mirror of
https://github.com/moparisthebest/mailiverse
synced 2024-11-12 04:05:10 -05:00
304 lines
10 KiB
Java
304 lines
10 KiB
Java
|
/*
|
||
|
* Copyright 2009 Google Inc.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||
|
* use this file except in compliance with the License. You may obtain a copy of
|
||
|
* the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations under
|
||
|
* the License.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||
|
* contributor license agreements. See the NOTICE file distributed with this
|
||
|
* work for additional information regarding copyright ownership. The ASF
|
||
|
* licenses this file to You under the Apache License, Version 2.0 (the
|
||
|
* "License"); you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations under
|
||
|
* the License.
|
||
|
*
|
||
|
* INCLUDES MODIFICATIONS BY RICHARD ZSCHECH AS WELL AS GOOGLE.
|
||
|
*/
|
||
|
package java.math;
|
||
|
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Random;
|
||
|
|
||
|
/**
|
||
|
* Provides primality probabilistic methods.
|
||
|
*/
|
||
|
class Primality {
|
||
|
|
||
|
/**
|
||
|
* It encodes how many iterations of Miller-Rabin test are need to get an
|
||
|
* error bound not greater than {@code 2<sup>(-100)</sup>}. For example: for a
|
||
|
* {@code 1000}-bit number we need {@code 4} iterations, since {@code BITS[3]
|
||
|
* < 1000 <= BITS[4]}.
|
||
|
*/
|
||
|
private static final int[] BITS = {
|
||
|
0, 0, 1854, 1233, 927, 747, 627, 543, 480, 431, 393, 361, 335, 314, 295,
|
||
|
279, 265, 253, 242, 232, 223, 216, 181, 169, 158, 150, 145, 140, 136,
|
||
|
132, 127, 123, 119, 114, 110, 105, 101, 96, 92, 87, 83, 78, 73, 69, 64,
|
||
|
59, 54, 49, 44, 38, 32, 26, 1};
|
||
|
|
||
|
/**
|
||
|
* It encodes how many i-bit primes there are in the table for {@code
|
||
|
* i=2,...,10}. For example {@code offsetPrimes[6]} says that from index
|
||
|
* {@code 11} exists {@code 7} consecutive {@code 6}-bit prime numbers in the
|
||
|
* array.
|
||
|
*/
|
||
|
private static final int[][] offsetPrimes = {
|
||
|
null, null, {0, 2}, {2, 2}, {4, 2}, {6, 5}, {11, 7}, {18, 13}, {31, 23},
|
||
|
{54, 43}, {97, 75}};
|
||
|
|
||
|
/**
|
||
|
* All prime numbers with bit length lesser than 10 bits.
|
||
|
*/
|
||
|
private static final int primes[] = {
|
||
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
|
||
|
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
|
||
|
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
|
||
|
229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307,
|
||
|
311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389,
|
||
|
397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
|
||
|
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
|
||
|
577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
|
||
|
659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751,
|
||
|
757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853,
|
||
|
857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,
|
||
|
953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021};
|
||
|
|
||
|
/**
|
||
|
* All {@code BigInteger} prime numbers with bit length lesser than 8 bits.
|
||
|
*/
|
||
|
private static final BigInteger BIprimes[] = new BigInteger[primes.length];
|
||
|
|
||
|
static {
|
||
|
// To initialize the dual table of BigInteger primes
|
||
|
for (int i = 0; i < primes.length; i++) {
|
||
|
BIprimes[i] = BigInteger.valueOf(primes[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A random number is generated until a probable prime number is found.
|
||
|
*
|
||
|
* @see BigInteger#BigInteger(int,int,Random)
|
||
|
* @see BigInteger#probablePrime(int,Random)
|
||
|
* @see #isProbablePrime(BigInteger, int)
|
||
|
*/
|
||
|
static BigInteger consBigInteger(int bitLength, int certainty, Random rnd) {
|
||
|
// PRE: bitLength >= 2;
|
||
|
// For small numbers get a random prime from the prime table
|
||
|
if (bitLength <= 10) {
|
||
|
int rp[] = offsetPrimes[bitLength];
|
||
|
return BIprimes[rp[0] + rnd.nextInt(rp[1])];
|
||
|
}
|
||
|
int shiftCount = (-bitLength) & 31;
|
||
|
int last = (bitLength + 31) >> 5;
|
||
|
BigInteger n = new BigInteger(1, last, new int[last]);
|
||
|
|
||
|
last--;
|
||
|
do {
|
||
|
// To fill the array with random integers
|
||
|
for (int i = 0; i < n.numberLength; i++) {
|
||
|
n.digits[i] = rnd.nextInt();
|
||
|
}
|
||
|
// To fix to the correct bitLength
|
||
|
n.digits[last] |= 0x80000000;
|
||
|
n.digits[last] >>>= shiftCount;
|
||
|
// To create an odd number
|
||
|
n.digits[0] |= 1;
|
||
|
} while (!isProbablePrime(n, certainty));
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @see BigInteger#isProbablePrime(int)
|
||
|
* @see #millerRabin(BigInteger, int)
|
||
|
* @ar.org.fitc.ref Optimizations: "A. Menezes - Handbook of applied
|
||
|
* Cryptography, Chapter 4".
|
||
|
*/
|
||
|
static boolean isProbablePrime(BigInteger n, int certainty) {
|
||
|
// PRE: n >= 0;
|
||
|
if ((certainty <= 0) || ((n.numberLength == 1) && (n.digits[0] == 2))) {
|
||
|
return true;
|
||
|
}
|
||
|
// To discard all even numbers
|
||
|
if (!n.testBit(0)) {
|
||
|
return false;
|
||
|
}
|
||
|
// To check if 'n' exists in the table (it fit in 10 bits)
|
||
|
if ((n.numberLength == 1) && ((n.digits[0] & 0XFFFFFC00) == 0)) {
|
||
|
return (Arrays.binarySearch(primes, n.digits[0]) >= 0);
|
||
|
}
|
||
|
// To check if 'n' is divisible by some prime of the table
|
||
|
for (int i = 1; i < primes.length; i++) {
|
||
|
if (Division.remainderArrayByInt(n.digits, n.numberLength, primes[i]) == 0) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
// To set the number of iterations necessary for Miller-Rabin test
|
||
|
int i;
|
||
|
int bitLength = n.bitLength();
|
||
|
|
||
|
for (i = 2; bitLength < BITS[i]; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
certainty = Math.min(i, 1 + ((certainty - 1) >> 1));
|
||
|
|
||
|
return millerRabin(n, certainty);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* It uses the sieve of Eratosthenes to discard several composite numbers in
|
||
|
* some appropriate range (at the moment {@code [this, this + 1024]}). After
|
||
|
* this process it applies the Miller-Rabin test to the numbers that were not
|
||
|
* discarded in the sieve.
|
||
|
*
|
||
|
* @see BigInteger#nextProbablePrime()
|
||
|
* @see #millerRabin(BigInteger, int)
|
||
|
*/
|
||
|
static BigInteger nextProbablePrime(BigInteger n) {
|
||
|
// PRE: n >= 0
|
||
|
int i, j;
|
||
|
int certainty;
|
||
|
int gapSize = 1024; // for searching of the next probable prime number
|
||
|
int modules[] = new int[primes.length];
|
||
|
boolean isDivisible[] = new boolean[gapSize];
|
||
|
BigInteger startPoint;
|
||
|
BigInteger probPrime;
|
||
|
// If n < "last prime of table" searches next prime in the table
|
||
|
if ((n.numberLength == 1) && (n.digits[0] >= 0)
|
||
|
&& (n.digits[0] < primes[primes.length - 1])) {
|
||
|
for (i = 0; n.digits[0] >= primes[i]; i++) {
|
||
|
// empty
|
||
|
}
|
||
|
return BIprimes[i];
|
||
|
}
|
||
|
/*
|
||
|
* Creates a "N" enough big to hold the next probable prime Note that: N <
|
||
|
* "next prime" < 2*N
|
||
|
*/
|
||
|
startPoint = new BigInteger(1, n.numberLength, new int[n.numberLength + 1]);
|
||
|
System.arraycopy(n.digits, 0, startPoint.digits, 0, n.numberLength);
|
||
|
// To fix N to the "next odd number"
|
||
|
if (n.testBit(0)) {
|
||
|
Elementary.inplaceAdd(startPoint, 2);
|
||
|
} else {
|
||
|
startPoint.digits[0] |= 1;
|
||
|
}
|
||
|
// To set the improved certainly of Miller-Rabin
|
||
|
j = startPoint.bitLength();
|
||
|
for (certainty = 2; j < BITS[certainty]; certainty++) {
|
||
|
// empty
|
||
|
}
|
||
|
// To calculate modules: N mod p1, N mod p2, ... for first primes.
|
||
|
for (i = 0; i < primes.length; i++) {
|
||
|
modules[i] = Division.remainder(startPoint, primes[i]) - gapSize;
|
||
|
}
|
||
|
while (true) {
|
||
|
// At this point, all numbers in the gap are initialized as
|
||
|
// probably primes
|
||
|
Arrays.fill(isDivisible, false);
|
||
|
// To discard multiples of first primes
|
||
|
for (i = 0; i < primes.length; i++) {
|
||
|
modules[i] = (modules[i] + gapSize) % primes[i];
|
||
|
j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
|
||
|
for (; j < gapSize; j += primes[i]) {
|
||
|
isDivisible[j] = true;
|
||
|
}
|
||
|
}
|
||
|
// To execute Miller-Rabin for non-divisible numbers by all first
|
||
|
// primes
|
||
|
for (j = 0; j < gapSize; j++) {
|
||
|
if (!isDivisible[j]) {
|
||
|
probPrime = startPoint.copy();
|
||
|
Elementary.inplaceAdd(probPrime, j);
|
||
|
|
||
|
if (millerRabin(probPrime, certainty)) {
|
||
|
return probPrime;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
Elementary.inplaceAdd(startPoint, gapSize);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The Miller-Rabin primality test.
|
||
|
*
|
||
|
* @param n the input number to be tested.
|
||
|
* @param t the number of trials.
|
||
|
* @return {@code false} if the number is definitely compose, otherwise
|
||
|
* {@code true} with probability {@code 1 - 4<sup>(-t)</sup>}.
|
||
|
* @ar.org.fitc.ref "D. Knuth, The Art of Computer Programming Vo.2, Section
|
||
|
* 4.5.4., Algorithm P"
|
||
|
*/
|
||
|
private static boolean millerRabin(BigInteger n, int t) {
|
||
|
// PRE: n >= 0, t >= 0
|
||
|
BigInteger x; // x := UNIFORM{2...n-1}
|
||
|
BigInteger y; // y := x^(q * 2^j) mod n
|
||
|
BigInteger nMinus1 = n.subtract(BigInteger.ONE); // n-1
|
||
|
int bitLength = nMinus1.bitLength(); // ~ log2(n-1)
|
||
|
// (q,k) such that: n-1 = q * 2^k and q is odd
|
||
|
int k = nMinus1.getLowestSetBit();
|
||
|
BigInteger q = nMinus1.shiftRight(k);
|
||
|
Random rnd = new Random();
|
||
|
|
||
|
for (int i = 0; i < t; i++) {
|
||
|
// To generate a witness 'x', first it use the primes of table
|
||
|
if (i < primes.length) {
|
||
|
x = BIprimes[i];
|
||
|
} else {
|
||
|
/*
|
||
|
* It generates random witness only if it's necesssary. Note that all
|
||
|
* methods would call Miller-Rabin with t <= 50 so this part is only to
|
||
|
* do more robust the algorithm
|
||
|
*/
|
||
|
do {
|
||
|
x = new BigInteger(bitLength, rnd);
|
||
|
} while ((x.compareTo(n) >= BigInteger.EQUALS) || (x.sign == 0)
|
||
|
|| x.isOne());
|
||
|
}
|
||
|
y = x.modPow(q, n);
|
||
|
if (y.isOne() || y.equals(nMinus1)) {
|
||
|
continue;
|
||
|
}
|
||
|
for (int j = 1; j < k; j++) {
|
||
|
if (y.equals(nMinus1)) {
|
||
|
continue;
|
||
|
}
|
||
|
y = y.multiply(y).mod(n);
|
||
|
if (y.isOne()) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
if (!y.equals(nMinus1)) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Just to denote that this class can't be instantiated.
|
||
|
*/
|
||
|
private Primality() {
|
||
|
}
|
||
|
|
||
|
}
|