(
new Chain(
get_cipher("CAST-128/CBC/PKCS7", cast_key, iv,
ENCRYPTION),
new Base64_Encoder(true) // true == do linebreaking
),
new Chain(
new MAC_Filter("HMAC(SHA-1)", mac_key, 12),
new Base64_Encoder
)
)
);
pipe.start_msg();
message >> pipe;
pipe.end_msg();
/* Write the MAC as the second line. That way we can pull it off right
from the start, and feed the rest of the file right into a pipe on the
decrypting end.
*/
ciphertext << pipe.read_all_as_string(1) << std::endl;
ciphertext << pipe.read_all_as_string(0);
}
catch(std::exception& e)
{
std::cout << "Exception: " << e.what() << std::endl;
}
return 0;
}
std::string b64_encode(const SecureVector<byte>& in)
{
Pipe pipe(new Base64_Encoder);
pipe.process_msg(in);
return pipe.read_all_as_string();
}
SymmetricKey derive_key(const std::string& param,
const SymmetricKey& masterkey,
u32bit outputlength)
{
std::auto_ptr<KDF> kdf(get_kdf("KDF2(SHA-1)"));
return kdf->derive_key(outputlength, masterkey.bits_of(), param);
}