1
0
mirror of https://github.com/parasyte/alt64 synced 2024-12-12 18:52:20 -05:00

Initial Commit: v0.186

This commit is contained in:
Jay Oster 2014-06-28 22:10:11 -07:00
commit bb1e653309
44 changed files with 20582 additions and 0 deletions

15
.gitignore vendored Normal file
View File

@ -0,0 +1,15 @@
## Build files
*.v64
*.elf
*.o
*.bin
*.dfs
## OSX junk
.DS_Store
.Trashes
._*
## Temporary files
*.tmp
*~

32
ALT64.INI Normal file
View File

@ -0,0 +1,32 @@
; alt64 config file
[ed64] ; Menu config
build=18 ; Release build nr
border_color_1=FFFFFFFF ; 0x00000080 RGBT
border_color_2=3F3F3FFF ; 0x3F3F3FFF RGBT 00000060 w light
box_color=000000B6 ; 0x00000080 RGBT
selection_color=80008070 ; 80008070 RGBT 6495ED60
list_font_color=CDC9C940 ; 80008070 RGBT 6495ED60
list_dir_font_color=FFFFE040 ; 80008070 RGBT 6495ED60
selection_font_color=FFB90FFF ; 80008070 RGBT 6495ED60
text_offset=0 ; shift menu horizontal e.g. -1
cd_behaviour=1 ; 0=first entry 1=last entry
scroll_behaviour=0 ; 0=page-system 1=classic
quick_boot=1 ; 'START' boots last rom
sound_on=1 ; sounds 1=on 0=off
page_display=1 ; display page
tv_mode=1 ; 1=ntsc 2=pal 3=mpal 0=force_off
enable_colored_list=1 ; 1=enable 0=disalbe
ext_type=0 ; 0=classic 1=OS64
sd_speed=2 ; 1=25MHz 2=50MHz
background_image=background.png ; backgrund png image 320x240 32bit
hide_sysfolder=0 ; 1=hide 0=don't hide
mempak_path=/MEMPAKS/ ; surround with slashes
save_path=SDSAVE ; save directory inside ED64
[user]
name = saturnu ; Username
[gblite]
save_path=/ED64/SDSAVE/ ; save directory surround with slashes
tv_mode=0 ; 1=ntsc 2=pal 3=mpal 0=force_off

38
Makefile Normal file
View File

@ -0,0 +1,38 @@
ROOTDIR = $(N64_INST)
GCCN64PREFIX = $(ROOTDIR)/bin/mips64-elf-
CHKSUM64PATH = $(ROOTDIR)/bin/chksum64
MKDFSPATH = $(ROOTDIR)/bin/mkdfs
HEADERPATH = $(ROOTDIR)/lib
N64TOOL = $(ROOTDIR)/bin/n64tool
HEADERNAME = header
LINK_FLAGS = -G4 -L$(ROOTDIR)/toolchain_font/lib -L$(ROOTDIR)/mips64-elf/lib -ldragon -L$(ROOTDIR)/toolchain_font/lib -lmikmod -lmad -lc -lm -ldragonsys -lnosys $(LIBS) -Tn64ld.x
PROG_NAME = menu
CFLAGS = -std=gnu99 -march=vr4300 -mtune=vr4300 -G4 -I$(ROOTDIR)/toolchain_font/include -I$(ROOTDIR)/mips64-elf/include -lpthread -lrt -D_REENTRANT -DUSE_TRUETYPE
ASFLAGS = -mtune=vr4300 -march=vr4300
CC = $(GCCN64PREFIX)gcc
AS = $(GCCN64PREFIX)as
LD = $(GCCN64PREFIX)ld
OBJCOPY = $(GCCN64PREFIX)objcopy
OBJS = $(PROG_NAME).o everdrive.o fat.o disk.o mem.o sys.o ini.o strlib.o utils.o sram.o stb_image.o chksum64.o mp3.o
$(PROG_NAME).v64: $(PROG_NAME).elf test.dfs
$(OBJCOPY) $(PROG_NAME).elf $(PROG_NAME).bin -O binary
rm -f $(PROG_NAME).v64
$(N64TOOL) -l 4M -t "EverDrive OS" -h ./header.ed64 -o OS64.v64 $(PROG_NAME).bin -s 1M test.dfs
$(CHKSUM64PATH) OS64.v64
$(PROG_NAME).elf : $(OBJS)
$(LD) -o $(PROG_NAME).elf $(OBJS) $(LINK_FLAGS)
copy: $(PROG_NAME).v64
sh upload.sh
test.dfs:
$(MKDFSPATH) test.dfs ./filesystem/
all: $(PROG_NAME).v64
clean:
rm -f *.v64 *.elf *.o *.bin *.dfs

56
README Normal file
View File

@ -0,0 +1,56 @@
alt64
=====
alternative everdrive64 menu
Kuroneko!
:\ /; _
; \___/ ; ; ;
,:-"' `"-:. / ;
_ /,---. ,---.\ _ _; /
_:>(( | ) ( | ))<:_ ,-""_,"
\````` `````/""""",-""
'-.._ v _..-' )
/ ___ ____,.. \
/ / | | | ( \. \
ctr / / | | | | \ \
`" `" `" `"
nyannyannyannyannyannyannyannyannyannyannyannyannyannyannyannyannyan
hello here is my menu for the everdrive64.
if you don't have one you should visit krikzzs homepage
for ordering information. ^^
if you want to build the menu, you need a n64 toolchain
you can get one free from
http://www.dragonminded.com/n64dev/libdragon/
https://github.com/DragonMinded/libdragon
i used the libmikmod linked on his site too for the menu
http://www.dragonminded.com/n64dev/libmikmod-3.2.0-beta2.tgz
if you are on linux, try out the build script
https://github.com/DragonMinded/libdragon/tree/master/tools/build
here are a few setting hints
export INSTALL_PATH=/usr/mips64-elf
set this to your home directory if you don't have root access
i was in need to alter the cxxflags to G0 to lowercase
CXXFLAGS="-g0 -O2"
it's a good idea to the latest versions for the toolchain
export BINUTILS_V=2.23.52
export GCC_V=4.8.0
export NEWLIB_V=1.20.0
optional:
get libn64-hkz to get more into flashram savegames
http://sourceforge.net/projects/n64dev/

106
chksum64.c Normal file
View File

@ -0,0 +1,106 @@
/*
checksum rom in psram, based on
chksum64 V1.2, a program to calculate the ROM checksum of Nintendo64 ROMs.
Copyright (C) 1997 Andreas Sterbenz (stan@sbox.tu-graz.ac.at)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <libdragon.h>
#define BUFSIZE 0x8000
#define SDRAM_START 0xb0000000
#define CHECKSUM_START 0x1000
#define CHECKSUM_LENGTH 0x100000L
#define CHECKSUM_HEADERPOS 0x10
#define CHECKSUM_END (CHECKSUM_START + CHECKSUM_LENGTH)
#define CHECKSUM_STARTVALUE 0xf8ca4ddc
#define ROL(i, b) (((i)<<(b)) | ((i)>>(32-(b))))
#define BYTES2LONG(b) ( (((b)[0] & 0xffL) << 24) | \
(((b)[1] & 0xffL) << 16) | \
(((b)[2] & 0xffL) << 8) | \
(((b)[3] & 0xffL)) )
#define LONG2BYTES(l, b) (b)[0] = ((l)>>24)&0xff; \
(b)[1] = ((l)>>16)&0xff; \
(b)[2] = ((l)>> 8)&0xff; \
(b)[3] = ((l) )&0xff;
static unsigned char __attribute__((aligned(16))) buffer1[BUFSIZE];
void checksum_sdram(void)
{
unsigned int sum1, sum2, offs;
{
unsigned int i;
unsigned int c1, k1, k2;
unsigned int t1, t2, t3, t4;
unsigned int t5, t6;
unsigned int n;
unsigned int clen = CHECKSUM_LENGTH;
t1 = CHECKSUM_STARTVALUE;
t2 = CHECKSUM_STARTVALUE;
t3 = CHECKSUM_STARTVALUE;
t4 = CHECKSUM_STARTVALUE;
t5 = CHECKSUM_STARTVALUE;
t6 = CHECKSUM_STARTVALUE;
offs = CHECKSUM_START;
for( ;; ) {
n = (BUFSIZE < clen) ? BUFSIZE : clen;
dma_read_s(buffer1, SDRAM_START+offs, n);
data_cache_hit_writeback_invalidate(buffer1,n);
offs += n;
for( i=0; i<n; i+=4 ) {
c1 = BYTES2LONG(&buffer1[i]);
k1 = t6 + c1;
if( k1 < t6 ) t4++;
t6 = k1;
t3 ^= c1;
k2 = c1 & 0x1f;
k1 = ROL(c1, k2);
t5 += k1;
if( c1 < t2 ) {
t2 ^= k1;
} else {
t2 ^= t6 ^ c1;
}
t1 += c1 ^ t5;
}
clen -= n;
if (!clen) break;
}
sum1 = t6 ^ t4 ^ t3;
sum2 = t5 ^ t2 ^ t1;
}
LONG2BYTES(sum1, &buffer1[0]);
LONG2BYTES(sum2, &buffer1[4]);
dma_write_s(buffer1, SDRAM_START+CHECKSUM_HEADERPOS, 8);
return;
}

711
disk.c Normal file
View File

@ -0,0 +1,711 @@
#include <console.h>
#include "disk.h"
#include "mem.h"
#include "everdrive.h"
#include "errors.h"
#include "sys.h"
#include "usb.h"
#define CMD0 0x40 // software reset
#define CMD1 0x41 // brings card out of idle state
#define CMD8 0x48 // Reserved
#define CMD12 0x4C // stop transmission on multiple block read
#define CMD17 0x51 // read single block
#define CMD18 0x52 // read multiple block
#define CMD58 0x7A // reads the OCR register
#define CMD55 0x77
#define CMD41 0x69
#define CMD24 0x58 // writes a single block
#define CMD25 0x59 // writes a multi block
#define ACMD41 0x69
#define ACMD6 0x46
#define SD_V2 2
#define SD_HC 1
#define CMD2 0x42 //read cid
#define CMD3 0x43 //read rca
#define CMD7 0x47
#define CMD9 0x49
#define CMD6 0x46
#define R1 1
#define R2 2
#define R3 3
#define R6 6
#define R7 7
u8 card_type;
u8 sd_resp_buff[18];
u32 disk_interface;
unsigned int diskCrc7(unsigned char *buff, unsigned int len);
void diskCrc16SD(u8 *data, u16 *crc_out, u16 len);
u8 diskGetRespTypeSD(u8 cmd);
u8 diskCmdSD(u8 cmd, u32 arg);
u8 diskInitSD();
u8 diskReadSD(u32 saddr, void *buff, u16 slen);
u8 diskWriteSD(u32 saddr, u8 *buff, u16 slen);
u8 diskStopRwSD();
u8 diskCmdSPI(u8 cmd, u32 arg);
u8 diskInitSPI();
u8 diskReadSPI(u32 saddr, void *buff, u16 slen);
u8 diskWriteSPI(u32 saddr, u8 *buff, u16 slen);
const u16 sd_crc16_table[] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
void diskSetInterface(u32 interface) {
disk_interface = interface;
}
u8 diskGetInterface() {
return disk_interface;
}
u8 diskInit() {
if (disk_interface == DISK_IFACE_SD) {
return diskInitSD();
} else {
return diskInitSPI();
}
}
u8 diskRead(u32 saddr, void *buff, u16 slen) {
if (disk_interface == DISK_IFACE_SD) {
return diskReadSD(saddr, buff, slen);
} else {
return diskReadSPI(saddr, buff, slen);
}
}
u8 diskWrite(u32 saddr, u8 *buff, u16 slen) {
if (disk_interface == DISK_IFACE_SD) {
return diskWriteSD(saddr, buff, slen);
} else {
return diskWriteSPI(saddr, buff, slen);
}
}
void diskCrc16SD(u8 *data, u16 *crc_out, u16 len) {
///u16 len = 512;
u16 i, tmp1, u;
u8 dat[4];
u8 dat_tmp;
u16 crc_buff[4];
for (i = 0; i < 4; i++)crc_buff[i] = 0;
for (i = 0; i < 4; i++)crc_out[i] = 0;
//u16 dptr = 0;
while (len) {
len -= 4;
for (i = 0; i < 4; i++)dat[i] = 0;
for (u = 0; u < 4; u++) {
dat_tmp = data[3 - u];
//dat_tmp = 0xff;
for (i = 0; i < 4; i++) {
dat[i] >>= 1;
dat[i] |= (dat_tmp & 1) << 7;
dat_tmp >>= 1;
}
for (i = 0; i < 4; i++) {
dat[i] >>= 1;
dat[i] |= (dat_tmp & 1) << 7;
dat_tmp >>= 1;
}
}
data += 4;
for (u = 0; u < 4; u++) {
tmp1 = crc_buff[u];
crc_buff[u] = sd_crc16_table[(tmp1 >> 8) ^ dat[u]];
crc_buff[u] = crc_buff[u] ^ (tmp1 << 8);
}
}
for (i = 0; i < 4 * 16; i++) {
crc_out[3 - i / 16] >>= 1;
crc_out[3 - i / 16] |= (crc_buff[i % 4] & 1) << 15;
crc_buff[i % 4] >>= 1;
}
}
unsigned int diskCrc7(unsigned char *buff, unsigned int len) {
unsigned int a, crc = 0;
while (len--) {
crc ^= *buff++;
a = 8;
do {
crc <<= 1;
if (crc & (1 << 8)) crc ^= 0x12;
} while (--a);
}
return (crc & 0xfe);
}
u8 diskGetRespTypeSD(u8 cmd) {
switch (cmd) {
case CMD3:
return R6;
case CMD8:
return R7;
case CMD2:
case CMD9:
return R2;
case CMD58:
case CMD41:
return R3;
default: return R1;
}
}
u8 diskCmdSD(u8 cmd, u32 arg) {
u8 resp_type = diskGetRespTypeSD(cmd);
u8 p = 0;
u8 buff[6];
volatile u8 resp;
volatile u32 i = 0;
u8 resp_len = resp_type == R2 ? 17 : 6;
u8 crc;
buff[p++] = cmd;
buff[p++] = (arg >> 24);
buff[p++] = (arg >> 16);
buff[p++] = (arg >> 8);
buff[p++] = (arg >> 0);
crc = diskCrc7(buff, 5) | 1;
evd_SDcmdWriteMode(0);
mem_spi(0xff);
mem_spi(cmd);
mem_spi(arg >> 24);
mem_spi(arg >> 16);
mem_spi(arg >> 8);
mem_spi(arg);
mem_spi(crc);
evd_SDcmdReadMode(1);
i = 0;
resp = 0xff;
while ((resp & 192) != 0) {
resp = mem_spi(resp);
if (i++ == WAIT)return SD_CMD_TIMEOUT;
}
evd_SDcmdReadMode(0);
sd_resp_buff[0] = resp;
for (i = 1; i < resp_len; i++) {
sd_resp_buff[i] = mem_spi(0xff);
}
if (resp_type != R3) {
if (resp_type == R2) {
crc = diskCrc7(sd_resp_buff + 1, resp_len - 2) | 1;
} else {
crc = diskCrc7(sd_resp_buff, resp_len - 1) | 1;
}
if (crc != sd_resp_buff[resp_len - 1])return SD_CMD_CRC_ERROR;
}
return 0;
}
u8 diskInitSD() {
u16 i;
volatile u8 resp = 0;
u32 rca;
u32 wait_len = WAIT;
card_type = 0;
evd_enableSDMode();
memSpiSSOff();
memSpiSetSpeed(SPI_SPEED_INIT);
evd_SDcmdWriteMode(0);
for (i = 0; i < 40; i++)mem_spi(0xff);
resp = diskCmdSD(CMD0, 0x1aa);
for (i = 0; i < 40; i++)mem_spi(0xff);
resp = diskCmdSD(CMD8, 0x1aa);
if (resp != 0 && resp != SD_CMD_TIMEOUT) {
return SD_INIT_ERROR + 0;
}
if (resp == 0)card_type |= SD_V2;
if (card_type == SD_V2) {
for (i = 0; i < wait_len; i++) {
resp = diskCmdSD(CMD55, 0);
if (resp)return SD_INIT_ERROR + 1;
if ((sd_resp_buff[3] & 1) != 1)continue;
resp = diskCmdSD(CMD41, 0x40300000);
if ((sd_resp_buff[1] & 128) == 0)continue;
break;
}
} else {
i = 0;
do {
resp = diskCmdSD(CMD55, 0);
if (resp)return SD_INIT_ERROR + 2;
resp = diskCmdSD(CMD41, 0x40300000);
if (resp)return SD_INIT_ERROR + 3;
} while (sd_resp_buff[1] < 1 && i++ < wait_len);
}
if (i == wait_len)return SD_INIT_ERROR + 4;
if ((sd_resp_buff[1] & 64) && card_type != 0)card_type |= SD_HC;
resp = diskCmdSD(CMD2, 0);
if (resp)return SD_INIT_ERROR + 5;
resp = diskCmdSD(CMD3, 0);
if (resp)return SD_INIT_ERROR + 6;
resp = diskCmdSD(CMD7, 0);
//if (resp)return resp;
rca = (sd_resp_buff[1] << 24) | (sd_resp_buff[2] << 16) | (sd_resp_buff[3] << 8) | (sd_resp_buff[4] << 0);
resp = diskCmdSD(CMD9, rca); //get csd
if (resp)return SD_INIT_ERROR + 7;
resp = diskCmdSD(CMD7, rca);
if (resp)return SD_INIT_ERROR + 8;
resp = diskCmdSD(CMD55, rca);
if (resp)return SD_INIT_ERROR + 9;
resp = diskCmdSD(CMD6, 2);
if (resp)return SD_INIT_ERROR + 10;
memSpiSetSpeed(SPI_SPEED_25);
return 0;
}
u8 diskReadSD(u32 saddr, void *buff, u16 slen) {
u8 resp;
if (!(card_type & 1))saddr *= 512;
resp = diskCmdSD(CMD18, saddr);
if (resp)return DISK_ERR_RD1;
resp = memSpiRead(buff, slen);
if (resp)return resp;
//console_printf("drd: %0X\n", saddr);
resp = diskStopRwSD();
return resp;
}
u8 diskStopRwSD() {
u8 resp;
u16 i;
resp = diskCmdSD(CMD12, 0);
if (resp)return DISK_ERR_CLOSE_RW1;
evd_SDdatReadMode(0);
mem_spi(0xff);
i = 65535;
while (i--) {
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
}
if (i == 0)return DISK_ERR_CLOSE_RW2;
return 0;
}
u8 diskWriteSD(u32 saddr, u8 *buff, u16 slen) {
u8 resp;
u16 crc16[5];
u16 i;
u16 u;
u8 ram_buff[512];
u8 *buff_ptr;
if (!(card_type & 1))saddr *= 512;
resp = diskCmdSD(CMD25, saddr);
if (resp)return DISK_ERR_WR1;
evd_SDdatWriteMode(0);
while (slen--) {
if ((u32) buff >= ROM_ADDR && (u32) buff < ROM_END_ADDR) {
dma_read_s(ram_buff, (u32) buff, 512);
buff_ptr = ram_buff;
} else {
buff_ptr = buff;
}
diskCrc16SD(buff_ptr, crc16, 512);
evd_SDdatWriteMode(0);
mem_spi(0xff);
mem_spi(0xf0);
memSpiWrite(buff_ptr);
for (i = 0; i < 4; i++) {
mem_spi(crc16[i] >> 8);
mem_spi(crc16[i] & 0xff);
}
buff += 512;
evd_SDdatWriteMode(1);
mem_spi(0xff);
evd_SDdatReadMode(1);
i = 1024;
while ((mem_spi(0xff) & 1) != 0 && i-- != 0);
if (i == 0)return DISK_WR_SB_TOUT;
resp = 0;
for (i = 0; i < 3; i++) {
resp <<= 1;
u = mem_spi(0xff);
resp |= u & 1;
}
resp &= 7;
if (resp != 0x02) {
//console_printf("error blia: %0X\n", resp);
// joyWait();
if (resp == 5)return DISK_ERR_WR_CRC;
return DISK_ERR_WRX;
}
evd_SDdatReadMode(0);
mem_spi(0xff);
i = 65535;
while (i--) {
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
}
if (i == 0)return DISK_ERR_WR2;
}
resp = diskStopRwSD();
if (resp)return resp;
return 0;
}
u8 diskCmdSPI(u8 cmd, u32 arg) {
u8 crc;
u8 p = 0;
u8 buff[6];
buff[p++] = cmd;
buff[p++] = (arg >> 24);
buff[p++] = (arg >> 16);
buff[p++] = (arg >> 8);
buff[p++] = (arg >> 0);
crc = diskCrc7(buff, 5) | 1;
volatile u32 i = 0;
volatile u8 resp;
memSpiBusy();
memSpiSSOff();
memSpiSSOn();
//mem_spi(0x1);
mem_spi(0xff);
mem_spi(cmd);
mem_spi(arg >> 24);
mem_spi(arg >> 16);
mem_spi(arg >> 8);
mem_spi(arg);
mem_spi(crc);
mem_spi(0xff);
resp = mem_spi(0xff);
// memSpiSSOn();
while (resp == 0xff) {
resp = mem_spi(0xff);
if (i++ == WAIT)break;
}
memSpiSSOff();
return resp;
}
u8 diskInitSPI() {
u16 i;
u32 u;
volatile u8 resp = 0;
u8 cmd;
u32 wait_len = WAIT;
card_type = 0;
evd_enableSPIMode();
//return evd_mmcInit();
memSpiSetSpeed(SPI_SPEED_INIT);
for (u = 0; u < 4; u++) {
for (i = 0; i < 40; i++)mem_spi(0xff);
resp = diskCmdSPI(CMD0, 0);
if (resp == 1)break;
}
if (resp != 1) return DISK_ERR_INIT + 0;
//mmcCmdCrc(0x7b, 0, 0x91);
resp = diskCmdSPI(CMD8, 0x1aa);
for (i = 0; i < 5; i++)mem_spi(0xff);
if (resp == 0xff)return DISK_ERR_INIT + 1;
if (resp != 5)card_type |= SD_V2;
if (card_type == 2) {
for (i = 0; i < wait_len; i++) {
resp = diskCmdSPI(CMD55, 0xffff);
if (resp == 0xff)return DISK_ERR_INIT + 2;
if (resp != 1)continue;
resp = diskCmdSPI(CMD41, 0x40300000);
if (resp == 0xff)return DISK_ERR_INIT + 3;
if (resp != 0)continue;
break;
}
if (i == wait_len)return DISK_ERR_INIT + 4;
resp = diskCmdSPI(CMD58, 0);
if (resp == 0xff)return DISK_ERR_INIT + 5;
memSpiSSOn();
resp = mem_spi(0xff);
for (i = 0; i < 3; i++)mem_spi(0xff);
if ((resp & 0x40))card_type |= 1;
} else {
i = 0;
resp = diskCmdSPI(CMD55, 0);
if (resp == 0xff)return DISK_ERR_INIT + 6;
resp = diskCmdSPI(CMD41, 0);
if (resp == 0xff)return DISK_ERR_INIT + 7;
cmd = resp;
for (i = 0; i < wait_len; i++) {
if (resp < 1) {
resp = diskCmdSPI(CMD55, 0);
if (resp == 0xff)return DISK_ERR_INIT + 8;
if (resp != 1)continue;
resp = diskCmdSPI(CMD41, 0);
if (resp == 0xff)return DISK_ERR_INIT + 9;
if (resp != 0)continue;
} else {
resp = diskCmdSPI(CMD1, 0);
if (resp != 0)continue;
}
break;
}
if (i == wait_len)return DISK_ERR_INIT + 10;
}
memSpiSetSpeed(SPI_SPEED_25);
return 0;
}
u8 diskReadSPI(u32 saddr, void *buff, u16 slen) {
u8 resp;
if (!(card_type & 1))saddr *= 512;
resp = diskCmdSPI(CMD18, saddr);
if (resp != 0)return DISK_ERR_RD1;
memSpiSSOn();
resp = memSpiRead(buff, slen);
memSpiSSOff();
diskCmdSPI(CMD12, 0);
return resp;
}
u8 diskWriteSPI(u32 saddr, u8 *buff, u16 slen) {
u8 resp;
u16 i;
if (!(card_type & 1))saddr *= 512;
resp = diskCmdSPI(CMD25, saddr);
if (resp != 0)return DISK_ERR_WR1;
memSpiSSOn();
while (slen--) {
mem_spi(0xff);
mem_spi(0xff);
mem_spi(0xfc);
memSpiWrite(buff);
mem_spi(0xff);
mem_spi(0xff);
resp = mem_spi(0xff);
//resp = mem_spi(0xff);
buff += 512;
if ((resp & 0x1f) != 0x05) {
memSpiSSOff();
return DISK_ERR_WRX;
}
for (i = 0; i < 65535; i++) {
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
if (mem_spi(0xff) == 0xff)break;
}
if (i == 65535) {
memSpiSSOff();
return DISK_ERR_WR2;
}
}
mem_spi(0xfd);
mem_spi(0xff);
for (i = 0; i < 65535; i++) {
if ((mem_spi(0xff) & 1) != 0)break;
if ((mem_spi(0xff) & 1) != 0)break;
if ((mem_spi(0xff) & 1) != 0)break;
if ((mem_spi(0xff) & 1) != 0)break;
}
memSpiSSOff();
if (i == 65535) return DISK_ERR_WR3;
return 0;
}

29
disk.h Normal file
View File

@ -0,0 +1,29 @@
/*
* File: disk.h
* Author: krik
*
* Created on 2 Èþíü 2011 ã., 4:07
*/
#ifndef _DISK_H
#define _DISK_H
#include "types.h"
u8 diskGetInterface();
u8 diskInit();
u8 diskRead(u32 saddr, void *buff, u16 slen);
u8 diskWrite(u32 saddr, u8 *buff, u16 slen);
void diskSetInterface(u32 interface);
#define WAIT 1024
#define DISK_IFACE_SPI 0
#define DISK_IFACE_SD 1
#endif /* _DISK_H */

104
doc/functions.txt Normal file
View File

@ -0,0 +1,104 @@
beta9
rom loading function flow:
main()
//init n64, fs, controller
//joypad loop
//button (A) -> select rom
loadrom(disp,name_file);
//readout rom header
//check if swapped
evd_mmcSetDmaSwap(1);
//dma read file to 0xb0000000 cartspace
diskRead();
//change key mapping
//if (START)
bootRom();
//save LAST.CRT for reboot cart-save
//set fpga to eeprom, sram, flashram
evd_setSaveType(boot_save);
//do pif simulation to boot the rom
simulate_boot(boot_cic, bios_cic);
cart-save overview:
before pif simulation the cart_id and cart_savetype is stored in
LAST.CRT [maybe it's a better solution to use rom filenames
'cause the cart_id includes no game-version]
-> bootRom();
at every start of the menu a function is called that checks
LAST.CRT, if there is something todo and disable it for next boot
by setting a flag in that file
-> backupSaveData(disp);
if it's a warm boot (reset) the fpga savegame is still there
-> save_cfg_stat = evd_readReg(REG_SAV_CFG);
if it's a reset reboot to backup a savegame into a file
saveTypeToSd(disp, cartID, save_t)
is called
it's only for some file operations and calls
utils.c: getSaveFromCart(stype, cartsave_data)
to store the savegame into a buffer, which could
be saved into a file
some notes:
eeprom is connected directly to the pif (i2c?)
and could be read out stable with the libdragon function
sram/flashram is a serial device that is mapped into
memory
it has to be accessed with dma to rdram through the pif
it's a domain2 device which needs other timing than the cart
timings:
PI_BSD_DOM2_XXX_REG
sram/fram:
val XXX desc
05 LAT Latency
OC PWD Pulse Width
//sram - 0D
//fram Animal Forest - 0F
OD PGS Page Size
02 RLS Release Duration
carts/dev-carts:
40 Latency
12 Pulse Width
07 Page Size
03 Release Duration
IPL at 0xA6000000:
40 Latency
07 Pulse Width
07 Page Size
02 Release Duration
cartidge:
PI_BSD_DOM1_XXX_REG
is set with the first word in the header
e.g. 0x[80]371240 -> 3.7.12.40 ~ 40,12,07,03

70
errors.h Normal file
View File

@ -0,0 +1,70 @@
/*
* File: errors.h
* Author: KRIK
*
* Created on 14 Ìàé 2011 ã., 7:17
*/
#ifndef _ERRORS_H
#define _ERRORS_H
#define EVD_ERROR_FIFO_TIMEOUT 90;
#define EVD_ERROR_MMC_TIMEOUT 91;
#define BOOT_UPD_ERR_WRONG_SIZE 95
#define BOOT_UPD_ERR_HDR 96
#define BOOT_UPD_ERR_CMP 97
#define BOOT_UPD_ERR_CIC_DTCT 98
#define FAT_ERR_NOT_EXIST 100
#define FAT_ERR_EXIST 101
#define FAT_ERR_NAME 102
#define FAT_ERR_OUT_OF_FILE 103
#define FAT_ERR_BAD_BASE_CLUSTER 104;
#define FAT_ERR_NO_FRE_SPACE 105
#define FAT_ERR_NOT_FILE 106
#define FAT_ERR_FILE_MODE 107
#define FAT_ERR_ROT_OVERFLOW 108
#define FAT_ERR_OUT_OF_TABLE 109
#define FAT_ERR_INIT 110
#define FAT_LFN_BUFF_OVERFLOW 111
#define FAT_DISK_NOT_READY 112
#define FAT_ERR_SIZE 113
#define FAT_ERR_RESIZE 114
#define ERR_FILE8_TOO_BIG 140
#define ERR_FILE16_TOO_BIG 141
#define ERR_WRON_OS_SIZE 142
#define ERR_OS_VERIFY 143
#define ERR_OS_VERIFY2 144
#define ERR_EMU_NOT_FOUND 145
#define ERR_SAVE_FORMAT 146
#define ERR_EEPROM 147
#define ERR_NO_FAV_SPACE 150
#define DISK_ERR_INIT 50
#define DISK_ERR_RD1 62
#define DISK_ERR_RD2 63
#define DISK_ERR_WR1 64
#define DISK_ERR_WR2 65
#define DISK_ERR_WR3 66
#define DISK_ERR_WRX 67
#define DISK_WR_SB_TOUT 68
#define DISK_ERR_WR_CRC 69
#define DISK_RD_FE_TOUT 70
#define DISK_ERR_CLOSE_RW1 71
#define DISK_ERR_CLOSE_RW2 72
#define SD_CMD_TIMEOUT 75
#define SD_CMD_CRC_ERROR 76
#define SD_INIT_ERROR 80
#endif /* _ERRORS_H */

596
everdrive.c Normal file
View File

@ -0,0 +1,596 @@
#include "types.h"
#include "everdrive.h"
#include <libdragon.h>
#include <stdio.h>
#include "sys.h"
#include "errors.h"
//#include "rom.h"
#include "disk.h"
#define CMD0 0x40 // software reset
#define CMD1 0x41 // brings card out of idle state
#define CMD2 0x42 // not used in SPI mode
#define CMD3 0x43 // not used in SPI mode
#define CMD4 0x44 // not used in SPI mode
#define CMD5 0x45 // Reserved
#define CMD6 0x46 // Reserved
#define CMD7 0x47 // not used in SPI mode
#define CMD8 0x48 // Reserved
#define CMD9 0x49 // ask card to send card speficic data (CSD)
#define CMD10 0x4A // ask card to send card identification (CID)
#define CMD11 0x4B // not used in SPI mode
#define CMD12 0x4C // stop transmission on multiple block read
#define CMD13 0x4D // ask the card to send it's status register
#define CMD14 0x4E // Reserved
#define CMD15 0x4F // not used in SPI mode
#define CMD16 0x50 // sets the block length used by the memory card
#define CMD17 0x51 // read single block
#define CMD18 0x52 // read multiple block
#define CMD19 0x53 // Reserved
#define CMD20 0x54 // not used in SPI mode
#define CMD21 0x55 // Reserved
#define CMD22 0x56 // Reserved
#define CMD23 0x57 // Reserved
#define CMD24 0x58 // writes a single block
#define CMD25 0x59 // writes multiple blocks
#define CMD26 0x5A // not used in SPI mode
#define CMD27 0x5B // change the bits in CSD
#define CMD28 0x5C // sets the write protection bit
#define CMD29 0x5D // clears the write protection bit
#define CMD30 0x5E // checks the write protection bit
#define CMD31 0x5F // Reserved
#define CMD32 0x60 // Sets the address of the first sector of the erase group
#define CMD33 0x61 // Sets the address of the last sector of the erase group
#define CMD34 0x62 // removes a sector from the selected group
#define CMD35 0x63 // Sets the address of the first group
#define CMD36 0x64 // Sets the address of the last erase group
#define CMD37 0x65 // removes a group from the selected section
#define CMD38 0x66 // erase all selected groups
#define CMD39 0x67 // not used in SPI mode
#define CMD40 0x68 // not used in SPI mode
#define CMD41 0x69 // Reserved
#define CMD42 0x6A // locks a block
// CMD43 ... CMD57 are Reserved
#define CMD58 0x7A // reads the OCR register
#define CMD59 0x7B // turns CRC off
// CMD60 ... CMD63 are not used in SPI mode
#define ED_STATE_DMA_BUSY 0
#define ED_STATE_DMA_TOUT 1
#define ED_STATE_TXE 2
#define ED_STATE_RXF 3
#define ED_STATE_SPI 4
#define SPI_CFG_SPD0 0
#define SPI_CFG_SPD1 1
#define SPI_CFG_SS 2
#define SPI_CFG_RD 3
#define SPI_CFG_DAT 4
#define SPI_CFG_1BIT 5
#define SAV_EEP_ON 0
#define SAV_SRM_ON 1
#define SAV_EEP_SIZE 2
#define SAV_SRM_SIZE 3
//was missing
//#define BI_SPI_SPD_LO 0
#define BI_SPI_SPD_LO 2 // around 200khz (only for sd initialization)
#define BI_SPI_SPD_25 1
#define BI_SPI_SPD_50 0
void evd_setSpiSpeed(u8 speed);
u8 evd_mmcCmd(u8 cmd, u32 arg);
u8 sd_mode;
volatile u8 spi_cfg;
volatile u8 evd_cfg;
u8 sd_type;
volatile u32 *regs_ptr = (u32 *) 0xA8040000;
/*
result[2] <= ad[15:8] == {ad[6], ad[1], ad[0], ad[7], ad[5], ad[4], ad[3], ad[2]} ^ 8'h37 ^ prv[7:0];
prv[7:0] <= ad[15:8];
*/
void (*dma_busy_callback)();
void evd_setDmaAddr(u32 addr) {
}
inline u32 bi_reg_rd(u32 reg) {
*(vu32 *) (REGS_BASE);
return *(vu32 *) (REGS_BASE + reg * 4);
}
inline void bi_reg_wr(u32 reg, u32 data) {
*(vu32 *) (REGS_BASE);
*(vu32 *) (REGS_BASE + reg * 4) = data;
}
void bi_init() {
evd_cfg = ED_CFG_SDRAM_ON;
spi_cfg = 0 | BI_SPI_SPD_LO;
bi_reg_wr(REG_KEY, 0x1234);
bi_reg_wr(REG_CFG, evd_cfg);
bi_reg_wr(REG_SPI_CFG, spi_cfg);
}
void bi_speed50() {
spi_cfg = 0 | BI_SPI_SPD_50;
bi_reg_wr(REG_KEY, 0x1234);
bi_reg_wr(REG_SPI_CFG, spi_cfg);
}
void bi_speed25() {
spi_cfg = 0 | BI_SPI_SPD_25;
bi_reg_wr(REG_KEY, 0x1234);
bi_reg_wr(REG_SPI_CFG, spi_cfg);
}
void bi_load_firmware(u8 *firm) {
u32 i;
u16 f_ctr = 0;
evd_cfg &= ~ED_CFG_SDRAM_ON;
bi_reg_wr(REG_CFG, evd_cfg);
bi_reg_wr(REG_CFG_CNT, 0);
sleep(10);
bi_reg_wr(REG_CFG_CNT, 1);
sleep(10);
i = 0;
for (;;) {
bi_reg_wr(REG_CFG_DAT, *(u16 *) & firm[i]);
while ((bi_reg_rd(REG_CFG_CNT) & 8) != 0);
f_ctr = firm[i++] == 0xff ? f_ctr + 1 : 0;
if (f_ctr >= 47)break;
f_ctr = firm[i++] == 0xff ? f_ctr + 1 : 0;
if (f_ctr >= 47)break;
}
while ((bi_reg_rd(REG_CFG_CNT) & 4) == 0) {
bi_reg_wr(REG_CFG_DAT, 0xffff);
while ((bi_reg_rd(REG_CFG_CNT) & 8) != 0);
}
sleep(20);
bi_init();
}
void evd_init() {
volatile u8 val;
sd_mode = 0;
dma_busy_callback = 0;
sleep(1);
val = regs_ptr[0];
spi_cfg = (0 << SPI_CFG_SPD0) | (1 << SPI_CFG_SPD1) | (1 << SPI_CFG_SS);
evd_cfg = (1 << ED_CFG_SDRAM_ON);
val = regs_ptr[0];
regs_ptr[REG_KEY] = 0x1234;
val = regs_ptr[0];
regs_ptr[REG_CFG] = evd_cfg;
val = regs_ptr[0];
regs_ptr[REG_SPI_CFG] = spi_cfg;
evd_fifoRxf();
if (!evd_fifoRxf()) {
val = regs_ptr[0];
regs_ptr[REG_DMA_LEN] = 7; //clean 16k
val = regs_ptr[0];
regs_ptr[REG_DMA_RAM_ADDR] = (ROM_LEN - 0x200000) / 2048;
val = regs_ptr[0];
regs_ptr[REG_DMA_CFG] = DCFG_FIFO_TO_RAM;
while (evd_isDmaBusy());
}
}
void evd_ulockRegs(){
volatile u8 val;
val = regs_ptr[0];
regs_ptr[REG_KEY] = 0x1234;
}
void evd_lockRegs() {
volatile u8 val;
val = regs_ptr[0];
regs_ptr[REG_KEY] = 0;
}
u8 evd_fifoRxf() {
u16 val;
//regs_ptr[REG_STATE]++;
val = regs_ptr[REG_STATUS];
return (val >> ED_STATE_RXF) & 1;
}
u8 evd_fifoTxe() {
u16 val;
//regs_ptr[REG_STATE]++;
val = regs_ptr[REG_STATUS];
return (val >> ED_STATE_TXE) & 1;
}
u8 evd_isDmaBusy() {
u16 val;
//volatile u32 i;
sleep(1);
if(dma_busy_callback != 0)dma_busy_callback();
//regs_ptr[REG_STATE]++;
val = regs_ptr[REG_STATUS];
return (val >> ED_STATE_DMA_BUSY) & 1;
}
u8 evd_isDmaTimeout() {
u16 val;
//regs_ptr[REG_STATE]++;
val = regs_ptr[REG_STATUS];
return (val >> ED_STATE_DMA_TOUT) & 1;
}
u8 evd_fifoRdToCart(u32 cart_addr, u16 blocks) {
volatile u8 val;
cart_addr /= 2048;
val = regs_ptr[0];
regs_ptr[REG_DMA_LEN] = (blocks - 1);
val = regs_ptr[0];
regs_ptr[REG_DMA_RAM_ADDR] = cart_addr;
val = regs_ptr[0];
regs_ptr[REG_DMA_CFG] = DCFG_FIFO_TO_RAM;
while (evd_isDmaBusy());
if (evd_isDmaTimeout())return EVD_ERROR_FIFO_TIMEOUT;
return 0;
}
u8 evd_fifoWrFromCart(u32 cart_addr, u16 blocks) {
volatile u8 val;
cart_addr /= 2048;
val = regs_ptr[0];
regs_ptr[REG_DMA_LEN] = (blocks - 1);
val = regs_ptr[0];
regs_ptr[REG_DMA_RAM_ADDR] = cart_addr;
val = regs_ptr[0];
regs_ptr[REG_DMA_CFG] = DCFG_RAM_TO_FIFO;
while (evd_isDmaBusy());
if (evd_isDmaTimeout())return EVD_ERROR_FIFO_TIMEOUT;
return 0;
}
u8 evd_fifoRd(void *buff, u16 blocks) {
volatile u8 val;
u32 len = blocks == 0 ? 65536 * 512 : blocks * 512;
u32 ram_buff_addr = DMA_BUFF_ADDR / 2048; //(ROM_LEN - len - 65536 * 4) / 2048;
val = regs_ptr[0];
regs_ptr[REG_DMA_LEN] = (blocks - 1);
val = regs_ptr[0];
regs_ptr[REG_DMA_RAM_ADDR] = ram_buff_addr;
val = regs_ptr[0];
regs_ptr[REG_DMA_CFG] = DCFG_FIFO_TO_RAM;
while (evd_isDmaBusy());
dma_read_s(buff, (0xb0000000 + ram_buff_addr * 2048), len);
if (evd_isDmaTimeout())return EVD_ERROR_FIFO_TIMEOUT;
return 0;
}
u8 evd_fifoWr(void *buff, u16 blocks) {
volatile u8 val;
u32 len = blocks == 0 ? 65536 * 512 : blocks * 512;
u32 ram_buff_addr = DMA_BUFF_ADDR / 2048; //(ROM_LEN - len - 65536 * 4) / 2048;
dma_write_s(buff, (0xb0000000 + ram_buff_addr * 1024 * 2), len);
val = regs_ptr[0];
regs_ptr[REG_DMA_LEN] = (blocks - 1);
val = regs_ptr[0];
regs_ptr[REG_DMA_RAM_ADDR] = ram_buff_addr;
val = regs_ptr[0];
regs_ptr[REG_DMA_CFG] = DCFG_RAM_TO_FIFO;
while (evd_isDmaBusy());
if (evd_isDmaTimeout())return EVD_ERROR_FIFO_TIMEOUT;
return 0;
}
u8 evd_isSpiBusy() {
volatile u16 val;
regs_ptr[REG_STATUS];
val = regs_ptr[REG_STATUS];
return (val >> ED_STATE_SPI) & 1;
}
u8 evd_SPI(u8 dat) {
volatile u8 val;
val = regs_ptr[0];
regs_ptr[REG_SPI] = dat;
while (evd_isSpiBusy());
//osInvalICache((u32*) & regs_ptr[REG_SPI], 1);
val = regs_ptr[REG_SPI];
return val;
}
void evd_spiSSOn() {
volatile u8 val;
if (sd_mode)return;
spi_cfg &= ~(1 << SPI_CFG_SS);
val = regs_ptr[0];
regs_ptr[REG_SPI_CFG] = spi_cfg;
}
void evd_spiSSOff() {
volatile u8 val;
spi_cfg |= (1 << SPI_CFG_SS);
val = regs_ptr[0];
regs_ptr[REG_SPI_CFG] = spi_cfg;
}
void evd_enableSDMode() {
sd_mode = 1;
}
void evd_enableSPIMode() {
sd_mode = 0;
}
u8 evd_isSDMode() {
return sd_mode;