1
0
mirror of https://github.com/moparisthebest/curl synced 2024-11-14 05:25:06 -05:00
curl/lib/vtls/sectransp.c

3430 lines
123 KiB
C
Raw Normal View History

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) 2012 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al.
* Copyright (C) 2012 - 2017, Nick Zitzmann, <nickzman@gmail.com>.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
2020-11-04 08:02:01 -05:00
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
***************************************************************************/
/*
* Source file for all iOS and macOS SecureTransport-specific code for the
* TLS/SSL layer. No code but vtls.c should ever call or use these functions.
*/
build: fix circular header inclusion with other packages This commit renames lib/setup.h to lib/curl_setup.h and renames lib/setup_once.h to lib/curl_setup_once.h. Removes the need and usage of a header inclusion guard foreign to libcurl. [1] Removes the need and presence of an alarming notice we carried in old setup_once.h [2] ---------------------------------------- 1 - lib/setup_once.h used __SETUP_ONCE_H macro as header inclusion guard up to commit ec691ca3 which changed this to HEADER_CURL_SETUP_ONCE_H, this single inclusion guard is enough to ensure that inclusion of lib/setup_once.h done from lib/setup.h is only done once. Additionally lib/setup.h has always used __SETUP_ONCE_H macro to protect inclusion of setup_once.h even after commit ec691ca3, this was to avoid a circular header inclusion triggered when building a c-ares enabled version with c-ares sources available which also has a setup_once.h header. Commit ec691ca3 exposes the real nature of __SETUP_ONCE_H usage in lib/setup.h, it is a header inclusion guard foreign to libcurl belonging to c-ares's setup_once.h The renaming this commit does, fixes the circular header inclusion, and as such removes the need and usage of a header inclusion guard foreign to libcurl. Macro __SETUP_ONCE_H no longer used in libcurl. 2 - Due to the circular interdependency of old lib/setup_once.h and the c-ares setup_once.h header, old file lib/setup_once.h has carried back from 2006 up to now days an alarming and prominent notice about the need of keeping libcurl's and c-ares's setup_once.h in sync. Given that this commit fixes the circular interdependency, the need and presence of mentioned notice is removed. All mentioned interdependencies come back from now old days when the c-ares project lived inside a curl subdirectory. This commit removes last traces of such fact.
2013-01-06 13:06:49 -05:00
#include "curl_setup.h"
#include "urldata.h" /* for the Curl_easy definition */
#include "curl_base64.h"
#include "strtok.h"
#include "multiif.h"
#ifdef USE_SECTRANSP
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wtautological-pointer-compare"
#endif /* __clang__ */
#include <limits.h>
#include <Security/Security.h>
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
/* For some reason, when building for iOS, the omnibus header above does
* not include SecureTransport.h as of iOS SDK 5.1. */
#include <Security/SecureTransport.h>
#include <CoreFoundation/CoreFoundation.h>
#include <CommonCrypto/CommonDigest.h>
/* The Security framework has changed greatly between iOS and different macOS
versions, and we will try to support as many of them as we can (back to
Leopard and iOS 5) by using macros and weak-linking.
In general, you want to build this using the most recent OS SDK, since some
features require curl to be built against the latest SDK. TLS 1.1 and 1.2
support, for instance, require the macOS 10.8 SDK or later. TLS 1.3
requires the macOS 10.13 or iOS 11 SDK or later. */
#if (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE))
#if MAC_OS_X_VERSION_MAX_ALLOWED < 1050
#error "The Secure Transport back-end requires Leopard or later."
#endif /* MAC_OS_X_VERSION_MAX_ALLOWED < 1050 */
#define CURL_BUILD_IOS 0
#define CURL_BUILD_IOS_7 0
#define CURL_BUILD_IOS_9 0
#define CURL_BUILD_IOS_11 0
#define CURL_BUILD_IOS_13 0
#define CURL_BUILD_MAC 1
/* This is the maximum API level we are allowed to use when building: */
#define CURL_BUILD_MAC_10_5 MAC_OS_X_VERSION_MAX_ALLOWED >= 1050
#define CURL_BUILD_MAC_10_6 MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
#define CURL_BUILD_MAC_10_7 MAC_OS_X_VERSION_MAX_ALLOWED >= 1070
#define CURL_BUILD_MAC_10_8 MAC_OS_X_VERSION_MAX_ALLOWED >= 1080
#define CURL_BUILD_MAC_10_9 MAC_OS_X_VERSION_MAX_ALLOWED >= 1090
#define CURL_BUILD_MAC_10_11 MAC_OS_X_VERSION_MAX_ALLOWED >= 101100
#define CURL_BUILD_MAC_10_13 MAC_OS_X_VERSION_MAX_ALLOWED >= 101300
#define CURL_BUILD_MAC_10_15 MAC_OS_X_VERSION_MAX_ALLOWED >= 101500
/* These macros mean "the following code is present to allow runtime backward
compatibility with at least this cat or earlier":
(You set this at build-time using the compiler command line option
"-mmacosx-version-min.") */
#define CURL_SUPPORT_MAC_10_5 MAC_OS_X_VERSION_MIN_REQUIRED <= 1050
#define CURL_SUPPORT_MAC_10_6 MAC_OS_X_VERSION_MIN_REQUIRED <= 1060
#define CURL_SUPPORT_MAC_10_7 MAC_OS_X_VERSION_MIN_REQUIRED <= 1070
#define CURL_SUPPORT_MAC_10_8 MAC_OS_X_VERSION_MIN_REQUIRED <= 1080
#define CURL_SUPPORT_MAC_10_9 MAC_OS_X_VERSION_MIN_REQUIRED <= 1090
#elif TARGET_OS_EMBEDDED || TARGET_OS_IPHONE
#define CURL_BUILD_IOS 1
#define CURL_BUILD_IOS_7 __IPHONE_OS_VERSION_MAX_ALLOWED >= 70000
#define CURL_BUILD_IOS_9 __IPHONE_OS_VERSION_MAX_ALLOWED >= 90000
#define CURL_BUILD_IOS_11 __IPHONE_OS_VERSION_MAX_ALLOWED >= 110000
#define CURL_BUILD_IOS_13 __IPHONE_OS_VERSION_MAX_ALLOWED >= 130000
#define CURL_BUILD_MAC 0
#define CURL_BUILD_MAC_10_5 0
#define CURL_BUILD_MAC_10_6 0
#define CURL_BUILD_MAC_10_7 0
#define CURL_BUILD_MAC_10_8 0
#define CURL_BUILD_MAC_10_9 0
#define CURL_BUILD_MAC_10_11 0
#define CURL_BUILD_MAC_10_13 0
#define CURL_BUILD_MAC_10_15 0
#define CURL_SUPPORT_MAC_10_5 0
#define CURL_SUPPORT_MAC_10_6 0
#define CURL_SUPPORT_MAC_10_7 0
#define CURL_SUPPORT_MAC_10_8 0
#define CURL_SUPPORT_MAC_10_9 0
#else
#error "The Secure Transport back-end requires iOS or macOS."
#endif /* (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE)) */
#if CURL_BUILD_MAC
#include <sys/sysctl.h>
#endif /* CURL_BUILD_MAC */
#include "urldata.h"
#include "sendf.h"
#include "inet_pton.h"
#include "connect.h"
#include "select.h"
2013-12-25 05:20:39 -05:00
#include "vtls.h"
#include "sectransp.h"
#include "curl_printf.h"
#include "strdup.h"
#include "curl_memory.h"
/* The last #include file should be: */
#include "memdebug.h"
/* From MacTypes.h (which we can't include because it isn't present in iOS: */
#define ioErr -36
#define paramErr -50
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
struct ssl_backend_data {
SSLContextRef ssl_ctx;
curl_socket_t ssl_sockfd;
bool ssl_direction; /* true if writing, false if reading */
size_t ssl_write_buffered_length;
};
struct st_cipher {
const char *name; /* Cipher suite IANA name. It starts with "TLS_" prefix */
const char *alias_name; /* Alias name is the same as OpenSSL cipher name */
SSLCipherSuite num; /* Cipher suite code/number defined in IANA registry */
bool weak; /* Flag to mark cipher as weak based on previous implementation
of Secure Transport back-end by CURL */
};
/* Macro to initialize st_cipher data structure: stringify id to name, cipher
number/id, 'weak' suite flag
*/
#define CIPHER_DEF(num, alias, weak) \
{ #num, alias, num, weak }
/*
Macro to initialize st_cipher data structure with name, code (IANA cipher
number/id value), and 'weak' suite flag. The first 28 cipher suite numbers
have the same IANA code for both SSL and TLS standards: numbers 0x0000 to
0x001B. They have different names though. The first 4 letters of the cipher
suite name are the protocol name: "SSL_" or "TLS_", rest of the IANA name is
the same for both SSL and TLS cipher suite name.
The second part of the problem is that macOS/iOS SDKs don't define all TLS
codes but only 12 of them. The SDK defines all SSL codes though, i.e. SSL_NUM
constant is always defined for those 28 ciphers while TLS_NUM is defined only
for 12 of the first 28 ciphers. Those 12 TLS cipher codes match to
corresponding SSL enum value and represent the same cipher suite. Therefore
we'll use the SSL enum value for those cipher suites because it is defined
for all 28 of them.
We make internal data consistent and based on TLS names, i.e. all st_cipher
item names start with the "TLS_" prefix.
Summarizing all the above, those 28 first ciphers are presented in our table
with both TLS and SSL names. Their cipher numbers are assigned based on the
SDK enum value for the SSL cipher, which matches to IANA TLS number.
*/
#define CIPHER_DEF_SSLTLS(num_wo_prefix, alias, weak) \
{ "TLS_" #num_wo_prefix, alias, SSL_##num_wo_prefix, weak }
/*
Cipher suites were marked as weak based on the following:
RC4 encryption - rfc7465, the document contains a list of deprecated ciphers.
Marked in the code below as weak.
RC2 encryption - many mentions, was found vulnerable to a relatively easy
attack https://link.springer.com/chapter/10.1007%2F3-540-69710-1_14
Marked in the code below as weak.
DES and IDEA encryption - rfc5469, has a list of deprecated ciphers.
Marked in the code below as weak.
Anonymous Diffie-Hellman authentication and anonymous elliptic curve
Diffie-Hellman - vulnerable to a man-in-the-middle attack. Deprecated by
RFC 4346 aka TLS 1.1 (section A.5, page 60)
Null bulk encryption suites - not encrypted communication
Export ciphers, i.e. ciphers with restrictions to be used outside the US for
software exported to some countries, they were excluded from TLS 1.1
version. More precisely, they were noted as ciphers which MUST NOT be
negotiated in RFC 4346 aka TLS 1.1 (section A.5, pages 60 and 61).
All of those filters were considered weak because they contain a weak
algorithm like DES, RC2 or RC4, and already considered weak by other
criteria.
3DES - NIST deprecated it and is going to retire it by 2023
https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
OpenSSL https://www.openssl.org/blog/blog/2016/08/24/sweet32/ also
deprecated those ciphers. Some other libraries also consider it
vulnerable or at least not strong enough.
CBC ciphers are vulnerable with SSL3.0 and TLS1.0:
https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance
/118518-technote-esa-00.html
We don't take care of this issue because it is resolved by later TLS
versions and for us, it requires more complicated checks, we need to
check a protocol version also. Vulnerability doesn't look very critical
and we do not filter out those cipher suites.
*/
#define CIPHER_WEAK_NOT_ENCRYPTED TRUE
#define CIPHER_WEAK_RC_ENCRYPTION TRUE
#define CIPHER_WEAK_DES_ENCRYPTION TRUE
#define CIPHER_WEAK_IDEA_ENCRYPTION TRUE
#define CIPHER_WEAK_ANON_AUTH TRUE
#define CIPHER_WEAK_3DES_ENCRYPTION TRUE
#define CIPHER_STRONG_ENOUGH FALSE
/* Please do not change the order of the first ciphers available for SSL.
Do not insert and do not delete any of them. Code below
depends on their order and continuity.
If you add a new cipher, please maintain order by number, i.e.
insert in between existing items to appropriate place based on
cipher suite IANA number
*/
const static struct st_cipher ciphertable[] = {
/* SSL version 3.0 and initial TLS 1.0 cipher suites.
Defined since SDK 10.2.8 */
CIPHER_DEF_SSLTLS(NULL_WITH_NULL_NULL, /* 0x0000 */
NULL,
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF_SSLTLS(RSA_WITH_NULL_MD5, /* 0x0001 */
"NULL-MD5",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF_SSLTLS(RSA_WITH_NULL_SHA, /* 0x0002 */
"NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC4_40_MD5, /* 0x0003 */
"EXP-RC4-MD5",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_MD5, /* 0x0004 */
"RC4-MD5",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_WITH_RC4_128_SHA, /* 0x0005 */
"RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_RC2_CBC_40_MD5, /* 0x0006 */
"EXP-RC2-CBC-MD5",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_WITH_IDEA_CBC_SHA, /* 0x0007 */
"IDEA-CBC-SHA",
CIPHER_WEAK_IDEA_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0008 */
"EXP-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_WITH_DES_CBC_SHA, /* 0x0009 */
"DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(RSA_WITH_3DES_EDE_CBC_SHA, /* 0x000A */
"DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x000B */
"EXP-DH-DSS-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_DSS_WITH_DES_CBC_SHA, /* 0x000C */
"DH-DSS-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x000D */
"DH-DSS-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x000E */
"EXP-DH-RSA-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_RSA_WITH_DES_CBC_SHA, /* 0x000F */
"DH-RSA-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0010 */
"DH-RSA-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_DSS_EXPORT_WITH_DES40_CBC_SHA, /* 0x0011 */
"EXP-EDH-DSS-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_DSS_WITH_DES_CBC_SHA, /* 0x0012 */
"EDH-DSS-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_DSS_WITH_3DES_EDE_CBC_SHA, /* 0x0013 */
"DHE-DSS-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, /* 0x0014 */
"EXP-EDH-RSA-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_RSA_WITH_DES_CBC_SHA, /* 0x0015 */
"EDH-RSA-DES-CBC-SHA",
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0x0016 */
"DHE-RSA-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_RC4_40_MD5, /* 0x0017 */
"EXP-ADH-RC4-MD5",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF_SSLTLS(DH_anon_WITH_RC4_128_MD5, /* 0x0018 */
"ADH-RC4-MD5",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF_SSLTLS(DH_anon_EXPORT_WITH_DES40_CBC_SHA, /* 0x0019 */
"EXP-ADH-DES-CBC-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF_SSLTLS(DH_anon_WITH_DES_CBC_SHA, /* 0x001A */
"ADH-DES-CBC-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF_SSLTLS(DH_anon_WITH_3DES_EDE_CBC_SHA, /* 0x001B */
"ADH-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_NULL_SHA, /* 0x001C */
NULL,
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA, /* 0x001D */
NULL,
CIPHER_STRONG_ENOUGH),
#if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7
/* RFC 4785 - Pre-Shared Key (PSK) Ciphersuites with NULL Encryption */
CIPHER_DEF(TLS_PSK_WITH_NULL_SHA, /* 0x002C */
"PSK-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA, /* 0x002D */
"DHE-PSK-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA, /* 0x002E */
"RSA-PSK-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
#endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */
/* TLS addenda using AES, per RFC 3268. Defined since SDK 10.4u */
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA, /* 0x002F */
"AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA, /* 0x0030 */
"DH-DSS-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA, /* 0x0031 */
"DH-RSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA, /* 0x0032 */
"DHE-DSS-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA, /* 0x0033 */
"DHE-RSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA, /* 0x0034 */
"ADH-AES128-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA, /* 0x0035 */
"AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA, /* 0x0036 */
"DH-DSS-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA, /* 0x0037 */
"DH-RSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA, /* 0x0038 */
"DHE-DSS-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA, /* 0x0039 */
"DHE-RSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA, /* 0x003A */
"ADH-AES256-SHA",
CIPHER_WEAK_ANON_AUTH),
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
/* TLS 1.2 addenda, RFC 5246 */
/* Server provided RSA certificate for key exchange. */
CIPHER_DEF(TLS_RSA_WITH_NULL_SHA256, /* 0x003B */
"NULL-SHA256",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_RSA_WITH_AES_128_CBC_SHA256, /* 0x003C */
"AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_WITH_AES_256_CBC_SHA256, /* 0x003D */
"AES256-SHA256",
CIPHER_STRONG_ENOUGH),
/* Server-authenticated (and optionally client-authenticated)
Diffie-Hellman. */
CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_CBC_SHA256, /* 0x003E */
"DH-DSS-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_CBC_SHA256, /* 0x003F */
"DH-RSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, /* 0x0040 */
"DHE-DSS-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
/* TLS 1.2 addenda, RFC 5246 */
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, /* 0x0067 */
"DHE-RSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_CBC_SHA256, /* 0x0068 */
"DH-DSS-AES256-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_CBC_SHA256, /* 0x0069 */
"DH-RSA-AES256-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, /* 0x006A */
"DHE-DSS-AES256-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, /* 0x006B */
"DHE-RSA-AES256-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_128_CBC_SHA256, /* 0x006C */
"ADH-AES128-SHA256",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_256_CBC_SHA256, /* 0x006D */
"ADH-AES256-SHA256",
CIPHER_WEAK_ANON_AUTH),
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
#if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7
/* Addendum from RFC 4279, TLS PSK */
CIPHER_DEF(TLS_PSK_WITH_RC4_128_SHA, /* 0x008A */
"PSK-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008B */
"PSK-3DES-EDE-CBC-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA, /* 0x008C */
"PSK-AES128-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA, /* 0x008D */
"PSK-AES256-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_RC4_128_SHA, /* 0x008E */
"DHE-PSK-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x008F */
"DHE-PSK-3DES-EDE-CBC-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA, /* 0x0090 */
"DHE-PSK-AES128-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA, /* 0x0091 */
"DHE-PSK-AES256-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_RC4_128_SHA, /* 0x0092 */
"RSA-PSK-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA, /* 0x0093 */
"RSA-PSK-3DES-EDE-CBC-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA, /* 0x0094 */
"RSA-PSK-AES128-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA, /* 0x0095 */
"RSA-PSK-AES256-CBC-SHA",
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
/* Addenda from rfc 5288 AES Galois Counter Mode (GCM) Cipher Suites
for TLS. */
CIPHER_DEF(TLS_RSA_WITH_AES_128_GCM_SHA256, /* 0x009C */
"AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_WITH_AES_256_GCM_SHA384, /* 0x009D */
"AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, /* 0x009E */
"DHE-RSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, /* 0x009F */
"DHE-RSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_128_GCM_SHA256, /* 0x00A0 */
"DH-RSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_RSA_WITH_AES_256_GCM_SHA384, /* 0x00A1 */
"DH-RSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A2 */
"DHE-DSS-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A3 */
"DHE-DSS-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_DSS_WITH_AES_128_GCM_SHA256, /* 0x00A4 */
"DH-DSS-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_DSS_WITH_AES_256_GCM_SHA384, /* 0x00A5 */
"DH-DSS-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_128_GCM_SHA256, /* 0x00A6 */
"ADH-AES128-GCM-SHA256",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_DH_anon_WITH_AES_256_GCM_SHA384, /* 0x00A7 */
"ADH-AES256-GCM-SHA384",
CIPHER_WEAK_ANON_AUTH),
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
#if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7
/* RFC 5487 - PSK with SHA-256/384 and AES GCM */
CIPHER_DEF(TLS_PSK_WITH_AES_128_GCM_SHA256, /* 0x00A8 */
"PSK-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_PSK_WITH_AES_256_GCM_SHA384, /* 0x00A9 */
"PSK-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AA */
"DHE-PSK-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AB */
"DHE-PSK-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_GCM_SHA256, /* 0x00AC */
"RSA-PSK-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_GCM_SHA384, /* 0x00AD */
"RSA-PSK-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_PSK_WITH_AES_128_CBC_SHA256, /* 0x00AE */
"PSK-AES128-CBC-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_PSK_WITH_AES_256_CBC_SHA384, /* 0x00AF */
"PSK-AES256-CBC-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_PSK_WITH_NULL_SHA256, /* 0x00B0 */
"PSK-NULL-SHA256",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_PSK_WITH_NULL_SHA384, /* 0x00B1 */
"PSK-NULL-SHA384",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B2 */
"DHE-PSK-AES128-CBC-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B3 */
"DHE-PSK-AES256-CBC-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA256, /* 0x00B4 */
"DHE-PSK-NULL-SHA256",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_DHE_PSK_WITH_NULL_SHA384, /* 0x00B5 */
"DHE-PSK-NULL-SHA384",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_128_CBC_SHA256, /* 0x00B6 */
"RSA-PSK-AES128-CBC-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_AES_256_CBC_SHA384, /* 0x00B7 */
"RSA-PSK-AES256-CBC-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA256, /* 0x00B8 */
"RSA-PSK-NULL-SHA256",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_RSA_PSK_WITH_NULL_SHA384, /* 0x00B9 */
"RSA-PSK-NULL-SHA384",
CIPHER_WEAK_NOT_ENCRYPTED),
#endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */
/* RFC 5746 - Secure Renegotiation. This is not a real suite,
it is a response to initiate negotiation again */
CIPHER_DEF(TLS_EMPTY_RENEGOTIATION_INFO_SCSV, /* 0x00FF */
NULL,
CIPHER_STRONG_ENOUGH),
#if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11
/* TLS 1.3 standard cipher suites for ChaCha20+Poly1305.
Note: TLS 1.3 ciphersuites do not specify the key exchange
algorithm -- they only specify the symmetric ciphers.
Cipher alias name matches to OpenSSL cipher name, and for
TLS 1.3 ciphers */
CIPHER_DEF(TLS_AES_128_GCM_SHA256, /* 0x1301 */
NULL, /* The OpenSSL cipher name matches to the IANA name */
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_AES_256_GCM_SHA384, /* 0x1302 */
NULL, /* The OpenSSL cipher name matches to the IANA name */
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_CHACHA20_POLY1305_SHA256, /* 0x1303 */
NULL, /* The OpenSSL cipher name matches to the IANA name */
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_AES_128_CCM_SHA256, /* 0x1304 */
NULL, /* The OpenSSL cipher name matches to the IANA name */
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_AES_128_CCM_8_SHA256, /* 0x1305 */
NULL, /* The OpenSSL cipher name matches to the IANA name */
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */
#if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS
/* ECDSA addenda, RFC 4492 */
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_NULL_SHA, /* 0xC001 */
"ECDH-ECDSA-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_RC4_128_SHA, /* 0xC002 */
"ECDH-ECDSA-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC003 */
"ECDH-ECDSA-DES-CBC3-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC004 */
"ECDH-ECDSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC005 */
"ECDH-ECDSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_NULL_SHA, /* 0xC006 */
"ECDHE-ECDSA-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, /* 0xC007 */
"ECDHE-ECDSA-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, /* 0xC008 */
"ECDHE-ECDSA-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, /* 0xC009 */
"ECDHE-ECDSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, /* 0xC00A */
"ECDHE-ECDSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_NULL_SHA, /* 0xC00B */
"ECDH-RSA-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_ECDH_RSA_WITH_RC4_128_SHA, /* 0xC00C */
"ECDH-RSA-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC00D */
"ECDH-RSA-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, /* 0xC00E */
"ECDH-RSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, /* 0xC00F */
"ECDH-RSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_NULL_SHA, /* 0xC010 */
"ECDHE-RSA-NULL-SHA",
CIPHER_WEAK_NOT_ENCRYPTED),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_RC4_128_SHA, /* 0xC011 */
"ECDHE-RSA-RC4-SHA",
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, /* 0xC012 */
"ECDHE-RSA-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, /* 0xC013 */
"ECDHE-RSA-AES128-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, /* 0xC014 */
"ECDHE-RSA-AES256-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_anon_WITH_NULL_SHA, /* 0xC015 */
"AECDH-NULL-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_ECDH_anon_WITH_RC4_128_SHA, /* 0xC016 */
"AECDH-RC4-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, /* 0xC017 */
"AECDH-DES-CBC3-SHA",
CIPHER_WEAK_3DES_ENCRYPTION),
CIPHER_DEF(TLS_ECDH_anon_WITH_AES_128_CBC_SHA, /* 0xC018 */
"AECDH-AES128-SHA",
CIPHER_WEAK_ANON_AUTH),
CIPHER_DEF(TLS_ECDH_anon_WITH_AES_256_CBC_SHA, /* 0xC019 */
"AECDH-AES256-SHA",
CIPHER_WEAK_ANON_AUTH),
#endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
/* Addenda from rfc 5289 Elliptic Curve Cipher Suites with
HMAC SHA-256/384. */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC023 */
"ECDHE-ECDSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC024 */
"ECDHE-ECDSA-AES256-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256, /* 0xC025 */
"ECDH-ECDSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384, /* 0xC026 */
"ECDH-ECDSA-AES256-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, /* 0xC027 */
"ECDHE-RSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, /* 0xC028 */
"ECDHE-RSA-AES256-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256, /* 0xC029 */
"ECDH-RSA-AES128-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384, /* 0xC02A */
"ECDH-RSA-AES256-SHA384",
CIPHER_STRONG_ENOUGH),
/* Addenda from rfc 5289 Elliptic Curve Cipher Suites with
SHA-256/384 and AES Galois Counter Mode (GCM) */
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02B */
"ECDHE-ECDSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02C */
"ECDHE-ECDSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256, /* 0xC02D */
"ECDH-ECDSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384, /* 0xC02E */
"ECDH-ECDSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, /* 0xC02F */
"ECDHE-RSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, /* 0xC030 */
"ECDHE-RSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256, /* 0xC031 */
"ECDH-RSA-AES128-GCM-SHA256",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384, /* 0xC032 */
"ECDH-RSA-AES256-GCM-SHA384",
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
#if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13
/* ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), RFC 5489 */
CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, /* 0xC035 */
"ECDHE-PSK-AES128-CBC-SHA",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, /* 0xC036 */
"ECDHE-PSK-AES256-CBC-SHA",
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */
#if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11
/* Addenda from rfc 7905 ChaCha20-Poly1305 Cipher Suites for
Transport Layer Security (TLS). */
CIPHER_DEF(TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA8 */
"ECDHE-RSA-CHACHA20-POLY1305",
CIPHER_STRONG_ENOUGH),
CIPHER_DEF(TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCA9 */
"ECDHE-ECDSA-CHACHA20-POLY1305",
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */
#if CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13
/* ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS),
RFC 7905 */
CIPHER_DEF(TLS_PSK_WITH_CHACHA20_POLY1305_SHA256, /* 0xCCAB */
"PSK-CHACHA20-POLY1305",
CIPHER_STRONG_ENOUGH),
#endif /* CURL_BUILD_MAC_10_15 || CURL_BUILD_IOS_13 */
/* Tags for SSL 2 cipher kinds which are not specified for SSL 3.
Defined since SDK 10.2.8 */
CIPHER_DEF(SSL_RSA_WITH_RC2_CBC_MD5, /* 0xFF80 */
NULL,
CIPHER_WEAK_RC_ENCRYPTION),
CIPHER_DEF(SSL_RSA_WITH_IDEA_CBC_MD5, /* 0xFF81 */
NULL,
CIPHER_WEAK_IDEA_ENCRYPTION),
CIPHER_DEF(SSL_RSA_WITH_DES_CBC_MD5, /* 0xFF82 */
NULL,
CIPHER_WEAK_DES_ENCRYPTION),
CIPHER_DEF(SSL_RSA_WITH_3DES_EDE_CBC_MD5, /* 0xFF83 */
NULL,
CIPHER_WEAK_3DES_ENCRYPTION),
};
#define NUM_OF_CIPHERS sizeof(ciphertable)/sizeof(ciphertable[0])
/* pinned public key support tests */
/* version 1 supports macOS 10.12+ and iOS 10+ */
#if ((TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED >= 100000) || \
(!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 101200))
#define SECTRANSP_PINNEDPUBKEY_V1 1
#endif
/* version 2 supports MacOSX 10.7+ */
#if (!TARGET_OS_IPHONE && __MAC_OS_X_VERSION_MIN_REQUIRED >= 1070)
#define SECTRANSP_PINNEDPUBKEY_V2 1
#endif
#if defined(SECTRANSP_PINNEDPUBKEY_V1) || defined(SECTRANSP_PINNEDPUBKEY_V2)
/* this backend supports CURLOPT_PINNEDPUBLICKEY */
#define SECTRANSP_PINNEDPUBKEY 1
#endif /* SECTRANSP_PINNEDPUBKEY */
#ifdef SECTRANSP_PINNEDPUBKEY
/* both new and old APIs return rsa keys missing the spki header (not DER) */
static const unsigned char rsa4096SpkiHeader[] = {
0x30, 0x82, 0x02, 0x22, 0x30, 0x0d,
0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05,
0x00, 0x03, 0x82, 0x02, 0x0f, 0x00};
static const unsigned char rsa2048SpkiHeader[] = {
0x30, 0x82, 0x01, 0x22, 0x30, 0x0d,
0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05,
0x00, 0x03, 0x82, 0x01, 0x0f, 0x00};
#ifdef SECTRANSP_PINNEDPUBKEY_V1
/* the *new* version doesn't return DER encoded ecdsa certs like the old... */
static const unsigned char ecDsaSecp256r1SpkiHeader[] = {
0x30, 0x59, 0x30, 0x13, 0x06, 0x07,
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02,
0x01, 0x06, 0x08, 0x2a, 0x86, 0x48,
0xce, 0x3d, 0x03, 0x01, 0x07, 0x03,
0x42, 0x00};
static const unsigned char ecDsaSecp384r1SpkiHeader[] = {
0x30, 0x76, 0x30, 0x10, 0x06, 0x07,
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02,
0x01, 0x06, 0x05, 0x2b, 0x81, 0x04,
0x00, 0x22, 0x03, 0x62, 0x00};
#endif /* SECTRANSP_PINNEDPUBKEY_V1 */
#endif /* SECTRANSP_PINNEDPUBKEY */
/* The following two functions were ripped from Apple sample code,
* with some modifications: */
static OSStatus SocketRead(SSLConnectionRef connection,
void *data, /* owned by
* caller, data
* RETURNED */
size_t *dataLength) /* IN/OUT */
{
size_t bytesToGo = *dataLength;
size_t initLen = bytesToGo;
UInt8 *currData = (UInt8 *)data;
/*int sock = *(int *)connection;*/
struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection;
struct ssl_backend_data *backend = connssl->backend;
int sock = backend->ssl_sockfd;
OSStatus rtn = noErr;
size_t bytesRead;
ssize_t rrtn;
int theErr;
*dataLength = 0;
for(;;) {
bytesRead = 0;
rrtn = read(sock, currData, bytesToGo);
if(rrtn <= 0) {
/* this is guesswork... */
theErr = errno;
if(rrtn == 0) { /* EOF = server hung up */
/* the framework will turn this into errSSLClosedNoNotify */
rtn = errSSLClosedGraceful;
}
else /* do the switch */
switch(theErr) {
case ENOENT:
/* connection closed */
rtn = errSSLClosedGraceful;
break;
case ECONNRESET:
rtn = errSSLClosedAbort;
break;
case EAGAIN:
rtn = errSSLWouldBlock;
backend->ssl_direction = false;
break;
default:
rtn = ioErr;
break;
}
break;
}
else {
bytesRead = rrtn;
}
bytesToGo -= bytesRead;
currData += bytesRead;
if(bytesToGo == 0) {
/* filled buffer with incoming data, done */
break;
}
}
*dataLength = initLen - bytesToGo;
return rtn;
}
static OSStatus SocketWrite(SSLConnectionRef connection,
const void *data,
size_t *dataLength) /* IN/OUT */
{
size_t bytesSent = 0;
/*int sock = *(int *)connection;*/
struct ssl_connect_data *connssl = (struct ssl_connect_data *)connection;
struct ssl_backend_data *backend = connssl->backend;
int sock = backend->ssl_sockfd;
ssize_t length;
size_t dataLen = *dataLength;
const UInt8 *dataPtr = (UInt8 *)data;
OSStatus ortn;
int theErr;
*dataLength = 0;
do {
length = write(sock,
(char *)dataPtr + bytesSent,
dataLen - bytesSent);
} while((length > 0) &&
( (bytesSent += length) < dataLen) );
if(length <= 0) {
theErr = errno;
if(theErr == EAGAIN) {
ortn = errSSLWouldBlock;
backend->ssl_direction = true;
}
else {
ortn = ioErr;
}
}
else {
ortn = noErr;
}
*dataLength = bytesSent;
return ortn;
}
#ifndef CURL_DISABLE_VERBOSE_STRINGS
CF_INLINE const char *TLSCipherNameForNumber(SSLCipherSuite cipher)
{
/* The first ciphers in the ciphertable are continuos. Here we do small
optimization and instead of loop directly get SSL name by cipher number.
*/
if(cipher <= SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA) {
return ciphertable[cipher].name;
}
/* Iterate through the rest of the ciphers */
for(size_t i = SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA + 1;
i < NUM_OF_CIPHERS;
++i) {
if(ciphertable[i].num == cipher) {
return ciphertable[i].name;
}
}
return ciphertable[SSL_NULL_WITH_NULL_NULL].name;
}
#endif /* !CURL_DISABLE_VERBOSE_STRINGS */
#if CURL_BUILD_MAC
CF_INLINE void GetDarwinVersionNumber(int *major, int *minor)
{
int mib[2];
char *os_version;
size_t os_version_len;
2016-04-19 02:32:14 -04:00
char *os_version_major, *os_version_minor;
char *tok_buf;
/* Get the Darwin kernel version from the kernel using sysctl(): */
mib[0] = CTL_KERN;
mib[1] = KERN_OSRELEASE;
if(sysctl(mib, 2, NULL, &os_version_len, NULL, 0) == -1)
return;
os_version = malloc(os_version_len*sizeof(char));
if(!os_version)
return;
if(sysctl(mib, 2, os_version, &os_version_len, NULL, 0) == -1) {
free(os_version);
return;
}
/* Parse the version: */
os_version_major = strtok_r(os_version, ".", &tok_buf);
os_version_minor = strtok_r(NULL, ".", &tok_buf);
*major = atoi(os_version_major);
*minor = atoi(os_version_minor);
free(os_version);
}
#endif /* CURL_BUILD_MAC */
/* Apple provides a myriad of ways of getting information about a certificate
into a string. Some aren't available under iOS or newer cats. So here's
a unified function for getting a string describing the certificate that
ought to work in all cats starting with Leopard. */
CF_INLINE CFStringRef getsubject(SecCertificateRef cert)
{
CFStringRef server_cert_summary = CFSTR("(null)");
#if CURL_BUILD_IOS
/* iOS: There's only one way to do this. */
server_cert_summary = SecCertificateCopySubjectSummary(cert);
#else
#if CURL_BUILD_MAC_10_7
/* Lion & later: Get the long description if we can. */
if(SecCertificateCopyLongDescription != NULL)
server_cert_summary =
SecCertificateCopyLongDescription(NULL, cert, NULL);
else
#endif /* CURL_BUILD_MAC_10_7 */
#if CURL_BUILD_MAC_10_6
/* Snow Leopard: Get the certificate summary. */
if(SecCertificateCopySubjectSummary != NULL)
server_cert_summary = SecCertificateCopySubjectSummary(cert);
else
#endif /* CURL_BUILD_MAC_10_6 */
/* Leopard is as far back as we go... */
(void)SecCertificateCopyCommonName(cert, &server_cert_summary);
#endif /* CURL_BUILD_IOS */
return server_cert_summary;
}
static CURLcode CopyCertSubject(struct Curl_easy *data,
SecCertificateRef cert, char **certp)
{
CFStringRef c = getsubject(cert);
CURLcode result = CURLE_OK;
const char *direct;
char *cbuf = NULL;
*certp = NULL;
if(!c) {
failf(data, "SSL: invalid CA certificate subject");
return CURLE_PEER_FAILED_VERIFICATION;
}
/* If the subject is already available as UTF-8 encoded (ie 'direct') then
use that, else convert it. */
direct = CFStringGetCStringPtr(c, kCFStringEncodingUTF8);
if(direct) {
*certp = strdup(direct);
if(!*certp) {
failf(data, "SSL: out of memory");
result = CURLE_OUT_OF_MEMORY;
}
}
else {
size_t cbuf_size = ((size_t)CFStringGetLength(c) * 4) + 1;
cbuf = calloc(cbuf_size, 1);
if(cbuf) {
if(!CFStringGetCString(c, cbuf, cbuf_size,
kCFStringEncodingUTF8)) {
failf(data, "SSL: invalid CA certificate subject");
result = CURLE_PEER_FAILED_VERIFICATION;
}
else
/* pass back the buffer */
*certp = cbuf;
}
else {
failf(data, "SSL: couldn't allocate %zu bytes of memory", cbuf_size);
result = CURLE_OUT_OF_MEMORY;
}
}
if(result)
free(cbuf);
CFRelease(c);
return result;
}
#if CURL_SUPPORT_MAC_10_6
/* The SecKeychainSearch API was deprecated in Lion, and using it will raise
deprecation warnings, so let's not compile this unless it's necessary: */
static OSStatus CopyIdentityWithLabelOldSchool(char *label,
SecIdentityRef *out_c_a_k)
{
OSStatus status = errSecItemNotFound;
SecKeychainAttributeList attr_list;
SecKeychainAttribute attr;
SecKeychainSearchRef search = NULL;
SecCertificateRef cert = NULL;
/* Set up the attribute list: */
attr_list.count = 1L;
attr_list.attr = &attr;
/* Set up our lone search criterion: */
attr.tag = kSecLabelItemAttr;
attr.data = label;
attr.length = (UInt32)strlen(label);
/* Start searching: */
status = SecKeychainSearchCreateFromAttributes(NULL,
kSecCertificateItemClass,
&attr_list,
&search);
if(status == noErr) {
status = SecKeychainSearchCopyNext(search,
(SecKeychainItemRef *)&cert);
if(status == noErr && cert) {
/* If we found a certificate, does it have a private key? */
status = SecIdentityCreateWithCertificate(NULL, cert, out_c_a_k);
CFRelease(cert);
}
}
if(search)
CFRelease(search);
return status;
}
#endif /* CURL_SUPPORT_MAC_10_6 */
static OSStatus CopyIdentityWithLabel(char *label,
SecIdentityRef *out_cert_and_key)
{
OSStatus status = errSecItemNotFound;
#if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS
CFArrayRef keys_list;
CFIndex keys_list_count;
CFIndex i;
CFStringRef common_name;
/* SecItemCopyMatching() was introduced in iOS and Snow Leopard.
kSecClassIdentity was introduced in Lion. If both exist, let's use them
to find the certificate. */
if(SecItemCopyMatching != NULL && kSecClassIdentity != NULL) {
CFTypeRef keys[5];
CFTypeRef values[5];
CFDictionaryRef query_dict;
CFStringRef label_cf = CFStringCreateWithCString(NULL, label,
kCFStringEncodingUTF8);
/* Set up our search criteria and expected results: */
values[0] = kSecClassIdentity; /* we want a certificate and a key */
keys[0] = kSecClass;
values[1] = kCFBooleanTrue; /* we want a reference */
keys[1] = kSecReturnRef;
values[2] = kSecMatchLimitAll; /* kSecMatchLimitOne would be better if the
* label matching below worked correctly */
keys[2] = kSecMatchLimit;
/* identity searches need a SecPolicyRef in order to work */
values[3] = SecPolicyCreateSSL(false, NULL);
keys[3] = kSecMatchPolicy;
/* match the name of the certificate (doesn't work in macOS 10.12.1) */
values[4] = label_cf;
keys[4] = kSecAttrLabel;
query_dict = CFDictionaryCreate(NULL, (const void **)keys,
(const void **)values, 5L,
&kCFCopyStringDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
CFRelease(values[3]);
/* Do we have a match? */
status = SecItemCopyMatching(query_dict, (CFTypeRef *) &keys_list);
/* Because kSecAttrLabel matching doesn't work with kSecClassIdentity,
* we need to find the correct identity ourselves */
if(status == noErr) {
keys_list_count = CFArrayGetCount(keys_list);
*out_cert_and_key = NULL;
status = 1;
for(i = 0; i<keys_list_count; i++) {
OSStatus err = noErr;
SecCertificateRef cert = NULL;
SecIdentityRef identity =
(SecIdentityRef) CFArrayGetValueAtIndex(keys_list, i);
err = SecIdentityCopyCertificate(identity, &cert);
if(err == noErr) {
#if CURL_BUILD_IOS
common_name = SecCertificateCopySubjectSummary(cert);
#elif CURL_BUILD_MAC_10_7
SecCertificateCopyCommonName(cert, &common_name);
#endif
if(CFStringCompare(common_name, label_cf, 0) == kCFCompareEqualTo) {
CFRelease(cert);
CFRelease(common_name);
CFRetain(identity);
*out_cert_and_key = identity;
status = noErr;
break;
}
CFRelease(common_name);
}
CFRelease(cert);
}
}
if(keys_list)
CFRelease(keys_list);
CFRelease(query_dict);
CFRelease(label_cf);
}
else {
#if CURL_SUPPORT_MAC_10_6
/* On Leopard and Snow Leopard, fall back to SecKeychainSearch. */
status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key);
#endif /* CURL_SUPPORT_MAC_10_6 */
}
#elif CURL_SUPPORT_MAC_10_6
/* For developers building on older cats, we have no choice but to fall back
to SecKeychainSearch. */
status = CopyIdentityWithLabelOldSchool(label, out_cert_and_key);
#endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */
return status;
}
static OSStatus CopyIdentityFromPKCS12File(const char *cPath,
const struct curl_blob *blob,
const char *cPassword,
SecIdentityRef *out_cert_and_key)
{
OSStatus status = errSecItemNotFound;
CFURLRef pkcs_url = NULL;
CFStringRef password = cPassword ? CFStringCreateWithCString(NULL,
cPassword, kCFStringEncodingUTF8) : NULL;
CFDataRef pkcs_data = NULL;
/* We can import P12 files on iOS or OS X 10.7 or later: */
/* These constants are documented as having first appeared in 10.6 but they
raise linker errors when used on that cat for some reason. */
#if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS
bool resource_imported;
if(blob) {
pkcs_data = CFDataCreate(kCFAllocatorDefault,
(const unsigned char *)blob->data, blob->len);
status = (pkcs_data != NULL) ? errSecSuccess : errSecAllocate;
resource_imported = (pkcs_data != NULL);
}
else {
pkcs_url =
CFURLCreateFromFileSystemRepresentation(NULL,
(const UInt8 *)cPath,
strlen(cPath), false);
resource_imported =
CFURLCreateDataAndPropertiesFromResource(NULL,
pkcs_url, &pkcs_data,
NULL, NULL, &status);
}
if(resource_imported) {
CFArrayRef items = NULL;
/* On iOS SecPKCS12Import will never add the client certificate to the
* Keychain.
*
* It gives us back a SecIdentityRef that we can use directly. */
#if CURL_BUILD_IOS
const void *cKeys[] = {kSecImportExportPassphrase};
const void *cValues[] = {password};
CFDictionaryRef options = CFDictionaryCreate(NULL, cKeys, cValues,
password ? 1L : 0L, NULL, NULL);
if(options != NULL) {
status = SecPKCS12Import(pkcs_data, options, &items);
CFRelease(options);
}
/* On macOS SecPKCS12Import will always add the client certificate to
* the Keychain.
*
* As this doesn't match iOS, and apps may not want to see their client
* certificate saved in the user's keychain, we use SecItemImport
* with a NULL keychain to avoid importing it.
*
* This returns a SecCertificateRef from which we can construct a
* SecIdentityRef.
*/
#elif CURL_BUILD_MAC_10_7
SecItemImportExportKeyParameters keyParams;
SecExternalFormat inputFormat = kSecFormatPKCS12;
SecExternalItemType inputType = kSecItemTypeCertificate;
memset(&keyParams, 0x00, sizeof(keyParams));
keyParams.version = SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION;
keyParams.passphrase = password;
status = SecItemImport(pkcs_data, NULL, &inputFormat, &inputType,
0, &keyParams, NULL, &items);
#endif
/* Extract the SecIdentityRef */
if(status == errSecSuccess && items && CFArrayGetCount(items)) {
CFIndex i, count;
count = CFArrayGetCount(items);
for(i = 0; i < count; i++) {
CFTypeRef item = (CFTypeRef) CFArrayGetValueAtIndex(items, i);
CFTypeID itemID = CFGetTypeID(item);
if(itemID == CFDictionaryGetTypeID()) {
CFTypeRef identity = (CFTypeRef) CFDictionaryGetValue(
(CFDictionaryRef) item,
kSecImportItemIdentity);
CFRetain(identity);
*out_cert_and_key = (SecIdentityRef) identity;
break;
}
2018-03-17 16:49:27 -04:00
#if CURL_BUILD_MAC_10_7
else if(itemID == SecCertificateGetTypeID()) {
status = SecIdentityCreateWithCertificate(NULL,
(SecCertificateRef) item,
out_cert_and_key);
break;
}
2018-03-17 16:49:27 -04:00
#endif
}
}
if(items)
CFRelease(items);
CFRelease(pkcs_data);
}
#endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */
if(password)
CFRelease(password);
if(pkcs_url)
CFRelease(pkcs_url);
return status;
}
/* This code was borrowed from nss.c, with some modifications:
* Determine whether the nickname passed in is a filename that needs to
* be loaded as a PEM or a regular NSS nickname.
*
* returns 1 for a file
* returns 0 for not a file
*/
CF_INLINE bool is_file(const char *filename)
{
struct_stat st;
if(!filename)
return false;
if(stat(filename, &st) == 0)
return S_ISREG(st.st_mode);
return false;
}
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
static CURLcode sectransp_version_from_curl(SSLProtocol *darwinver,
long ssl_version)
{
switch(ssl_version) {
case CURL_SSLVERSION_TLSv1_0:
*darwinver = kTLSProtocol1;
return CURLE_OK;
case CURL_SSLVERSION_TLSv1_1:
*darwinver = kTLSProtocol11;
return CURLE_OK;
case CURL_SSLVERSION_TLSv1_2:
*darwinver = kTLSProtocol12;
return CURLE_OK;
case CURL_SSLVERSION_TLSv1_3:
/* TLS 1.3 support first appeared in iOS 11 and macOS 10.13 */
#if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1
if(__builtin_available(macOS 10.13, iOS 11.0, *)) {
*darwinver = kTLSProtocol13;
return CURLE_OK;
}
#endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) &&
HAVE_BUILTIN_AVAILABLE == 1 */
break;
}
return CURLE_SSL_CONNECT_ERROR;
}
#endif
static CURLcode
set_ssl_version_min_max(struct Curl_easy *data, struct connectdata *conn,
int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
long ssl_version = SSL_CONN_CONFIG(version);
long ssl_version_max = SSL_CONN_CONFIG(version_max);
long max_supported_version_by_os;
/* macOS 10.5-10.7 supported TLS 1.0 only.
macOS 10.8 and later, and iOS 5 and later, added TLS 1.1 and 1.2.
macOS 10.13 and later, and iOS 11 and later, added TLS 1.3. */
#if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1
if(__builtin_available(macOS 10.13, iOS 11.0, *)) {
max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_3;
}
else {
max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2;
}
#else
max_supported_version_by_os = CURL_SSLVERSION_MAX_TLSv1_2;
#endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) &&
HAVE_BUILTIN_AVAILABLE == 1 */
switch(ssl_version) {
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
ssl_version = CURL_SSLVERSION_TLSv1_0;
break;
}
switch(ssl_version_max) {
case CURL_SSLVERSION_MAX_NONE:
case CURL_SSLVERSION_MAX_DEFAULT:
ssl_version_max = max_supported_version_by_os;
break;
}
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
if(SSLSetProtocolVersionMax != NULL) {
SSLProtocol darwin_ver_min = kTLSProtocol1;
SSLProtocol darwin_ver_max = kTLSProtocol1;
CURLcode result = sectransp_version_from_curl(&darwin_ver_min,
ssl_version);
if(result) {
failf(data, "unsupported min version passed via CURLOPT_SSLVERSION");
return result;
}
result = sectransp_version_from_curl(&darwin_ver_max,
ssl_version_max >> 16);
if(result) {
failf(data, "unsupported max version passed via CURLOPT_SSLVERSION");
return result;
}
(void)SSLSetProtocolVersionMin(backend->ssl_ctx, darwin_ver_min);
(void)SSLSetProtocolVersionMax(backend->ssl_ctx, darwin_ver_max);
return result;
}
else {
#if CURL_SUPPORT_MAC_10_8
long i = ssl_version;
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kSSLProtocolAll,
false);
for(; i <= (ssl_version_max >> 16); i++) {
switch(i) {
case CURL_SSLVERSION_TLSv1_0:
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol1,
true);
break;
case CURL_SSLVERSION_TLSv1_1:
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol11,
true);
break;
case CURL_SSLVERSION_TLSv1_2:
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol12,
true);
break;
case CURL_SSLVERSION_TLSv1_3:
failf(data, "Your version of the OS does not support TLSv1.3");
return CURLE_SSL_CONNECT_ERROR;
}
}
return CURLE_OK;
#endif /* CURL_SUPPORT_MAC_10_8 */
}
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
failf(data, "Secure Transport: cannot set SSL protocol");
return CURLE_SSL_CONNECT_ERROR;
}
static bool is_cipher_suite_strong(SSLCipherSuite suite_num)
{
for(size_t i = 0; i < NUM_OF_CIPHERS; ++i) {
if(ciphertable[i].num == suite_num) {
return !ciphertable[i].weak;
}
}
/* If the cipher is not in our list, assume it is a new one
and therefore strong. Previous implementation was the same,
if cipher suite is not in the list, it was considered strong enough */
return true;
}
static bool is_separator(char c)
{
/* Return whether character is a cipher list separator. */
switch(c) {
case ' ':
case '\t':
case ':':
case ',':
case ';':
return true;
}
return false;
}
static CURLcode sectransp_set_default_ciphers(struct Curl_easy *data,
SSLContextRef ssl_ctx)
{
size_t all_ciphers_count = 0UL, allowed_ciphers_count = 0UL, i;
SSLCipherSuite *all_ciphers = NULL, *allowed_ciphers = NULL;
OSStatus err = noErr;
#if CURL_BUILD_MAC
int darwinver_maj = 0, darwinver_min = 0;
GetDarwinVersionNumber(&darwinver_maj, &darwinver_min);
#endif /* CURL_BUILD_MAC */
/* Disable cipher suites that ST supports but are not safe. These ciphers
are unlikely to be used in any case since ST gives other ciphers a much
higher priority, but it's probably better that we not connect at all than
to give the user a false sense of security if the server only supports
insecure ciphers. (Note: We don't care about SSLv2-only ciphers.) */
err = SSLGetNumberSupportedCiphers(ssl_ctx, &all_ciphers_count);
if(err != noErr) {
failf(data, "SSL: SSLGetNumberSupportedCiphers() failed: OSStatus %d",
err);
return CURLE_SSL_CIPHER;
}
all_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite));
if(!all_ciphers) {
failf(data, "SSL: Failed to allocate memory for all ciphers");
return CURLE_OUT_OF_MEMORY;
}
allowed_ciphers = malloc(all_ciphers_count*sizeof(SSLCipherSuite));
if(!allowed_ciphers) {
Curl_safefree(all_ciphers);
failf(data, "SSL: Failed to allocate memory for allowed ciphers");
return CURLE_OUT_OF_MEMORY;
}
err = SSLGetSupportedCiphers(ssl_ctx, all_ciphers,
&all_ciphers_count);
if(err != noErr) {
Curl_safefree(all_ciphers);
Curl_safefree(allowed_ciphers);
return CURLE_SSL_CIPHER;
}
for(i = 0UL ; i < all_ciphers_count ; i++) {
#if CURL_BUILD_MAC
/* There's a known bug in early versions of Mountain Lion where ST's ECC
ciphers (cipher suite 0xC001 through 0xC032) simply do not work.
Work around the problem here by disabling those ciphers if we are
running in an affected version of OS X. */
if(darwinver_maj == 12 && darwinver_min <= 3 &&
all_ciphers[i] >= 0xC001 && all_ciphers[i] <= 0xC032) {
continue;
}
#endif /* CURL_BUILD_MAC */
if(is_cipher_suite_strong(all_ciphers[i])) {
allowed_ciphers[allowed_ciphers_count++] = all_ciphers[i];
}
}
err = SSLSetEnabledCiphers(ssl_ctx, allowed_ciphers,
allowed_ciphers_count);
Curl_safefree(all_ciphers);
Curl_safefree(allowed_ciphers);
if(err != noErr) {
failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d", err);
return CURLE_SSL_CIPHER;
}
return CURLE_OK;
}
static CURLcode sectransp_set_selected_ciphers(struct Curl_easy *data,
SSLContextRef ssl_ctx,
const char *ciphers)
{
size_t ciphers_count = 0;
const char *cipher_start = ciphers;
OSStatus err = noErr;
SSLCipherSuite selected_ciphers[NUM_OF_CIPHERS];
if(!ciphers)
return CURLE_OK;
while(is_separator(*ciphers)) /* Skip initial separators. */
ciphers++;
if(!*ciphers)
return CURLE_OK;
cipher_start = ciphers;
while(*cipher_start && ciphers_count < NUM_OF_CIPHERS) {
bool cipher_found = FALSE;
size_t cipher_len = 0;
const char *cipher_end = NULL;
bool tls_name = FALSE;
/* Skip separators */
while(is_separator(*cipher_start))
cipher_start++;
if(*cipher_start == '\0') {
break;
}
/* Find last position of a cipher in the ciphers string */
cipher_end = cipher_start;
while (*cipher_end != '\0' && !is_separator(*cipher_end)) {
++cipher_end;
}
/* IANA cipher names start with the TLS_ or SSL_ prefix.
If the 4th symbol of the cipher is '_' we look for a cipher in the
table by its (TLS) name.
Otherwise, we try to match cipher by an alias. */
if(cipher_start[3] == '_') {
tls_name = TRUE;
}
/* Iterate through the cipher table and look for the cipher, starting
the cipher number 0x01 because the 0x00 is not the real cipher */
cipher_len = cipher_end - cipher_start;
for(size_t i = 1; i < NUM_OF_CIPHERS; ++i) {
const char *table_cipher_name = NULL;
if(tls_name) {
table_cipher_name = ciphertable[i].name;
}
else if(ciphertable[i].alias_name != NULL) {
table_cipher_name = ciphertable[i].alias_name;
}
else {
continue;
}
/* Compare a part of the string between separators with a cipher name
in the table and make sure we matched the whole cipher name */
if(strncmp(cipher_start, table_cipher_name, cipher_len) == 0
&& table_cipher_name[cipher_len] == '\0') {
selected_ciphers[ciphers_count] = ciphertable[i].num;
++ciphers_count;
cipher_found = TRUE;
break;
}
}
if(!cipher_found) {
/* It would be more human-readable if we print the wrong cipher name
but we don't want to allocate any additional memory and copy the name
into it, then add it into logs.
Also, we do not modify an original cipher list string. We just point
to positions where cipher starts and ends in the cipher list string.
The message is a bit cryptic and longer than necessary but can be
understood by humans. */
failf(data, "SSL: cipher string \"%s\" contains unsupported cipher name"
" starting position %d and ending position %d",
ciphers,
cipher_start - ciphers,
cipher_end - ciphers);
return CURLE_SSL_CIPHER;
}
if(*cipher_end) {
cipher_start = cipher_end + 1;
}
else {
break;
}
}
/* All cipher suites in the list are found. Report to logs as-is */
infof(data, "SSL: Setting cipher suites list \"%s\"\n", ciphers);
err = SSLSetEnabledCiphers(ssl_ctx, selected_ciphers, ciphers_count);
if(err != noErr) {
failf(data, "SSL: SSLSetEnabledCiphers() failed: OSStatus %d", err);
return CURLE_SSL_CIPHER;
}
return CURLE_OK;
}
static CURLcode sectransp_connect_step1(struct Curl_easy *data,
struct connectdata *conn,
int sockindex)
{
curl_socket_t sockfd = conn->sock[sockindex];
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
const char * const ssl_cafile = SSL_CONN_CONFIG(CAfile);
const struct curl_blob *ssl_cablob = NULL;
const bool verifypeer = SSL_CONN_CONFIG(verifypeer);
char * const ssl_cert = SSL_SET_OPTION(primary.clientcert);
const struct curl_blob *ssl_cert_blob = SSL_SET_OPTION(primary.cert_blob);
bool isproxy = SSL_IS_PROXY();
const char * const hostname = SSL_HOST_NAME();
const long int port = SSL_HOST_PORT();
#ifdef ENABLE_IPV6
struct in6_addr addr;
#else
struct in_addr addr;
#endif /* ENABLE_IPV6 */
char *ciphers;
OSStatus err = noErr;
#if CURL_BUILD_MAC
int darwinver_maj = 0, darwinver_min = 0;
GetDarwinVersionNumber(&darwinver_maj, &darwinver_min);
#endif /* CURL_BUILD_MAC */
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
if(SSLCreateContext != NULL) { /* use the newer API if available */
if(backend->ssl_ctx)
CFRelease(backend->ssl_ctx);
backend->ssl_ctx = SSLCreateContext(NULL, kSSLClientSide, kSSLStreamType);
if(!backend->ssl_ctx) {
failf(data, "SSL: couldn't create a context!");
return CURLE_OUT_OF_MEMORY;
}
}
else {
/* The old ST API does not exist under iOS, so don't compile it: */
#if CURL_SUPPORT_MAC_10_8
if(backend->ssl_ctx)
(void)SSLDisposeContext(backend->ssl_ctx);
err = SSLNewContext(false, &(backend->ssl_ctx));
if(err != noErr) {
failf(data, "SSL: couldn't create a context: OSStatus %d", err);
return CURLE_OUT_OF_MEMORY;
}
#endif /* CURL_SUPPORT_MAC_10_8 */
}
#else
if(backend->ssl_ctx)
(void)SSLDisposeContext(backend->ssl_ctx);
err = SSLNewContext(false, &(backend->ssl_ctx));
if(err != noErr) {
failf(data, "SSL: couldn't create a context: OSStatus %d", err);
return CURLE_OUT_OF_MEMORY;
}
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
backend->ssl_write_buffered_length = 0UL; /* reset buffered write length */
/* check to see if we've been told to use an explicit SSL/TLS version */
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
if(SSLSetProtocolVersionMax != NULL) {
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
switch(conn->ssl_config.version) {
case CURL_SSLVERSION_TLSv1:
(void)SSLSetProtocolVersionMin(backend->ssl_ctx, kTLSProtocol1);
#if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1
if(__builtin_available(macOS 10.13, iOS 11.0, *)) {
(void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol13);
}
else {
(void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12);
}
#else
(void)SSLSetProtocolVersionMax(backend->ssl_ctx, kTLSProtocol12);
#endif /* (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) &&
HAVE_BUILTIN_AVAILABLE == 1 */
break;
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1_0:
case CURL_SSLVERSION_TLSv1_1:
case CURL_SSLVERSION_TLSv1_2:
case CURL_SSLVERSION_TLSv1_3:
{
CURLcode result = set_ssl_version_min_max(data, conn, sockindex);
if(result != CURLE_OK)
return result;
break;
}
case CURL_SSLVERSION_SSLv3:
case CURL_SSLVERSION_SSLv2:
failf(data, "SSL versions not supported");
return CURLE_NOT_BUILT_IN;
default:
failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
}
else {
#if CURL_SUPPORT_MAC_10_8
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kSSLProtocolAll,
false);
switch(conn->ssl_config.version) {
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol1,
true);
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol11,
true);
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol12,
true);
break;
case CURL_SSLVERSION_TLSv1_0:
case CURL_SSLVERSION_TLSv1_1:
case CURL_SSLVERSION_TLSv1_2:
case CURL_SSLVERSION_TLSv1_3:
{
CURLcode result = set_ssl_version_min_max(data, conn, sockindex);
if(result != CURLE_OK)
return result;
break;
}
case CURL_SSLVERSION_SSLv3:
case CURL_SSLVERSION_SSLv2:
failf(data, "SSL versions not supported");
return CURLE_NOT_BUILT_IN;
default:
failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
#endif /* CURL_SUPPORT_MAC_10_8 */
}
#else
if(conn->ssl_config.version_max != CURL_SSLVERSION_MAX_NONE) {
failf(data, "Your version of the OS does not support to set maximum"
" SSL/TLS version");
return CURLE_SSL_CONNECT_ERROR;
}
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx, kSSLProtocolAll, false);
switch(conn->ssl_config.version) {
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
case CURL_SSLVERSION_TLSv1_0:
(void)SSLSetProtocolVersionEnabled(backend->ssl_ctx,
kTLSProtocol1,
true);
break;
case CURL_SSLVERSION_TLSv1_1:
failf(data, "Your version of the OS does not support TLSv1.1");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_2:
failf(data, "Your version of the OS does not support TLSv1.2");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_TLSv1_3:
failf(data, "Your version of the OS does not support TLSv1.3");
return CURLE_SSL_CONNECT_ERROR;
case CURL_SSLVERSION_SSLv2:
case CURL_SSLVERSION_SSLv3:
failf(data, "SSL versions not supported");
return CURLE_NOT_BUILT_IN;
default:
failf(data, "Unrecognized parameter passed via CURLOPT_SSLVERSION");
return CURLE_SSL_CONNECT_ERROR;
}
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
#if (CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1
if(conn->bits.tls_enable_alpn) {
if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) {
CFMutableArrayRef alpnArr = CFArrayCreateMutable(NULL, 0,
&kCFTypeArrayCallBacks);
#ifdef USE_HTTP2
if(data->state.httpwant >= CURL_HTTP_VERSION_2
#ifndef CURL_DISABLE_PROXY
&& (!isproxy || !conn->bits.tunnel_proxy)
#endif
) {
CFArrayAppendValue(alpnArr, CFSTR(ALPN_H2));
infof(data, "ALPN, offering %s\n", ALPN_H2);
}
#endif
CFArrayAppendValue(alpnArr, CFSTR(ALPN_HTTP_1_1));
infof(data, "ALPN, offering %s\n", ALPN_HTTP_1_1);
/* expects length prefixed preference ordered list of protocols in wire
* format
*/
err = SSLSetALPNProtocols(backend->ssl_ctx, alpnArr);
if(err != noErr)
infof(data, "WARNING: failed to set ALPN protocols; OSStatus %d\n",
err);
CFRelease(alpnArr);
}
}
#endif
if(SSL_SET_OPTION(key)) {
infof(data, "WARNING: SSL: CURLOPT_SSLKEY is ignored by Secure "
"Transport. The private key must be in the Keychain.\n");
}
if(ssl_cert || ssl_cert_blob) {
bool is_cert_data = ssl_cert_blob != NULL;
bool is_cert_file = (!is_cert_data) && is_file(ssl_cert);
SecIdentityRef cert_and_key = NULL;
/* User wants to authenticate with a client cert. Look for it:
If we detect that this is a file on disk, then let's load it.
Otherwise, assume that the user wants to use an identity loaded
from the Keychain. */
if(is_cert_file || is_cert_data) {
if(!SSL_SET_OPTION(cert_type))
infof(data, "WARNING: SSL: Certificate type not set, assuming "
"PKCS#12 format.\n");
else if(strncmp(SSL_SET_OPTION(cert_type), "P12",
strlen(SSL_SET_OPTION(cert_type))) != 0)
infof(data, "WARNING: SSL: The Security framework only supports "
"loading identities that are in PKCS#12 format.\n");
err = CopyIdentityFromPKCS12File(ssl_cert, ssl_cert_blob,
SSL_SET_OPTION(key_passwd), &cert_and_key);
}
else
err = CopyIdentityWithLabel(ssl_cert, &cert_and_key);
if(err == noErr && cert_and_key) {
SecCertificateRef cert = NULL;
CFTypeRef certs_c[1];
CFArrayRef certs;
/* If we found one, print it out: */
err = SecIdentityCopyCertificate(cert_and_key, &cert);
if(err == noErr) {
char *certp;
CURLcode result = CopyCertSubject(data, cert, &certp);
if(!result) {
infof(data, "Client certificate: %s\n", certp);
free(certp);
}
CFRelease(cert);
if(result == CURLE_PEER_FAILED_VERIFICATION)
return CURLE_SSL_CERTPROBLEM;
if(result)
return result;
}
certs_c[0] = cert_and_key;
certs = CFArrayCreate(NULL, (const void **)certs_c, 1L,
&kCFTypeArrayCallBacks);
err = SSLSetCertificate(backend->ssl_ctx, certs);
if(certs)
CFRelease(certs);
if(err != noErr) {
failf(data, "SSL: SSLSetCertificate() failed: OSStatus %d", err);
return CURLE_SSL_CERTPROBLEM;
}
CFRelease(cert_and_key);
}
else {
const char *cert_showfilename_error =
is_cert_data ? "(memory blob)" : ssl_cert;
switch(err) {
case errSecAuthFailed: case -25264: /* errSecPkcs12VerifyFailure */
failf(data, "SSL: Incorrect password for the certificate \"%s\" "
"and its private key.", cert_showfilename_error);
break;
case -26275: /* errSecDecode */ case -25257: /* errSecUnknownFormat */
failf(data, "SSL: Couldn't make sense of the data in the "
"certificate \"%s\" and its private key.",
cert_showfilename_error);
break;
case -25260: /* errSecPassphraseRequired */
failf(data, "SSL The certificate \"%s\" requires a password.",
cert_showfilename_error);
break;
case errSecItemNotFound:
failf(data, "SSL: Can't find the certificate \"%s\" and its private "
"key in the Keychain.", cert_showfilename_error);
break;
default:
failf(data, "SSL: Can't load the certificate \"%s\" and its private "
"key: OSStatus %d", cert_showfilename_error, err);
break;
}
return CURLE_SSL_CERTPROBLEM;
}
}
/* SSL always tries to verify the peer, this only says whether it should
* fail to connect if the verification fails, or if it should continue
* anyway. In the latter case the result of the verification is checked with
* SSL_get_verify_result() below. */
#if CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS
/* Snow Leopard introduced the SSLSetSessionOption() function, but due to
a library bug with the way the kSSLSessionOptionBreakOnServerAuth flag
works, it doesn't work as expected under Snow Leopard, Lion or
Mountain Lion.
So we need to call SSLSetEnableCertVerify() on those older cats in order
to disable certificate validation if the user turned that off.
(SecureTransport will always validate the certificate chain by
default.)
Note:
Darwin 11.x.x is Lion (10.7)
Darwin 12.x.x is Mountain Lion (10.8)
Darwin 13.x.x is Mavericks (10.9)
Darwin 14.x.x is Yosemite (10.10)
Darwin 15.x.x is El Capitan (10.11)
*/
#if CURL_BUILD_MAC
if(SSLSetSessionOption != NULL && darwinver_maj >= 13) {
#else
if(SSLSetSessionOption != NULL) {
#endif /* CURL_BUILD_MAC */
bool break_on_auth = !conn->ssl_config.verifypeer ||
ssl_cafile || ssl_cablob;
err = SSLSetSessionOption(backend->ssl_ctx,
kSSLSessionOptionBreakOnServerAuth,
break_on_auth);
if(err != noErr) {
failf(data, "SSL: SSLSetSessionOption() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
}
else {
#if CURL_SUPPORT_MAC_10_8
err = SSLSetEnableCertVerify(backend->ssl_ctx,
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
conn->ssl_config.verifypeer?true:false);
if(err != noErr) {
failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
#endif /* CURL_SUPPORT_MAC_10_8 */
}
#else
err = SSLSetEnableCertVerify(backend->ssl_ctx,
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
conn->ssl_config.verifypeer?true:false);
if(err != noErr) {
failf(data, "SSL: SSLSetEnableCertVerify() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
#endif /* CURL_BUILD_MAC_10_6 || CURL_BUILD_IOS */
if((ssl_cafile || ssl_cablob) && verifypeer) {
bool is_cert_data = ssl_cablob != NULL;
bool is_cert_file = (!is_cert_data) && is_file(ssl_cafile);
if(!(is_cert_file || is_cert_data)) {
failf(data, "SSL: can't load CA certificate file %s", ssl_cafile);
return CURLE_SSL_CACERT_BADFILE;
}
}
/* Configure hostname check. SNI is used if available.
* Both hostname check and SNI require SSLSetPeerDomainName().
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
* Also: the verifyhost setting influences SNI usage */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(conn->ssl_config.verifyhost) {
err = SSLSetPeerDomainName(backend->ssl_ctx, hostname,
strlen(hostname));
if(err != noErr) {
infof(data, "WARNING: SSL: SSLSetPeerDomainName() failed: OSStatus %d\n",
err);
}
if((Curl_inet_pton(AF_INET, hostname, &addr))
#ifdef ENABLE_IPV6
|| (Curl_inet_pton(AF_INET6, hostname, &addr))
#endif
) {
infof(data, "WARNING: using IP address, SNI is being disabled by "
"the OS.\n");
}
}
else {
infof(data, "WARNING: disabling hostname validation also disables SNI.\n");
}
ciphers = SSL_CONN_CONFIG(cipher_list);
if(ciphers) {
err = sectransp_set_selected_ciphers(data, backend->ssl_ctx, ciphers);
}
else {
err = sectransp_set_default_ciphers(data, backend->ssl_ctx);
}
if(err != noErr) {
failf(data, "SSL: Unable to set ciphers for SSL/TLS handshake. "
"Error code: %d", err);
return CURLE_SSL_CIPHER;
}
#if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7
/* We want to enable 1/n-1 when using a CBC cipher unless the user
specifically doesn't want us doing that: */
if(SSLSetSessionOption != NULL) {
SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionSendOneByteRecord,
!SSL_SET_OPTION(enable_beast));
SSLSetSessionOption(backend->ssl_ctx, kSSLSessionOptionFalseStart,
data->set.ssl.falsestart); /* false start support */
}
#endif /* CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7 */
/* Check if there's a cached ID we can/should use here! */
if(SSL_SET_OPTION(primary.sessionid)) {
char *ssl_sessionid;
size_t ssl_sessionid_len;
Curl_ssl_sessionid_lock(data);
if(!Curl_ssl_getsessionid(data, conn, isproxy, (void **)&ssl_sessionid,
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
&ssl_sessionid_len, sockindex)) {
/* we got a session id, use it! */
err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len);
Curl_ssl_sessionid_unlock(data);
if(err != noErr) {
failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
/* Informational message */
infof(data, "SSL re-using session ID\n");
}
/* If there isn't one, then let's make one up! This has to be done prior
to starting the handshake. */
else {
CURLcode result;
ssl_sessionid =
aprintf("%s:%d:%d:%s:%ld", ssl_cafile,
verifypeer, SSL_CONN_CONFIG(verifyhost), hostname, port);
ssl_sessionid_len = strlen(ssl_sessionid);
err = SSLSetPeerID(backend->ssl_ctx, ssl_sessionid, ssl_sessionid_len);
if(err != noErr) {
Curl_ssl_sessionid_unlock(data);
failf(data, "SSL: SSLSetPeerID() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
result = Curl_ssl_addsessionid(data, conn, isproxy, ssl_sessionid,
ssl_sessionid_len, sockindex);
Curl_ssl_sessionid_unlock(data);
if(result) {
failf(data, "failed to store ssl session");
return result;
}
}
}
err = SSLSetIOFuncs(backend->ssl_ctx, SocketRead, SocketWrite);
if(err != noErr) {
failf(data, "SSL: SSLSetIOFuncs() failed: OSStatus %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
/* pass the raw socket into the SSL layers */
/* We need to store the FD in a constant memory address, because
* SSLSetConnection() will not copy that address. I've found that
* conn->sock[sockindex] may change on its own. */
backend->ssl_sockfd = sockfd;
err = SSLSetConnection(backend->ssl_ctx, connssl);
if(err != noErr) {
failf(data, "SSL: SSLSetConnection() failed: %d", err);
return CURLE_SSL_CONNECT_ERROR;
}
connssl->connecting_state = ssl_connect_2;
return CURLE_OK;
}
static long pem_to_der(const char *in, unsigned char **out, size_t *outlen)
{
char *sep_start, *sep_end, *cert_start, *cert_end;
size_t i, j, err;
size_t len;
unsigned char *b64;
/* Jump through the separators at the beginning of the certificate. */
sep_start = strstr(in, "-----");
if(!sep_start)
return 0;
cert_start = strstr(sep_start + 1, "-----");
if(!cert_start)
return -1;
cert_start += 5;
/* Find separator after the end of the certificate. */
cert_end = strstr(cert_start, "-----");
if(!cert_end)
return -1;
sep_end = strstr(cert_end + 1, "-----");
if(!sep_end)
return -1;
sep_end += 5;
len = cert_end - cert_start;
b64 = malloc(len + 1);
if(!b64)
return -1;
/* Create base64 string without linefeeds. */
for(i = 0, j = 0; i < len; i++) {
if(cert_start[i] != '\r' && cert_start[i] != '\n')
b64[j++] = cert_start[i];
}
b64[j] = '\0';
err = Curl_base64_decode((const char *)b64, out, outlen);
free(b64);
if(err) {
free(*out);
return -1;
}
return sep_end - in;
}
static int read_cert(const char *file, unsigned char **out, size_t *outlen)
{
int fd;
ssize_t n, len = 0, cap = 512;
unsigned char buf[512], *data;
fd = open(file, 0);
if(fd < 0)
return -1;
data = malloc(cap);
if(!data) {
close(fd);
return -1;
}
for(;;) {
n = read(fd, buf, sizeof(buf));
if(n < 0) {
close(fd);
free(data);
return -1;
}
else if(n == 0) {
close(fd);
break;
}
if(len + n >= cap) {
cap *= 2;
data = Curl_saferealloc(data, cap);
if(!data) {
close(fd);
return -1;
}
}
memcpy(data + len, buf, n);
len += n;
}
data[len] = '\0';
*out = data;
*outlen = len;
return 0;
}
static int append_cert_to_array(struct Curl_easy *data,
unsigned char *buf, size_t buflen,
CFMutableArrayRef array)
{
CFDataRef certdata = CFDataCreate(kCFAllocatorDefault, buf, buflen);
char *certp;
CURLcode result;
if(!certdata) {
failf(data, "SSL: failed to allocate array for CA certificate");
return CURLE_OUT_OF_MEMORY;
}
SecCertificateRef cacert =
SecCertificateCreateWithData(kCFAllocatorDefault, certdata);
CFRelease(certdata);
if(!cacert) {
failf(data, "SSL: failed to create SecCertificate from CA certificate");
return CURLE_SSL_CACERT_BADFILE;
}
/* Check if cacert is valid. */
result = CopyCertSubject(data, cacert, &certp);
switch(result) {
case CURLE_OK:
break;
case CURLE_PEER_FAILED_VERIFICATION:
return CURLE_SSL_CACERT_BADFILE;
case CURLE_OUT_OF_MEMORY:
default:
return result;
}
free(certp);
CFArrayAppendValue(array, cacert);
CFRelease(cacert);
return CURLE_OK;
}
static CURLcode verify_cert(const char *cafile, struct Curl_easy *data,
SSLContextRef ctx)
{
int n = 0, rc;
long res;
unsigned char *certbuf, *der;
size_t buflen, derlen, offset = 0;
if(read_cert(cafile, &certbuf, &buflen) < 0) {
failf(data, "SSL: failed to read or invalid CA certificate");
return CURLE_SSL_CACERT_BADFILE;
}
/*
* Certbuf now contains the contents of the certificate file, which can be
* - a single DER certificate,
* - a single PEM certificate or
* - a bunch of PEM certificates (certificate bundle).
*
* Go through certbuf, and convert any PEM certificate in it into DER
* format.
*/
CFMutableArrayRef array = CFArrayCreateMutable(kCFAllocatorDefault, 0,
&kCFTypeArrayCallBacks);
if(!array) {
free(certbuf);
failf(data, "SSL: out of memory creating CA certificate array");
return CURLE_OUT_OF_MEMORY;
}
while(offset < buflen) {
n++;
/*
* Check if the certificate is in PEM format, and convert it to DER. If
* this fails, we assume the certificate is in DER format.
*/
res = pem_to_der((const char *)certbuf + offset, &der, &derlen);
if(res < 0) {
free(certbuf);
CFRelease(array);
failf(data, "SSL: invalid CA certificate #%d (offset %zu) in bundle",
n, offset);
return CURLE_SSL_CACERT_BADFILE;
}
offset += res;
if(res == 0 && offset == 0) {
/* This is not a PEM file, probably a certificate in DER format. */
rc = append_cert_to_array(data, certbuf, buflen, array);
free(certbuf);
if(rc != CURLE_OK) {
CFRelease(array);
return rc;
}
break;
}
else if(res == 0) {
/* No more certificates in the bundle. */
free(certbuf);
break;
}
rc = append_cert_to_array(data, der, derlen, array);
free(der);
if(rc != CURLE_OK) {
free(certbuf);
CFRelease(array);
return rc;
}
}
SecTrustRef trust;
OSStatus ret = SSLCopyPeerTrust(ctx, &trust);
if(!trust) {
failf(data, "SSL: error getting certificate chain");
CFRelease(array);
return CURLE_PEER_FAILED_VERIFICATION;
}
else if(ret != noErr) {
CFRelease(array);
failf(data, "SSLCopyPeerTrust() returned error %d", ret);
return CURLE_PEER_FAILED_VERIFICATION;
}
ret = SecTrustSetAnchorCertificates(trust, array);
if(ret != noErr) {
CFRelease(array);
CFRelease(trust);
failf(data, "SecTrustSetAnchorCertificates() returned error %d", ret);
return CURLE_PEER_FAILED_VERIFICATION;
}
ret = SecTrustSetAnchorCertificatesOnly(trust, true);
if(ret != noErr) {
CFRelease(array);
CFRelease(trust);
failf(data, "SecTrustSetAnchorCertificatesOnly() returned error %d", ret);
return CURLE_PEER_FAILED_VERIFICATION;
}
SecTrustResultType trust_eval = 0;
ret = SecTrustEvaluate(trust, &trust_eval);
CFRelease(array);
CFRelease(trust);
if(ret != noErr) {
failf(data, "SecTrustEvaluate() returned error %d", ret);
return CURLE_PEER_FAILED_VERIFICATION;
}
switch(trust_eval) {
case kSecTrustResultUnspecified:
case kSecTrustResultProceed:
return CURLE_OK;
case kSecTrustResultRecoverableTrustFailure:
case kSecTrustResultDeny:
default:
failf(data, "SSL: certificate verification failed (result: %d)",
trust_eval);
return CURLE_PEER_FAILED_VERIFICATION;
}
}
#ifdef SECTRANSP_PINNEDPUBKEY
static CURLcode pkp_pin_peer_pubkey(struct Curl_easy *data,
SSLContextRef ctx,
const char *pinnedpubkey)
{ /* Scratch */
size_t pubkeylen, realpubkeylen, spkiHeaderLength = 24;
unsigned char *pubkey = NULL, *realpubkey = NULL;
const unsigned char *spkiHeader = NULL;
CFDataRef publicKeyBits = NULL;
/* Result is returned to caller */
CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH;
/* if a path wasn't specified, don't pin */
if(!pinnedpubkey)
return CURLE_OK;
if(!ctx)
return result;
do {
SecTrustRef trust;
OSStatus ret = SSLCopyPeerTrust(ctx, &trust);
if(ret != noErr || !trust)
break;
SecKeyRef keyRef = SecTrustCopyPublicKey(trust);
CFRelease(trust);
if(!keyRef)
break;
#ifdef SECTRANSP_PINNEDPUBKEY_V1
publicKeyBits = SecKeyCopyExternalRepresentation(keyRef, NULL);
CFRelease(keyRef);
if(!publicKeyBits)
break;
#elif SECTRANSP_PINNEDPUBKEY_V2
OSStatus success = SecItemExport(keyRef, kSecFormatOpenSSL, 0, NULL,
&publicKeyBits);
CFRelease(keyRef);
if(success != errSecSuccess || !publicKeyBits)
break;
#endif /* SECTRANSP_PINNEDPUBKEY_V2 */
pubkeylen = CFDataGetLength(publicKeyBits);
pubkey = (unsigned char *)CFDataGetBytePtr(publicKeyBits);
switch(pubkeylen) {
case 526:
/* 4096 bit RSA pubkeylen == 526 */
spkiHeader = rsa4096SpkiHeader;
break;
case 270:
/* 2048 bit RSA pubkeylen == 270 */
spkiHeader = rsa2048SpkiHeader;
break;
#ifdef SECTRANSP_PINNEDPUBKEY_V1
case 65:
/* ecDSA secp256r1 pubkeylen == 65 */
spkiHeader = ecDsaSecp256r1SpkiHeader;
spkiHeaderLength = 26;
break;
case 97:
/* ecDSA secp384r1 pubkeylen == 97 */
spkiHeader = ecDsaSecp384r1SpkiHeader;
spkiHeaderLength = 23;
break;
default:
infof(data, "SSL: unhandled public key length: %d\n", pubkeylen);
#elif SECTRANSP_PINNEDPUBKEY_V2
default:
/* ecDSA secp256r1 pubkeylen == 91 header already included?
* ecDSA secp384r1 header already included too
* we assume rest of algorithms do same, so do nothing
*/
result = Curl_pin_peer_pubkey(data, pinnedpubkey, pubkey,
pubkeylen);
#endif /* SECTRANSP_PINNEDPUBKEY_V2 */
continue; /* break from loop */
}
realpubkeylen = pubkeylen + spkiHeaderLength;
realpubkey = malloc(realpubkeylen);
if(!realpubkey)
break;
memcpy(realpubkey, spkiHeader, spkiHeaderLength);
memcpy(realpubkey + spkiHeaderLength, pubkey, pubkeylen);
result = Curl_pin_peer_pubkey(data, pinnedpubkey, realpubkey,
realpubkeylen);
} while(0);
Curl_safefree(realpubkey);
if(publicKeyBits != NULL)
CFRelease(publicKeyBits);
return result;
}
#endif /* SECTRANSP_PINNEDPUBKEY */
static CURLcode
sectransp_connect_step2(struct Curl_easy *data, struct connectdata *conn,
int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
OSStatus err;
SSLCipherSuite cipher;
SSLProtocol protocol = 0;
const char * const hostname = SSL_HOST_NAME();
DEBUGASSERT(ssl_connect_2 == connssl->connecting_state
|| ssl_connect_2_reading == connssl->connecting_state
|| ssl_connect_2_writing == connssl->connecting_state);
/* Here goes nothing: */
err = SSLHandshake(backend->ssl_ctx);
if(err != noErr) {
switch(err) {
case errSSLWouldBlock: /* they're not done with us yet */
connssl->connecting_state = backend->ssl_direction ?
ssl_connect_2_writing : ssl_connect_2_reading;
return CURLE_OK;
/* The below is errSSLServerAuthCompleted; it's not defined in
Leopard's headers */
case -9841:
if(SSL_CONN_CONFIG(CAfile) && SSL_CONN_CONFIG(verifypeer)) {
CURLcode result = verify_cert(SSL_CONN_CONFIG(CAfile), data,
backend->ssl_ctx);
if(result)
return result;
}
/* the documentation says we need to call SSLHandshake() again */
return sectransp_connect_step2(data, conn, sockindex);
/* Problem with encrypt / decrypt */
case errSSLPeerDecodeError:
failf(data, "Decode failed");
break;
case errSSLDecryptionFail:
case errSSLPeerDecryptionFail:
failf(data, "Decryption failed");
break;
case errSSLPeerDecryptError:
failf(data, "A decryption error occurred");
break;
case errSSLBadCipherSuite:
failf(data, "A bad SSL cipher suite was encountered");
break;
case errSSLCrypto:
failf(data, "An underlying cryptographic error was encountered");
break;
#if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9
case errSSLWeakPeerEphemeralDHKey:
failf(data, "Indicates a weak ephemeral Diffie-Hellman key");
break;
#endif
/* Problem with the message record validation */
case errSSLBadRecordMac:
case errSSLPeerBadRecordMac:
failf(data, "A record with a bad message authentication code (MAC) "
"was encountered");
break;
case errSSLRecordOverflow:
case errSSLPeerRecordOverflow:
failf(data, "A record overflow occurred");
break;
/* Problem with zlib decompression */
case errSSLPeerDecompressFail:
failf(data, "Decompression failed");
break;
/* Problem with access */
case errSSLPeerAccessDenied:
failf(data, "Access was denied");
break;
case errSSLPeerInsufficientSecurity:
failf(data, "There is insufficient security for this operation");
break;
/* These are all certificate problems with the server: */
case errSSLXCertChainInvalid:
failf(data, "SSL certificate problem: Invalid certificate chain");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLUnknownRootCert:
failf(data, "SSL certificate problem: Untrusted root certificate");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLNoRootCert:
failf(data, "SSL certificate problem: No root certificate");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLCertNotYetValid:
failf(data, "SSL certificate problem: The certificate chain had a "
"certificate that is not yet valid");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLCertExpired:
case errSSLPeerCertExpired:
failf(data, "SSL certificate problem: Certificate chain had an "
"expired certificate");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLBadCert:
case errSSLPeerBadCert:
failf(data, "SSL certificate problem: Couldn't understand the server "
"certificate format");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLPeerUnsupportedCert:
failf(data, "SSL certificate problem: An unsupported certificate "
"format was encountered");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLPeerCertRevoked:
failf(data, "SSL certificate problem: The certificate was revoked");
return CURLE_PEER_FAILED_VERIFICATION;
case errSSLPeerCertUnknown:
failf(data, "SSL certificate problem: The certificate is unknown");
return CURLE_PEER_FAILED_VERIFICATION;
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
/* These are all certificate problems with the client: */
case errSecAuthFailed:
failf(data, "SSL authentication failed");
break;
case errSSLPeerHandshakeFail:
failf(data, "SSL peer handshake failed, the server most likely "
"requires a client certificate to connect");
break;
case errSSLPeerUnknownCA:
failf(data, "SSL server rejected the client certificate due to "
"the certificate being signed by an unknown certificate "
"authority");
break;
/* This error is raised if the server's cert didn't match the server's
host name: */
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
case errSSLHostNameMismatch:
failf(data, "SSL certificate peer verification failed, the "
"certificate did not match \"%s\"\n", conn->host.dispname);
return CURLE_PEER_FAILED_VERIFICATION;
/* Problem with SSL / TLS negotiation */
case errSSLNegotiation:
failf(data, "Could not negotiate an SSL cipher suite with the server");
break;
case errSSLBadConfiguration:
failf(data, "A configuration error occurred");
break;
case errSSLProtocol:
failf(data, "SSL protocol error");
break;
case errSSLPeerProtocolVersion:
failf(data, "A bad protocol version was encountered");
break;
case errSSLPeerNoRenegotiation:
failf(data, "No renegotiation is allowed");
break;
/* Generic handshake errors: */
case errSSLConnectionRefused:
failf(data, "Server dropped the connection during the SSL handshake");
break;
case errSSLClosedAbort:
failf(data, "Server aborted the SSL handshake");
break;
case errSSLClosedGraceful:
failf(data, "The connection closed gracefully");
break;
case errSSLClosedNoNotify:
failf(data, "The server closed the session with no notification");
break;
/* Sometimes paramErr happens with buggy ciphers: */
case paramErr:
case errSSLInternal:
case errSSLPeerInternalError:
failf(data, "Internal SSL engine error encountered during the "
"SSL handshake");
break;
case errSSLFatalAlert:
failf(data, "Fatal SSL engine error encountered during the SSL "
"handshake");
break;
/* Unclassified error */
case errSSLBufferOverflow:
failf(data, "An insufficient buffer was provided");
break;
case errSSLIllegalParam:
failf(data, "An illegal parameter was encountered");
break;
case errSSLModuleAttach:
failf(data, "Module attach failure");
break;
case errSSLSessionNotFound:
failf(data, "An attempt to restore an unknown session failed");
break;
case errSSLPeerExportRestriction:
failf(data, "An export restriction occurred");
break;
case errSSLPeerUserCancelled:
failf(data, "The user canceled the operation");
break;
case errSSLPeerUnexpectedMsg:
failf(data, "Peer rejected unexpected message");
break;
#if CURL_BUILD_MAC_10_11 || CURL_BUILD_IOS_9
/* Treaing non-fatal error as fatal like before */
case errSSLClientHelloReceived:
failf(data, "A non-fatal result for providing a server name "
"indication");
break;
#endif
/* Error codes defined in the enum but should never be returned.
We list them here just in case. */
#if CURL_BUILD_MAC_10_6
/* Only returned when kSSLSessionOptionBreakOnCertRequested is set */
case errSSLClientCertRequested:
failf(data, "The server has requested a client certificate");
break;
#endif
#if CURL_BUILD_MAC_10_9
/* Alias for errSSLLast, end of error range */
case errSSLUnexpectedRecord:
failf(data, "Unexpected (skipped) record in DTLS");
break;
#endif
default:
/* May also return codes listed in Security Framework Result Codes */
failf(data, "Unknown SSL protocol error in connection to %s:%d",
hostname, err);
break;
}
return CURLE_SSL_CONNECT_ERROR;
}
else {
/* we have been connected fine, we're not waiting for anything else. */
connssl->connecting_state = ssl_connect_3;
#ifdef SECTRANSP_PINNEDPUBKEY
if(data->set.str[STRING_SSL_PINNEDPUBLICKEY]) {
CURLcode result =
pkp_pin_peer_pubkey(data, backend->ssl_ctx,
data->set.str[STRING_SSL_PINNEDPUBLICKEY]);
if(result) {
failf(data, "SSL: public key does not match pinned public key!");
return result;
}
}
#endif /* SECTRANSP_PINNEDPUBKEY */
/* Informational message */
(void)SSLGetNegotiatedCipher(backend->ssl_ctx, &cipher);
(void)SSLGetNegotiatedProtocolVersion(backend->ssl_ctx, &protocol);
switch(protocol) {
case kSSLProtocol2:
infof(data, "SSL 2.0 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
case kSSLProtocol3:
infof(data, "SSL 3.0 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
case kTLSProtocol1:
infof(data, "TLS 1.0 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
case kTLSProtocol11:
infof(data, "TLS 1.1 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
case kTLSProtocol12:
infof(data, "TLS 1.2 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
#if CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11
case kTLSProtocol13:
infof(data, "TLS 1.3 connection using %s\n",
TLSCipherNameForNumber(cipher));
break;
#endif /* CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11 */
default:
infof(data, "Unknown protocol connection\n");
break;
}
#if(CURL_BUILD_MAC_10_13 || CURL_BUILD_IOS_11) && HAVE_BUILTIN_AVAILABLE == 1
if(conn->bits.tls_enable_alpn) {
if(__builtin_available(macOS 10.13.4, iOS 11, tvOS 11, *)) {
CFArrayRef alpnArr = NULL;
CFStringRef chosenProtocol = NULL;
err = SSLCopyALPNProtocols(backend->ssl_ctx, &alpnArr);
if(err == noErr && alpnArr && CFArrayGetCount(alpnArr) >= 1)
chosenProtocol = CFArrayGetValueAtIndex(alpnArr, 0);
#ifdef USE_HTTP2
if(chosenProtocol &&
!CFStringCompare(chosenProtocol, CFSTR(ALPN_H2), 0)) {
conn->negnpn = CURL_HTTP_VERSION_2;
}
else
#endif
if(chosenProtocol &&
!CFStringCompare(chosenProtocol, CFSTR(ALPN_HTTP_1_1), 0)) {
conn->negnpn = CURL_HTTP_VERSION_1_1;
}
else
infof(data, "ALPN, server did not agree to a protocol\n");
Curl_multiuse_state(data, conn->negnpn == CURL_HTTP_VERSION_2 ?
BUNDLE_MULTIPLEX : BUNDLE_NO_MULTIUSE);
/* chosenProtocol is a reference to the string within alpnArr
and doesn't need to be freed separately */
if(alpnArr)
CFRelease(alpnArr);
}
}
#endif
return CURLE_OK;
}
}
#ifndef CURL_DISABLE_VERBOSE_STRINGS
/* This should be called during step3 of the connection at the earliest */
static void
show_verbose_server_cert(struct Curl_easy *data,
struct connectdata *conn,
int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
CFArrayRef server_certs = NULL;
SecCertificateRef server_cert;
OSStatus err;
CFIndex i, count;
SecTrustRef trust = NULL;
if(!backend->ssl_ctx)
return;
#if CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS
#if CURL_BUILD_IOS
#pragma unused(server_certs)
err = SSLCopyPeerTrust(backend->ssl_ctx, &trust);
/* For some reason, SSLCopyPeerTrust() can return noErr and yet return
a null trust, so be on guard for that: */
if(err == noErr && trust) {
count = SecTrustGetCertificateCount(trust);
for(i = 0L ; i < count ; i++) {
CURLcode result;
char *certp;
server_cert = SecTrustGetCertificateAtIndex(trust, i);
result = CopyCertSubject(data, server_cert, &certp);
if(!result) {
infof(data, "Server certificate: %s\n", certp);
free(certp);
}
}
CFRelease(trust);
}
#else
/* SSLCopyPeerCertificates() is deprecated as of Mountain Lion.
The function SecTrustGetCertificateAtIndex() is officially present
in Lion, but it is unfortunately also present in Snow Leopard as
private API and doesn't work as expected. So we have to look for
a different symbol to make sure this code is only executed under
Lion or later. */
if(SecTrustEvaluateAsync != NULL) {
#pragma unused(server_certs)
err = SSLCopyPeerTrust(backend->ssl_ctx, &trust);
/* For some reason, SSLCopyPeerTrust() can return noErr and yet return
a null trust, so be on guard for that: */
if(err == noErr && trust) {
count = SecTrustGetCertificateCount(trust);
for(i = 0L ; i < count ; i++) {
char *certp;
CURLcode result;
server_cert = SecTrustGetCertificateAtIndex(trust, i);
result = CopyCertSubject(data, server_cert, &certp);
if(!result) {
infof(data, "Server certificate: %s\n", certp);
free(certp);
}
}
CFRelease(trust);
}
}
else {
#if CURL_SUPPORT_MAC_10_8
err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs);
/* Just in case SSLCopyPeerCertificates() returns null too... */
if(err == noErr && server_certs) {
count = CFArrayGetCount(server_certs);
for(i = 0L ; i < count ; i++) {
char *certp;
CURLcode result;
server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs,
i);
result = CopyCertSubject(data, server_cert, &certp);
if(!result) {
infof(data, "Server certificate: %s\n", certp);
free(certp);
}
}
CFRelease(server_certs);
}
#endif /* CURL_SUPPORT_MAC_10_8 */
}
#endif /* CURL_BUILD_IOS */
#else
#pragma unused(trust)
err = SSLCopyPeerCertificates(backend->ssl_ctx, &server_certs);
if(err == noErr) {
count = CFArrayGetCount(server_certs);
for(i = 0L ; i < count ; i++) {
CURLcode result;
char *certp;
server_cert = (SecCertificateRef)CFArrayGetValueAtIndex(server_certs, i);
result = CopyCertSubject(data, server_cert, &certp);
if(!result) {
infof(data, "Server certificate: %s\n", certp);
free(certp);
}
}
CFRelease(server_certs);
}
#endif /* CURL_BUILD_MAC_10_7 || CURL_BUILD_IOS */
}
#endif /* !CURL_DISABLE_VERBOSE_STRINGS */
static CURLcode
sectransp_connect_step3(struct Curl_easy *data, struct connectdata *conn,
int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
/* There is no step 3!
* Well, okay, if verbose mode is on, let's print the details of the
* server certificates. */
#ifndef CURL_DISABLE_VERBOSE_STRINGS
if(data->set.verbose)
show_verbose_server_cert(data, conn, sockindex);
#endif
connssl->connecting_state = ssl_connect_done;
return CURLE_OK;
}
static Curl_recv sectransp_recv;
static Curl_send sectransp_send;
static CURLcode
sectransp_connect_common(struct Curl_easy *data,
struct connectdata *conn,
int sockindex,
bool nonblocking,
bool *done)
{
CURLcode result;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
curl_socket_t sockfd = conn->sock[sockindex];
int what;
/* check if the connection has already been established */
if(ssl_connection_complete == connssl->state) {
*done = TRUE;
return CURLE_OK;
}
if(ssl_connect_1 == connssl->connecting_state) {
/* Find out how much more time we're allowed */
const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
result = sectransp_connect_step1(data, conn, sockindex);
if(result)
return result;
}
while(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state) {
/* check allowed time left */
const timediff_t timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
/* if ssl is expecting something, check if it's available. */
if(connssl->connecting_state == ssl_connect_2_reading ||
connssl->connecting_state == ssl_connect_2_writing) {
curl_socket_t writefd = ssl_connect_2_writing ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
curl_socket_t readfd = ssl_connect_2_reading ==
connssl->connecting_state?sockfd:CURL_SOCKET_BAD;
what = Curl_socket_check(readfd, CURL_SOCKET_BAD, writefd,
nonblocking ? 0 : timeout_ms);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
return CURLE_SSL_CONNECT_ERROR;
}
else if(0 == what) {
if(nonblocking) {
*done = FALSE;
return CURLE_OK;
}
else {
/* timeout */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
}
/* socket is readable or writable */
}
/* Run transaction, and return to the caller if it failed or if this
* connection is done nonblocking and this loop would execute again. This
* permits the owner of a multi handle to abort a connection attempt
* before step2 has completed while ensuring that a client using select()
* or epoll() will always have a valid fdset to wait on.
*/
result = sectransp_connect_step2(data, conn, sockindex);
if(result || (nonblocking &&
(ssl_connect_2 == connssl->connecting_state ||
ssl_connect_2_reading == connssl->connecting_state ||
ssl_connect_2_writing == connssl->connecting_state)))
return result;
} /* repeat step2 until all transactions are done. */
if(ssl_connect_3 == connssl->connecting_state) {
result = sectransp_connect_step3(data, conn, sockindex);
if(result)
return result;
}
if(ssl_connect_done == connssl->connecting_state) {
connssl->state = ssl_connection_complete;
conn->recv[sockindex] = sectransp_recv;
conn->send[sockindex] = sectransp_send;
*done = TRUE;
}
else
*done = FALSE;
/* Reset our connect state machine */
connssl->connecting_state = ssl_connect_1;
return CURLE_OK;
}
static CURLcode sectransp_connect_nonblocking(struct Curl_easy *data,
struct connectdata *conn,
int sockindex, bool *done)
{
return sectransp_connect_common(data, conn, sockindex, TRUE, done);
}
static CURLcode sectransp_connect(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
CURLcode result;
bool done = FALSE;
result = sectransp_connect_common(data, conn, sockindex, FALSE, &done);
if(result)
return result;
DEBUGASSERT(done);
return CURLE_OK;
}
static void sectransp_close(struct Curl_easy *data, struct connectdata *conn,
int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
(void) data;
if(backend->ssl_ctx) {
(void)SSLClose(backend->ssl_ctx);
#if CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS
if(SSLCreateContext != NULL)
CFRelease(backend->ssl_ctx);
#if CURL_SUPPORT_MAC_10_8
else
(void)SSLDisposeContext(backend->ssl_ctx);
#endif /* CURL_SUPPORT_MAC_10_8 */
#else
(void)SSLDisposeContext(backend->ssl_ctx);
#endif /* CURL_BUILD_MAC_10_8 || CURL_BUILD_IOS */
backend->ssl_ctx = NULL;
}
backend->ssl_sockfd = 0;
}
static int sectransp_shutdown(struct Curl_easy *data,
struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
ssize_t nread;
int what;
int rc;
char buf[120];
if(!backend->ssl_ctx)
return 0;
#ifndef CURL_DISABLE_FTP
if(data->set.ftp_ccc != CURLFTPSSL_CCC_ACTIVE)
return 0;
#endif
sectransp_close(data, conn, sockindex);
rc = 0;
what = SOCKET_READABLE(conn->sock[sockindex], SSL_SHUTDOWN_TIMEOUT);
for(;;) {
if(what < 0) {
/* anything that gets here is fatally bad */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
rc = -1;
break;
}
if(!what) { /* timeout */
failf(data, "SSL shutdown timeout");
break;
}
/* Something to read, let's do it and hope that it is the close
notify alert from the server. No way to SSL_Read now, so use read(). */
nread = read(conn->sock[sockindex], buf, sizeof(buf));
if(nread < 0) {
failf(data, "read: %s", strerror(errno));
rc = -1;
}
if(nread <= 0)
break;
what = SOCKET_READABLE(conn->sock[sockindex], 0);
}
return rc;
}
static void sectransp_session_free(void *ptr)
{
/* ST, as of iOS 5 and Mountain Lion, has no public method of deleting a
cached session ID inside the Security framework. There is a private
function that does this, but I don't want to have to explain to you why I
got your application rejected from the App Store due to the use of a
private API, so the best we can do is free up our own char array that we
created way back in sectransp_connect_step1... */
Curl_safefree(ptr);
}
static size_t sectransp_version(char *buffer, size_t size)
{
return msnprintf(buffer, size, "SecureTransport");
}
/*
* This function uses SSLGetSessionState to determine connection status.
*
* Return codes:
* 1 means the connection is still in place
* 0 means the connection has been closed
* -1 means the connection status is unknown
*/
static int sectransp_check_cxn(struct connectdata *conn)
{
struct ssl_connect_data *connssl = &conn->ssl[FIRSTSOCKET];
struct ssl_backend_data *backend = connssl->backend;
OSStatus err;
SSLSessionState state;
if(backend->ssl_ctx) {
err = SSLGetSessionState(backend->ssl_ctx, &state);
if(err == noErr)
return state == kSSLConnected || state == kSSLHandshake;
return -1;
}
return 0;
}
static bool sectransp_data_pending(const struct connectdata *conn,
int connindex)
{
const struct ssl_connect_data *connssl = &conn->ssl[connindex];
struct ssl_backend_data *backend = connssl->backend;
OSStatus err;
size_t buffer;
if(backend->ssl_ctx) { /* SSL is in use */
err = SSLGetBufferedReadSize(backend->ssl_ctx, &buffer);
if(err == noErr)
return buffer > 0UL;
return false;
}
else
return false;
}
static CURLcode sectransp_random(struct Curl_easy *data UNUSED_PARAM,
unsigned char *entropy, size_t length)
{
/* arc4random_buf() isn't available on cats older than Lion, so let's
do this manually for the benefit of the older cats. */
size_t i;
u_int32_t random_number = 0;
2017-09-06 15:11:55 -04:00
(void)data;
for(i = 0 ; i < length ; i++) {
if(i % sizeof(u_int32_t) == 0)
random_number = arc4random();
entropy[i] = random_number & 0xFF;
random_number >>= 8;
}
i = random_number = 0;
return CURLE_OK;
}
static CURLcode sectransp_sha256sum(const unsigned char *tmp, /* input */
size_t tmplen,
unsigned char *sha256sum, /* output */
size_t sha256len)
{
assert(sha256len >= CURL_SHA256_DIGEST_LENGTH);
(void)CC_SHA256(tmp, (CC_LONG)tmplen, sha256sum);
return CURLE_OK;
}
static bool sectransp_false_start(void)
{
#if CURL_BUILD_MAC_10_9 || CURL_BUILD_IOS_7
if(SSLSetSessionOption != NULL)
return TRUE;
#endif
return FALSE;
}
static ssize_t sectransp_send(struct Curl_easy *data,
int sockindex,
const void *mem,
size_t len,
CURLcode *curlcode)
{
struct connectdata *conn = data->conn;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct ssl_backend_data *backend = connssl->backend;
size_t processed = 0UL;
OSStatus err;
/* The SSLWrite() function works a little differently than expected. The
fourth argument (processed) is currently documented in Apple's
documentation as: "On return, the length, in bytes, of the data actually
written."
Now, one could interpret that as "written to the socket," but actually,
it returns the amount of data that was written to a buffer internal to
the SSLContextRef instead. So it's possible for SSLWrite() to return
errSSLWouldBlock and a number of bytes "written" because those bytes were
encrypted and written to a buffer, not to the socket.
So if this happens, then we need to keep calling SSLWrite() over and
over again with no new data until it quits returning errSSLWouldBlock. */
/* Do we have buffered data to write from the last time we were called? */
if(backend->ssl_write_buffered_length) {
/* Write the buffered data: */
err = SSLWrite(backend->ssl_ctx, NULL, 0UL, &processed);
switch(err) {
case noErr:
/* processed is always going to be 0 because we didn't write to
the buffer, so return how much was written to the socket */
processed = backend->ssl_write_buffered_length;
backend->ssl_write_buffered_length = 0UL;
break;
case errSSLWouldBlock: /* argh, try again */
*curlcode = CURLE_AGAIN;
return -1L;
default:
failf(data, "SSLWrite() returned error %d", err);
*curlcode = CURLE_SEND_ERROR;
return -1L;
}
}
else {
/* We've got new data to write: */
err = SSLWrite(backend->ssl_ctx, mem, len, &processed);
if(err != noErr) {
switch(err) {
case errSSLWouldBlock:
/* Data was buffered but not sent, we have to tell the caller
to try sending again, and remember how much was buffered */
backend->ssl_write_buffered_length = len;
*curlcode = CURLE_AGAIN;
return -1L;
default:
failf(data, "SSLWrite() returned error %d", err);
*curlcode = CURLE_SEND_ERROR;
return -1L;
}
}
}
return (ssize_t)processed;
}
static ssize_t sectransp_recv(struct Curl_easy *data,
int num,
char *buf,
size_t buffersize,
CURLcode *curlcode)
{
struct connectdata *conn = data->conn;
struct ssl_connect_data *connssl = &conn->ssl[num];
struct ssl_backend_data *backend = connssl->backend;
size_t processed = 0UL;
OSStatus err;
again:
err = SSLRead(backend->ssl_ctx, buf, buffersize, &processed);
if(err != noErr) {
switch(err) {
case errSSLWouldBlock: /* return how much we read (if anything) */
if(processed)
return (ssize_t)processed;
*curlcode = CURLE_AGAIN;
return -1L;
break;
/* errSSLClosedGraceful - server gracefully shut down the SSL session
errSSLClosedNoNotify - server hung up on us instead of sending a
closure alert notice, read() is returning 0
Either way, inform the caller that the server disconnected. */
case errSSLClosedGraceful:
case errSSLClosedNoNotify:
*curlcode = CURLE_OK;
return -1L;
break;
/* The below is errSSLPeerAuthCompleted; it's not defined in
Leopard's headers */
case -9841:
if(SSL_CONN_CONFIG(CAfile) && SSL_CONN_CONFIG(verifypeer)) {
CURLcode result = verify_cert(SSL_CONN_CONFIG(CAfile), data,
backend->ssl_ctx);
if(result)
return result;
}
goto again;
default:
failf(data, "SSLRead() return error %d", err);
*curlcode = CURLE_RECV_ERROR;
return -1L;
break;
}
}
return (ssize_t)processed;
}
static void *sectransp_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
struct ssl_backend_data *backend = connssl->backend;
(void)info;
return backend->ssl_ctx;
}
const struct Curl_ssl Curl_ssl_sectransp = {
{ CURLSSLBACKEND_SECURETRANSPORT, "secure-transport" }, /* info */
#ifdef SECTRANSP_PINNEDPUBKEY
SSLSUPP_PINNEDPUBKEY,
#else
0,
#endif /* SECTRANSP_PINNEDPUBKEY */
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
sizeof(struct ssl_backend_data),
Curl_none_init, /* init */
Curl_none_cleanup, /* cleanup */
sectransp_version, /* version */
sectransp_check_cxn, /* check_cxn */
sectransp_shutdown, /* shutdown */
sectransp_data_pending, /* data_pending */
sectransp_random, /* random */
Curl_none_cert_status_request, /* cert_status_request */
sectransp_connect, /* connect */
sectransp_connect_nonblocking, /* connect_nonblocking */
Curl_ssl_getsock, /* getsock */
sectransp_get_internals, /* get_internals */
sectransp_close, /* close_one */
Curl_none_close_all, /* close_all */
sectransp_session_free, /* session_free */
Curl_none_set_engine, /* set_engine */
Curl_none_set_engine_default, /* set_engine_default */
Curl_none_engines_list, /* engines_list */
sectransp_false_start, /* false_start */
sectransp_sha256sum /* sha256sum */
};
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#endif /* USE_SECTRANSP */