mirror of
https://github.com/moparisthebest/mailiverse
synced 2025-01-09 20:48:18 -05:00
927 lines
28 KiB
Java
927 lines
28 KiB
Java
|
/*
|
||
|
* Copyright 2009 Google Inc.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||
|
* use this file except in compliance with the License. You may obtain a copy of
|
||
|
* the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations under
|
||
|
* the License.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||
|
* contributor license agreements. See the NOTICE file distributed with this
|
||
|
* work for additional information regarding copyright ownership. The ASF
|
||
|
* licenses this file to You under the Apache License, Version 2.0 (the
|
||
|
* "License"); you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations under
|
||
|
* the License.
|
||
|
*
|
||
|
* INCLUDES MODIFICATIONS BY RICHARD ZSCHECH AS WELL AS GOOGLE.
|
||
|
*/
|
||
|
package java.math;
|
||
|
|
||
|
/**
|
||
|
* The library implements some logical operations over {@code BigInteger}. The
|
||
|
* operations provided are listed below. <ul type="circle"> <li>not</li> <li>and
|
||
|
* </li> <li>andNot</li> <li>or</li> <li>xor</li> </ul>
|
||
|
*/
|
||
|
class Logical {
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#and(BigInteger)
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger and(BigInteger val, BigInteger that) {
|
||
|
if (that.sign == 0 || val.sign == 0) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
if (that.equals(BigInteger.MINUS_ONE)) {
|
||
|
return val;
|
||
|
}
|
||
|
if (val.equals(BigInteger.MINUS_ONE)) {
|
||
|
return that;
|
||
|
}
|
||
|
|
||
|
if (val.sign > 0) {
|
||
|
if (that.sign > 0) {
|
||
|
return andPositive(val, that);
|
||
|
} else {
|
||
|
return andDiffSigns(val, that);
|
||
|
}
|
||
|
} else {
|
||
|
if (that.sign > 0) {
|
||
|
return andDiffSigns(that, val);
|
||
|
} else if (val.numberLength > that.numberLength) {
|
||
|
return andNegative(val, that);
|
||
|
} else {
|
||
|
return andNegative(that, val);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = positive.magnitude & magnitude = -negative.magnitude.
|
||
|
* @param positive
|
||
|
* @param negative
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andDiffSigns(BigInteger positive, BigInteger negative) {
|
||
|
// PRE: positive is positive and negative is negative
|
||
|
int iPos = positive.getFirstNonzeroDigit();
|
||
|
int iNeg = negative.getFirstNonzeroDigit();
|
||
|
|
||
|
// Look if the trailing zeros of the negative will "blank" all
|
||
|
// the positive digits
|
||
|
if (iNeg >= positive.numberLength) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
int resLength = positive.numberLength;
|
||
|
int resDigits[] = new int[resLength];
|
||
|
|
||
|
// Must start from max(iPos, iNeg)
|
||
|
int i = Math.max(iPos, iNeg);
|
||
|
if (i == iNeg) {
|
||
|
resDigits[i] = -negative.digits[i] & positive.digits[i];
|
||
|
i++;
|
||
|
}
|
||
|
int limit = Math.min(negative.numberLength, positive.numberLength);
|
||
|
for (; i < limit; i++) {
|
||
|
resDigits[i] = ~negative.digits[i] & positive.digits[i];
|
||
|
}
|
||
|
// if the negative was shorter must copy the remaining digits
|
||
|
// from positive
|
||
|
if (i >= negative.numberLength) {
|
||
|
for (; i < positive.numberLength; i++) {
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
} // else positive ended and must "copy" virtual 0's, do nothing then
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = -1, magnitude = -(-longer.magnitude & -shorter.magnitude).
|
||
|
* @param longer
|
||
|
* @param shorter
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNegative(BigInteger longer, BigInteger shorter) {
|
||
|
// PRE: longer and shorter are negative
|
||
|
// PRE: longer has at least as many digits as shorter
|
||
|
int iLonger = longer.getFirstNonzeroDigit();
|
||
|
int iShorter = shorter.getFirstNonzeroDigit();
|
||
|
|
||
|
// Does shorter matter?
|
||
|
if (iLonger >= shorter.numberLength) {
|
||
|
return longer;
|
||
|
}
|
||
|
|
||
|
int resLength;
|
||
|
int resDigits[];
|
||
|
int i = Math.max(iShorter, iLonger);
|
||
|
int digit;
|
||
|
if (iShorter > iLonger) {
|
||
|
digit = -shorter.digits[i] & ~longer.digits[i];
|
||
|
} else if (iShorter < iLonger) {
|
||
|
digit = ~shorter.digits[i] & -longer.digits[i];
|
||
|
} else {
|
||
|
digit = -shorter.digits[i] & -longer.digits[i];
|
||
|
}
|
||
|
if (digit == 0) {
|
||
|
for (i++; i < shorter.numberLength
|
||
|
&& (digit = ~(longer.digits[i] | shorter.digits[i])) == 0; i++) {
|
||
|
// digit
|
||
|
}
|
||
|
// = ~longer.digits[i] & ~shorter.digits[i]
|
||
|
if (digit == 0) {
|
||
|
// shorter has only the remaining virtual sign bits
|
||
|
for (; i < longer.numberLength && (digit = ~longer.digits[i]) == 0; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
if (digit == 0) {
|
||
|
resLength = longer.numberLength + 1;
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[resLength - 1] = 1;
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
resLength = longer.numberLength;
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[i] = -digit;
|
||
|
for (i++; i < shorter.numberLength; i++) {
|
||
|
// resDigits[i] = ~(~longer.digits[i] & ~shorter.digits[i];)
|
||
|
resDigits[i] = longer.digits[i] | shorter.digits[i];
|
||
|
}
|
||
|
// shorter has only the remaining virtual sign bits
|
||
|
for (; i < longer.numberLength; i++) {
|
||
|
resDigits[i] = longer.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#andNot(BigInteger)
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNot(BigInteger val, BigInteger that) {
|
||
|
if (that.sign == 0) {
|
||
|
return val;
|
||
|
}
|
||
|
if (val.sign == 0) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
if (val.equals(BigInteger.MINUS_ONE)) {
|
||
|
return that.not();
|
||
|
}
|
||
|
if (that.equals(BigInteger.MINUS_ONE)) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
|
||
|
// if val == that, return 0
|
||
|
|
||
|
if (val.sign > 0) {
|
||
|
if (that.sign > 0) {
|
||
|
return andNotPositive(val, that);
|
||
|
} else {
|
||
|
return andNotPositiveNegative(val, that);
|
||
|
}
|
||
|
} else {
|
||
|
if (that.sign > 0) {
|
||
|
return andNotNegativePositive(val, that);
|
||
|
} else {
|
||
|
return andNotNegative(val, that);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = -val.magnitude & ~(-that.magnitude).
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNotNegative(BigInteger val, BigInteger that) {
|
||
|
// PRE: val < 0 && that < 0
|
||
|
int iVal = val.getFirstNonzeroDigit();
|
||
|
int iThat = that.getFirstNonzeroDigit();
|
||
|
|
||
|
if (iVal >= that.numberLength) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
|
||
|
int resLength = that.numberLength;
|
||
|
int resDigits[] = new int[resLength];
|
||
|
int limit;
|
||
|
int i = iVal;
|
||
|
if (iVal < iThat) {
|
||
|
// resDigits[i] = -val.digits[i] & -1;
|
||
|
resDigits[i] = -val.digits[i];
|
||
|
limit = Math.min(val.numberLength, iThat);
|
||
|
for (i++; i < limit; i++) {
|
||
|
// resDigits[i] = ~val.digits[i] & -1;
|
||
|
resDigits[i] = ~val.digits[i];
|
||
|
}
|
||
|
if (i == val.numberLength) {
|
||
|
for (; i < iThat; i++) {
|
||
|
// resDigits[i] = -1 & -1;
|
||
|
resDigits[i] = -1;
|
||
|
}
|
||
|
// resDigits[i] = -1 & ~-that.digits[i];
|
||
|
resDigits[i] = that.digits[i] - 1;
|
||
|
} else {
|
||
|
// resDigits[i] = ~val.digits[i] & ~-that.digits[i];
|
||
|
resDigits[i] = ~val.digits[i] & (that.digits[i] - 1);
|
||
|
}
|
||
|
} else if (iThat < iVal) {
|
||
|
// resDigits[i] = -val.digits[i] & ~~that.digits[i];
|
||
|
resDigits[i] = -val.digits[i] & that.digits[i];
|
||
|
} else {
|
||
|
// resDigits[i] = -val.digits[i] & ~-that.digits[i];
|
||
|
resDigits[i] = -val.digits[i] & (that.digits[i] - 1);
|
||
|
}
|
||
|
|
||
|
limit = Math.min(val.numberLength, that.numberLength);
|
||
|
for (i++; i < limit; i++) {
|
||
|
// resDigits[i] = ~val.digits[i] & ~~that.digits[i];
|
||
|
resDigits[i] = ~val.digits[i] & that.digits[i];
|
||
|
}
|
||
|
for (; i < that.numberLength; i++) {
|
||
|
// resDigits[i] = -1 & ~~that.digits[i];
|
||
|
resDigits[i] = that.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = -1, magnitude = -(-negative.magnitude & ~positive.magnitude).
|
||
|
* @param negative
|
||
|
* @param positive
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNotNegativePositive(BigInteger negative,
|
||
|
BigInteger positive) {
|
||
|
// PRE: negative < 0 && positive > 0
|
||
|
int resLength;
|
||
|
int resDigits[];
|
||
|
int limit;
|
||
|
int digit;
|
||
|
|
||
|
int iNeg = negative.getFirstNonzeroDigit();
|
||
|
int iPos = positive.getFirstNonzeroDigit();
|
||
|
|
||
|
if (iNeg >= positive.numberLength) {
|
||
|
return negative;
|
||
|
}
|
||
|
|
||
|
resLength = Math.max(negative.numberLength, positive.numberLength);
|
||
|
int i = iNeg;
|
||
|
if (iPos > iNeg) {
|
||
|
resDigits = new int[resLength];
|
||
|
limit = Math.min(negative.numberLength, iPos);
|
||
|
for (; i < limit; i++) {
|
||
|
// 1st case: resDigits [i] = -(-negative.digits[i] & (~0))
|
||
|
// otherwise: resDigits[i] = ~(~negative.digits[i] & ~0) ;
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
if (i == negative.numberLength) {
|
||
|
for (i = iPos; i < positive.numberLength; i++) {
|
||
|
// resDigits[i] = ~(~positive.digits[i] & -1);
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
digit = -negative.digits[i] & ~positive.digits[i];
|
||
|
if (digit == 0) {
|
||
|
limit = Math.min(positive.numberLength, negative.numberLength);
|
||
|
for (i++; i < limit
|
||
|
&& (digit = ~(negative.digits[i] | positive.digits[i])) == 0; i++) {
|
||
|
// digit
|
||
|
}
|
||
|
// = ~negative.digits[i] & ~positive.digits[i]
|
||
|
if (digit == 0) {
|
||
|
// the shorter has only the remaining virtual sign bits
|
||
|
for (; i < positive.numberLength
|
||
|
&& (digit = ~positive.digits[i]) == 0; i++) {
|
||
|
// digit = -1 & ~positive.digits[i]
|
||
|
}
|
||
|
for (; i < negative.numberLength
|
||
|
&& (digit = ~negative.digits[i]) == 0; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
// digit = ~negative.digits[i] & ~0
|
||
|
if (digit == 0) {
|
||
|
resLength++;
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[resLength - 1] = 1;
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[i] = -digit;
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
limit = Math.min(positive.numberLength, negative.numberLength);
|
||
|
for (; i < limit; i++) {
|
||
|
// resDigits[i] = ~(~negative.digits[i] & ~positive.digits[i]);
|
||
|
resDigits[i] = negative.digits[i] | positive.digits[i];
|
||
|
}
|
||
|
// Actually one of the next two cycles will be executed
|
||
|
for (; i < negative.numberLength; i++) {
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
for (; i < positive.numberLength; i++) {
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = val.magnitude & ~that.magnitude.
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNotPositive(BigInteger val, BigInteger that) {
|
||
|
// PRE: both arguments are positive
|
||
|
int resDigits[] = new int[val.numberLength];
|
||
|
|
||
|
int limit = Math.min(val.numberLength, that.numberLength);
|
||
|
int i;
|
||
|
for (i = val.getFirstNonzeroDigit(); i < limit; i++) {
|
||
|
resDigits[i] = val.digits[i] & ~that.digits[i];
|
||
|
}
|
||
|
for (; i < val.numberLength; i++) {
|
||
|
resDigits[i] = val.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, val.numberLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = positive.magnitude & ~(-negative.magnitude).
|
||
|
* @param positive
|
||
|
* @param negative
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andNotPositiveNegative(BigInteger positive,
|
||
|
BigInteger negative) {
|
||
|
// PRE: positive > 0 && negative < 0
|
||
|
int iNeg = negative.getFirstNonzeroDigit();
|
||
|
int iPos = positive.getFirstNonzeroDigit();
|
||
|
|
||
|
if (iNeg >= positive.numberLength) {
|
||
|
return positive;
|
||
|
}
|
||
|
|
||
|
int resLength = Math.min(positive.numberLength, negative.numberLength);
|
||
|
int resDigits[] = new int[resLength];
|
||
|
|
||
|
// Always start from first non zero of positive
|
||
|
int i = iPos;
|
||
|
for (; i < iNeg; i++) {
|
||
|
// resDigits[i] = positive.digits[i] & -1 (~0)
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
if (i == iNeg) {
|
||
|
resDigits[i] = positive.digits[i] & (negative.digits[i] - 1);
|
||
|
i++;
|
||
|
}
|
||
|
for (; i < resLength; i++) {
|
||
|
// resDigits[i] = positive.digits[i] & ~(~negative.digits[i]);
|
||
|
resDigits[i] = positive.digits[i] & negative.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = val.magnitude & that.magnitude.
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger andPositive(BigInteger val, BigInteger that) {
|
||
|
// PRE: both arguments are positive
|
||
|
int resLength = Math.min(val.numberLength, that.numberLength);
|
||
|
int i = Math.max(val.getFirstNonzeroDigit(), that.getFirstNonzeroDigit());
|
||
|
|
||
|
if (i >= resLength) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
|
||
|
int resDigits[] = new int[resLength];
|
||
|
for (; i < resLength; i++) {
|
||
|
resDigits[i] = val.digits[i] & that.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#not()
|
||
|
* @param val
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger not(BigInteger val) {
|
||
|
if (val.sign == 0) {
|
||
|
return BigInteger.MINUS_ONE;
|
||
|
}
|
||
|
if (val.equals(BigInteger.MINUS_ONE)) {
|
||
|
return BigInteger.ZERO;
|
||
|
}
|
||
|
int resDigits[] = new int[val.numberLength + 1];
|
||
|
int i;
|
||
|
|
||
|
if (val.sign > 0) {
|
||
|
// ~val = -val + 1
|
||
|
if (val.digits[val.numberLength - 1] != -1) {
|
||
|
for (i = 0; val.digits[i] == -1; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
} else {
|
||
|
for (i = 0; (i < val.numberLength) && (val.digits[i] == -1); i++) {
|
||
|
// empty
|
||
|
}
|
||
|
if (i == val.numberLength) {
|
||
|
resDigits[i] = 1;
|
||
|
return new BigInteger(-val.sign, i + 1, resDigits);
|
||
|
}
|
||
|
}
|
||
|
// Here a carry 1 was generated
|
||
|
} else {
|
||
|
// (val.sign < 0)
|
||
|
// ~val = -val - 1
|
||
|
for (i = 0; val.digits[i] == 0; i++) {
|
||
|
resDigits[i] = -1;
|
||
|
}
|
||
|
// Here a borrow -1 was generated
|
||
|
}
|
||
|
// Now, the carry/borrow can be absorbed
|
||
|
resDigits[i] = val.digits[i] + val.sign;
|
||
|
// Copying the remaining unchanged digit
|
||
|
for (i++; i < val.numberLength; i++) {
|
||
|
resDigits[i] = val.digits[i];
|
||
|
}
|
||
|
return new BigInteger(-val.sign, i, resDigits);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#or(BigInteger).
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger or(BigInteger val, BigInteger that) {
|
||
|
if (that.equals(BigInteger.MINUS_ONE) || val.equals(BigInteger.MINUS_ONE)) {
|
||
|
return BigInteger.MINUS_ONE;
|
||
|
}
|
||
|
if (that.sign == 0) {
|
||
|
return val;
|
||
|
}
|
||
|
if (val.sign == 0) {
|
||
|
return that;
|
||
|
}
|
||
|
|
||
|
if (val.sign > 0) {
|
||
|
if (that.sign > 0) {
|
||
|
if (val.numberLength > that.numberLength) {
|
||
|
return orPositive(val, that);
|
||
|
} else {
|
||
|
return orPositive(that, val);
|
||
|
}
|
||
|
} else {
|
||
|
return orDiffSigns(val, that);
|
||
|
}
|
||
|
} else {
|
||
|
if (that.sign > 0) {
|
||
|
return orDiffSigns(that, val);
|
||
|
} else if (that.getFirstNonzeroDigit() > val.getFirstNonzeroDigit()) {
|
||
|
return orNegative(that, val);
|
||
|
} else {
|
||
|
return orNegative(val, that);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = -1, magnitude = -(positive.magnitude | -negative.magnitude).
|
||
|
* @param positive
|
||
|
* @param negative
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger orDiffSigns(BigInteger positive, BigInteger negative) {
|
||
|
// Jumping over the least significant zero bits
|
||
|
int iNeg = negative.getFirstNonzeroDigit();
|
||
|
int iPos = positive.getFirstNonzeroDigit();
|
||
|
int i;
|
||
|
int limit;
|
||
|
|
||
|
// Look if the trailing zeros of the positive will "copy" all
|
||
|
// the negative digits
|
||
|
if (iPos >= negative.numberLength) {
|
||
|
return negative;
|
||
|
}
|
||
|
int resLength = negative.numberLength;
|
||
|
int resDigits[] = new int[resLength];
|
||
|
|
||
|
if (iNeg < iPos) {
|
||
|
// We know for sure that this will
|
||
|
// be the first non zero digit in the result
|
||
|
for (i = iNeg; i < iPos; i++) {
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
} else if (iPos < iNeg) {
|
||
|
i = iPos;
|
||
|
resDigits[i] = -positive.digits[i];
|
||
|
limit = Math.min(positive.numberLength, iNeg);
|
||
|
for (i++; i < limit; i++) {
|
||
|
resDigits[i] = ~positive.digits[i];
|
||
|
}
|
||
|
if (i != positive.numberLength) {
|
||
|
resDigits[i] = ~(-negative.digits[i] | positive.digits[i]);
|
||
|
} else {
|
||
|
for (; i < iNeg; i++) {
|
||
|
resDigits[i] = -1;
|
||
|
}
|
||
|
// resDigits[i] = ~(-negative.digits[i] | 0);
|
||
|
resDigits[i] = negative.digits[i] - 1;
|
||
|
}
|
||
|
i++;
|
||
|
} else {
|
||
|
// iNeg == iPos
|
||
|
// Applying two complement to negative and to result
|
||
|
i = iPos;
|
||
|
resDigits[i] = -(-negative.digits[i] | positive.digits[i]);
|
||
|
i++;
|
||
|
}
|
||
|
limit = Math.min(negative.numberLength, positive.numberLength);
|
||
|
for (; i < limit; i++) {
|
||
|
// Applying two complement to negative and to result
|
||
|
// resDigits[i] = ~(~negative.digits[i] | positive.digits[i] );
|
||
|
resDigits[i] = negative.digits[i] & ~positive.digits[i];
|
||
|
}
|
||
|
for (; i < negative.numberLength; i++) {
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = -1, magnitude = -(-val.magnitude | -that.magnitude).
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger orNegative(BigInteger val, BigInteger that) {
|
||
|
// PRE: val and that are negative;
|
||
|
// PRE: val has at least as many trailing zeros digits as that
|
||
|
int iThat = that.getFirstNonzeroDigit();
|
||
|
int iVal = val.getFirstNonzeroDigit();
|
||
|
int i;
|
||
|
|
||
|
if (iVal >= that.numberLength) {
|
||
|
return that;
|
||
|
} else if (iThat >= val.numberLength) {
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
int resLength = Math.min(val.numberLength, that.numberLength);
|
||
|
int resDigits[] = new int[resLength];
|
||
|
|
||
|
// Looking for the first non-zero digit of the result
|
||
|
if (iThat == iVal) {
|
||
|
resDigits[iVal] = -(-val.digits[iVal] | -that.digits[iVal]);
|
||
|
i = iVal;
|
||
|
} else {
|
||
|
for (i = iThat; i < iVal; i++) {
|
||
|
resDigits[i] = that.digits[i];
|
||
|
}
|
||
|
resDigits[i] = that.digits[i] & (val.digits[i] - 1);
|
||
|
}
|
||
|
|
||
|
for (i++; i < resLength; i++) {
|
||
|
resDigits[i] = val.digits[i] & that.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = longer.magnitude | shorter.magnitude.
|
||
|
* @param longer
|
||
|
* @param shorter
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger orPositive(BigInteger longer, BigInteger shorter) {
|
||
|
// PRE: longer and shorter are positive;
|
||
|
// PRE: longer has at least as many digits as shorter
|
||
|
int resLength = longer.numberLength;
|
||
|
int resDigits[] = new int[resLength];
|
||
|
|
||
|
int i = Math.min(longer.getFirstNonzeroDigit(),
|
||
|
shorter.getFirstNonzeroDigit());
|
||
|
for (i = 0; i < shorter.numberLength; i++) {
|
||
|
resDigits[i] = longer.digits[i] | shorter.digits[i];
|
||
|
}
|
||
|
for (; i < resLength; i++) {
|
||
|
resDigits[i] = longer.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#xor(BigInteger)
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger xor(BigInteger val, BigInteger that) {
|
||
|
if (that.sign == 0) {
|
||
|
return val;
|
||
|
}
|
||
|
if (val.sign == 0) {
|
||
|
return that;
|
||
|
}
|
||
|
if (that.equals(BigInteger.MINUS_ONE)) {
|
||
|
return val.not();
|
||
|
}
|
||
|
if (val.equals(BigInteger.MINUS_ONE)) {
|
||
|
return that.not();
|
||
|
}
|
||
|
|
||
|
if (val.sign > 0) {
|
||
|
if (that.sign > 0) {
|
||
|
if (val.numberLength > that.numberLength) {
|
||
|
return xorPositive(val, that);
|
||
|
} else {
|
||
|
return xorPositive(that, val);
|
||
|
}
|
||
|
} else {
|
||
|
return xorDiffSigns(val, that);
|
||
|
}
|
||
|
} else {
|
||
|
if (that.sign > 0) {
|
||
|
return xorDiffSigns(that, val);
|
||
|
} else if (that.getFirstNonzeroDigit() > val.getFirstNonzeroDigit()) {
|
||
|
return xorNegative(that, val);
|
||
|
} else {
|
||
|
return xorNegative(val, that);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 1, magnitude = -(positive.magnitude ^ -negative.magnitude).
|
||
|
* @param positive
|
||
|
* @param negative
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger xorDiffSigns(BigInteger positive, BigInteger negative) {
|
||
|
int resLength = Math.max(negative.numberLength, positive.numberLength);
|
||
|
int resDigits[];
|
||
|
int iNeg = negative.getFirstNonzeroDigit();
|
||
|
int iPos = positive.getFirstNonzeroDigit();
|
||
|
int i;
|
||
|
int limit;
|
||
|
|
||
|
// The first
|
||
|
if (iNeg < iPos) {
|
||
|
resDigits = new int[resLength];
|
||
|
i = iNeg;
|
||
|
// resDigits[i] = -(-negative.digits[i]);
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
limit = Math.min(negative.numberLength, iPos);
|
||
|
// Skip the positive digits while they are zeros
|
||
|
for (i++; i < limit; i++) {
|
||
|
// resDigits[i] = ~(~negative.digits[i]);
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
// if the negative has no more elements, must fill the
|
||
|
// result with the remaining digits of the positive
|
||
|
if (i == negative.numberLength) {
|
||
|
for (; i < positive.numberLength; i++) {
|
||
|
// resDigits[i] = ~(positive.digits[i] ^ -1) -> ~(~positive.digits[i])
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
}
|
||
|
} else if (iPos < iNeg) {
|
||
|
resDigits = new int[resLength];
|
||
|
i = iPos;
|
||
|
// Applying two complement to the first non-zero digit of the result
|
||
|
resDigits[i] = -positive.digits[i];
|
||
|
limit = Math.min(positive.numberLength, iNeg);
|
||
|
for (i++; i < limit; i++) {
|
||
|
// Continue applying two complement the result
|
||
|
resDigits[i] = ~positive.digits[i];
|
||
|
}
|
||
|
// When the first non-zero digit of the negative is reached, must apply
|
||
|
// two complement (arithmetic negation) to it, and then operate
|
||
|
if (i == iNeg) {
|
||
|
resDigits[i] = ~(positive.digits[i] ^ -negative.digits[i]);
|
||
|
i++;
|
||
|
} else {
|
||
|
// if the positive has no more elements must fill the remaining digits
|
||
|
// with
|
||
|
// the negative ones
|
||
|
for (; i < iNeg; i++) {
|
||
|
// resDigits[i] = ~(0 ^ 0)
|
||
|
resDigits[i] = -1;
|
||
|
}
|
||
|
for (; i < negative.numberLength; i++) {
|
||
|
// resDigits[i] = ~(~negative.digits[i] ^ 0)
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
int digit;
|
||
|
// The first non-zero digit of the positive and negative are the same
|
||
|
i = iNeg;
|
||
|
digit = positive.digits[i] ^ -negative.digits[i];
|
||
|
if (digit == 0) {
|
||
|
limit = Math.min(positive.numberLength, negative.numberLength);
|
||
|
for (i++; i < limit
|
||
|
&& (digit = positive.digits[i] ^ ~negative.digits[i]) == 0; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
if (digit == 0) {
|
||
|
// shorter has only the remaining virtual sign bits
|
||
|
for (; i < positive.numberLength
|
||
|
&& (digit = ~positive.digits[i]) == 0; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
for (; i < negative.numberLength
|
||
|
&& (digit = ~negative.digits[i]) == 0; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
if (digit == 0) {
|
||
|
resLength = resLength + 1;
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[resLength - 1] = 1;
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
return result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
resDigits = new int[resLength];
|
||
|
resDigits[i] = -digit;
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
limit = Math.min(negative.numberLength, positive.numberLength);
|
||
|
for (; i < limit; i++) {
|
||
|
resDigits[i] = ~(~negative.digits[i] ^ positive.digits[i]);
|
||
|
}
|
||
|
for (; i < positive.numberLength; i++) {
|
||
|
// resDigits[i] = ~(positive.digits[i] ^ -1)
|
||
|
resDigits[i] = positive.digits[i];
|
||
|
}
|
||
|
for (; i < negative.numberLength; i++) {
|
||
|
// resDigits[i] = ~(0 ^ ~negative.digits[i])
|
||
|
resDigits[i] = negative.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(-1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 0, magnitude = -val.magnitude ^ -that.magnitude.
|
||
|
* @param val
|
||
|
* @param that
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger xorNegative(BigInteger val, BigInteger that) {
|
||
|
// PRE: val and that are negative
|
||
|
// PRE: val has at least as many trailing zero digits as that
|
||
|
int resLength = Math.max(val.numberLength, that.numberLength);
|
||
|
int resDigits[] = new int[resLength];
|
||
|
int iVal = val.getFirstNonzeroDigit();
|
||
|
int iThat = that.getFirstNonzeroDigit();
|
||
|
int i = iThat;
|
||
|
int limit;
|
||
|
|
||
|
if (iVal == iThat) {
|
||
|
resDigits[i] = -val.digits[i] ^ -that.digits[i];
|
||
|
} else {
|
||
|
resDigits[i] = -that.digits[i];
|
||
|
limit = Math.min(that.numberLength, iVal);
|
||
|
for (i++; i < limit; i++) {
|
||
|
resDigits[i] = ~that.digits[i];
|
||
|
}
|
||
|
// Remains digits in that?
|
||
|
if (i == that.numberLength) {
|
||
|
// Jumping over the remaining zero to the first non one
|
||
|
for (; i < iVal; i++) {
|
||
|
// resDigits[i] = 0 ^ -1;
|
||
|
resDigits[i] = -1;
|
||
|
}
|
||
|
// resDigits[i] = -val.digits[i] ^ -1;
|
||
|
resDigits[i] = val.digits[i] - 1;
|
||
|
} else {
|
||
|
resDigits[i] = -val.digits[i] ^ ~that.digits[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
limit = Math.min(val.numberLength, that.numberLength);
|
||
|
// Perform ^ between that al val until that ends
|
||
|
for (i++; i < limit; i++) {
|
||
|
// resDigits[i] = ~val.digits[i] ^ ~that.digits[i];
|
||
|
resDigits[i] = val.digits[i] ^ that.digits[i];
|
||
|
}
|
||
|
// Perform ^ between val digits and -1 until val ends
|
||
|
for (; i < val.numberLength; i++) {
|
||
|
// resDigits[i] = ~val.digits[i] ^ -1 ;
|
||
|
resDigits[i] = val.digits[i];
|
||
|
}
|
||
|
for (; i < that.numberLength; i++) {
|
||
|
// resDigits[i] = -1 ^ ~that.digits[i] ;
|
||
|
resDigits[i] = that.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return sign = 0, magnitude = longer.magnitude | shorter.magnitude.
|
||
|
*
|
||
|
* @param longer
|
||
|
* @param shorter
|
||
|
* @return
|
||
|
*/
|
||
|
static BigInteger xorPositive(BigInteger longer, BigInteger shorter) {
|
||
|
// PRE: longer and shorter are positive;
|
||
|
// PRE: longer has at least as many digits as shorter
|
||
|
int resLength = longer.numberLength;
|
||
|
int resDigits[] = new int[resLength];
|
||
|
int i = Math.min(longer.getFirstNonzeroDigit(),
|
||
|
shorter.getFirstNonzeroDigit());
|
||
|
for (; i < shorter.numberLength; i++) {
|
||
|
resDigits[i] = longer.digits[i] ^ shorter.digits[i];
|
||
|
}
|
||
|
for (; i < longer.numberLength; i++) {
|
||
|
resDigits[i] = longer.digits[i];
|
||
|
}
|
||
|
|
||
|
BigInteger result = new BigInteger(1, resLength, resDigits);
|
||
|
result.cutOffLeadingZeroes();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Just to denote that this class can't be instantiated.
|
||
|
*/
|
||
|
private Logical() {
|
||
|
}
|
||
|
}
|