mirror of
https://github.com/gdsports/USBHost_t36
synced 2024-11-21 08:35:03 -05:00
commit
de863f4991
@ -900,6 +900,7 @@ public:
|
||||
virtual int read(void);
|
||||
virtual int availableForWrite();
|
||||
virtual size_t write(uint8_t c);
|
||||
|
||||
using Print::write;
|
||||
protected:
|
||||
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
|
||||
@ -941,6 +942,10 @@ private:
|
||||
volatile uint8_t rxstate;// bitmask: which receive packets are queued
|
||||
volatile uint8_t txstate;
|
||||
uint8_t pending_control;
|
||||
uint8_t setup_state; // PL2303 - has several steps... Could use pending control?
|
||||
uint8_t pl2303_v1; // Which version do we have
|
||||
uint8_t pl2303_v2;
|
||||
uint8_t interface;
|
||||
bool control_queued;
|
||||
enum { CDCACM, FTDI, PL2303, CH341 } sertype;
|
||||
};
|
||||
|
272
examples/SerialTest/SerialTest.ino
Normal file
272
examples/SerialTest/SerialTest.ino
Normal file
@ -0,0 +1,272 @@
|
||||
// Simple test of USB Host Mouse/Keyboard
|
||||
//
|
||||
// This example is in the public domain
|
||||
|
||||
#include "USBHost_t36.h"
|
||||
#define USBBAUD 115200
|
||||
USBHost myusb;
|
||||
USBHub hub1(myusb);
|
||||
USBHub hub2(myusb);
|
||||
USBHIDParser hid1(myusb);
|
||||
USBHIDParser hid2(myusb);
|
||||
USBHIDParser hid3(myusb);
|
||||
USBSerial userial(myusb);
|
||||
|
||||
USBDriver *drivers[] = {&hub1, &hub2, &hid1, &hid2, &hid3, &userial};
|
||||
#define CNT_DEVICES (sizeof(drivers)/sizeof(drivers[0]))
|
||||
const char * driver_names[CNT_DEVICES] = {"Hub1", "Hub2", "HID1", "HID2", "HID3", "USERIAL1" };
|
||||
bool driver_active[CNT_DEVICES] = {false, false, false, false};
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(13, OUTPUT);
|
||||
pinMode(2, OUTPUT);
|
||||
pinMode(3, OUTPUT);
|
||||
for (int i = 0; i < 5; i++) {
|
||||
digitalWrite(2, HIGH);
|
||||
delayMicroseconds(50);
|
||||
digitalWrite(2, LOW);
|
||||
delayMicroseconds(50);
|
||||
}
|
||||
while (!Serial && (millis() < 5000)) ; // wait for Arduino Serial Monitor
|
||||
Serial.println("\n\nUSB Host Testing - Serial");
|
||||
myusb.begin();
|
||||
Serial1.begin(115200); // We will echo stuff Through Serial1...
|
||||
|
||||
}
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
digitalWrite(13, !digitalRead(13));
|
||||
myusb.Task();
|
||||
// Print out information about different devices.
|
||||
for (uint8_t i = 0; i < CNT_DEVICES; i++) {
|
||||
if (*drivers[i] != driver_active[i]) {
|
||||
if (driver_active[i]) {
|
||||
Serial.printf("*** Device %s - disconnected ***\n", driver_names[i]);
|
||||
driver_active[i] = false;
|
||||
} else {
|
||||
Serial.printf("*** Device %s %x:%x - connected ***\n", driver_names[i], drivers[i]->idVendor(), drivers[i]->idProduct());
|
||||
driver_active[i] = true;
|
||||
|
||||
const uint8_t *psz = drivers[i]->manufacturer();
|
||||
if (psz && *psz) Serial.printf(" manufacturer: %s\n", psz);
|
||||
psz = drivers[i]->product();
|
||||
if (psz && *psz) Serial.printf(" product: %s\n", psz);
|
||||
psz = drivers[i]->serialNumber();
|
||||
if (psz && *psz) Serial.printf(" Serial: %s\n", psz);
|
||||
|
||||
// If this is a new Serial device.
|
||||
if (drivers[i] == &userial) {
|
||||
// Lets try first outputting something to our USerial to see if it will go out...
|
||||
userial.begin(USBBAUD);
|
||||
|
||||
// delay(5);
|
||||
// userial.println("ver");
|
||||
#if 0
|
||||
userial.println("abcdefghijklmnopqrstuvwxyz");
|
||||
userial.println("ABCDEFGHIJKLMNOPQURSTUVWYZ");
|
||||
userial.flush(); // force it out now.
|
||||
userial.println("0123456789");
|
||||
userial.flush();
|
||||
delay(2);
|
||||
userial.println("abcdefghijklmnopqrstuvwxyz");
|
||||
userial.println("ABCDEFGHIJKLMNOPQURSTUVWYZ");
|
||||
delay(2);
|
||||
userial.println("!@#$%^&*()");
|
||||
userial.flush();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (Serial.available()) {
|
||||
Serial.println("Serial Available");
|
||||
while (Serial.available()) {
|
||||
int ch = Serial.read();
|
||||
if (ch == '$') {
|
||||
BioloidTest();
|
||||
while (Serial.read() != -1);
|
||||
}
|
||||
else userial.write(ch);
|
||||
}
|
||||
}
|
||||
|
||||
while (Serial1.available()) {
|
||||
// Serial.println("Serial1 Available");
|
||||
Serial1.write(Serial1.read());
|
||||
}
|
||||
|
||||
while (userial.available()) {
|
||||
// Serial.println("USerial Available");
|
||||
|
||||
Serial.write(userial.read());
|
||||
}
|
||||
}
|
||||
|
||||
//#define ID_MASTER 200
|
||||
#define ID_MASTER 0xfd
|
||||
// Extract stuff from Bioloid library..
|
||||
#define AX12_BUFFER_SIZE 128
|
||||
#define COUNTER_TIMEOUT 12000
|
||||
|
||||
/** Instruction Set **/
|
||||
#define AX_PING 1
|
||||
#define AX_READ_DATA 2
|
||||
#define AX_WRITE_DATA 3
|
||||
#define AX_REG_WRITE 4
|
||||
#define AX_ACTION 5
|
||||
#define AX_RESET 6
|
||||
#define AX_SYNC_WRITE 131
|
||||
|
||||
#define AX_TORQUE_ENABLE 24
|
||||
#define AX_LED 25
|
||||
#define AX_CW_COMPLIANCE_MARGIN 26
|
||||
#define AX_CCW_COMPLIANCE_MARGIN 27
|
||||
#define AX_CW_COMPLIANCE_SLOPE 28
|
||||
#define AX_CCW_COMPLIANCE_SLOPE 29
|
||||
#define AX_GOAL_POSITION_L 30
|
||||
#define AX_GOAL_POSITION_H 31
|
||||
#define AX_GOAL_SPEED_L 32
|
||||
#define AX_GOAL_SPEED_H 33
|
||||
#define AX_TORQUE_LIMIT_L 34
|
||||
#define AX_TORQUE_LIMIT_H 35
|
||||
#define AX_PRESENT_POSITION_L 36
|
||||
#define AX_PRESENT_POSITION_H 37
|
||||
|
||||
|
||||
void BioloidTest() {
|
||||
uint8_t master_id = 200;
|
||||
Serial.println("\n*** Bioloid Test ***");
|
||||
if (ax12GetRegister(master_id, 0, 1) != -1) {
|
||||
Serial.println("Controller found at 200");
|
||||
} else {
|
||||
Serial.println("Controller not at 200 try 0xfd");
|
||||
master_id = 0xfd;
|
||||
if (ax12GetRegister(master_id, 0, 1) != -1) {
|
||||
Serial.println("Controller found at 0xfd");
|
||||
} else {
|
||||
Serial.println("Controller not found");
|
||||
}
|
||||
}
|
||||
for (uint8_t reg = 0; reg < 10; reg++) {
|
||||
myusb.Task();
|
||||
|
||||
Serial.print(ax12GetRegister(master_id, reg, 1), HEX);
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println();
|
||||
// Now assuming we found controller...
|
||||
// May need to turn on power on controller
|
||||
ax12SetRegister(master_id, AX_TORQUE_ENABLE, 1);
|
||||
delay(2);
|
||||
|
||||
// Lets see if we can get the current position for any servo
|
||||
for (int i = 0; i < 254; i++) {
|
||||
int servo_pos = ax12GetRegister(i, AX_PRESENT_POSITION_L, 2);
|
||||
if (servo_pos != -1) {
|
||||
Serial.printf("Servo: %d Pos: %d\n", i, servo_pos);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned char ax_rx_buffer[AX12_BUFFER_SIZE];
|
||||
int ax12GetRegister(int id, int regstart, int length) {
|
||||
// 0xFF 0xFF ID LENGTH INSTRUCTION PARAM... CHECKSUM
|
||||
int return_value;
|
||||
digitalWriteFast(2, HIGH);
|
||||
int checksum = ~((id + 6 + regstart + length) % 256);
|
||||
userial.write(0xFF);
|
||||
userial.write(0xFF);
|
||||
userial.write(id);
|
||||
userial.write(4); // length
|
||||
userial.write(AX_READ_DATA);
|
||||
userial.write(regstart);
|
||||
userial.write(length);
|
||||
userial.write(checksum);
|
||||
userial.flush(); // make sure the data goes out.
|
||||
|
||||
if (ax12ReadPacket(length + 6) > 0) {
|
||||
// ax12Error = ax_rx_buffer[4];
|
||||
if (length == 1)
|
||||
return_value = ax_rx_buffer[5];
|
||||
else
|
||||
return_value = ax_rx_buffer[5] + (ax_rx_buffer[6] << 8);
|
||||
} else {
|
||||
digitalWriteFast(3, !digitalReadFast(3));
|
||||
return_value = -1;
|
||||
}
|
||||
digitalWriteFast(2, LOW);
|
||||
return return_value;
|
||||
|
||||
}
|
||||
|
||||
void ax12SetRegister(int id, int regstart, int data){
|
||||
int checksum = ~((id + 4 + AX_WRITE_DATA + regstart + (data&0xff)) % 256);
|
||||
userial.write(0xFF);
|
||||
userial.write(0xFF);
|
||||
userial.write(id);
|
||||
userial.write(4); // length
|
||||
userial.write(AX_WRITE_DATA);
|
||||
userial.write(regstart);
|
||||
userial.write(data&0xff);
|
||||
// checksum =
|
||||
userial.write(checksum);
|
||||
userial.flush();
|
||||
//ax12ReadPacket();
|
||||
}
|
||||
|
||||
|
||||
|
||||
int ax12ReadPacket(int length) {
|
||||
unsigned long ulCounter;
|
||||
unsigned char offset, checksum;
|
||||
unsigned char *psz;
|
||||
unsigned char *pszEnd;
|
||||
int ch;
|
||||
|
||||
|
||||
offset = 0;
|
||||
|
||||
psz = ax_rx_buffer;
|
||||
pszEnd = &ax_rx_buffer[length];
|
||||
|
||||
while (userial.read() != -1) ;
|
||||
uint32_t ulStart = millis();
|
||||
// Need to wait for a character or a timeout...
|
||||
do {
|
||||
ulCounter = COUNTER_TIMEOUT;
|
||||
while ((ch = userial.read()) == -1) {
|
||||
if ((millis() - ulStart) > 10) {
|
||||
//if (!--ulCounter) {
|
||||
// Serial.println("Timeout");
|
||||
return 0; // Timeout
|
||||
}
|
||||
}
|
||||
} while (ch != 0xff) ;
|
||||
*psz++ = 0xff;
|
||||
while (psz != pszEnd) {
|
||||
ulCounter = COUNTER_TIMEOUT;
|
||||
while ((ch = userial.read()) == -1) {
|
||||
//Serial.printf("Read ch: %x\n", ch);
|
||||
if (!--ulCounter) {
|
||||
return 0; // Timeout
|
||||
}
|
||||
}
|
||||
*psz++ = (unsigned char)ch;
|
||||
}
|
||||
checksum = 0;
|
||||
for (offset = 2; offset < length; offset++)
|
||||
checksum += ax_rx_buffer[offset];
|
||||
if (checksum != 255) {
|
||||
return 0;
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
@ -125,10 +125,14 @@ bool KeyboardController::claim(Device_t *dev, int type, const uint8_t *descripto
|
||||
if (descriptors[21] != 3) return false; // must be interrupt type
|
||||
uint32_t size = descriptors[22] | (descriptors[23] << 8);
|
||||
println("packet size = ", size);
|
||||
if (size != 8) {
|
||||
return false; // must be 8 bytes for Keyboard Boot Protocol
|
||||
if ((size < 8) || (size > 64)) {
|
||||
return false; // Keyboard Boot Protocol is 8 bytes, but maybe others have longer...
|
||||
}
|
||||
#ifdef USBHS_KEYBOARD_INTERVAL
|
||||
uint32_t interval = USBHS_KEYBOARD_INTERVAL;
|
||||
#else
|
||||
uint32_t interval = descriptors[24];
|
||||
#endif
|
||||
println("polling interval = ", interval);
|
||||
datapipe = new_Pipe(dev, 3, endpoint, 1, 8, interval);
|
||||
datapipe->callback_function = callback;
|
||||
|
509
serial.cpp
509
serial.cpp
@ -27,6 +27,16 @@
|
||||
#define print USBHost::print_
|
||||
#define println USBHost::println_
|
||||
|
||||
/************************************************************/
|
||||
// Control Transfer For Configuration
|
||||
/************************************************************/
|
||||
typedef struct {
|
||||
uint32_t dwDTERate; // Data Terminal Rate in bits per second
|
||||
uint8_t bCharFormat; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
||||
uint8_t bParityType; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
||||
uint8_t bDataBits; // Data bits (5, 6, 7, 8 or 16)
|
||||
} LINE_CODING;
|
||||
|
||||
/************************************************************/
|
||||
// Initialization and claiming of devices & interfaces
|
||||
/************************************************************/
|
||||
@ -44,7 +54,11 @@ bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint3
|
||||
// only claim at interface level
|
||||
println("USBSerial claim this=", (uint32_t)this, HEX);
|
||||
print("vid=", dev->idVendor, HEX);
|
||||
println(", pid=", dev->idProduct, HEX);
|
||||
print(", pid=", dev->idProduct, HEX);
|
||||
print(", bDeviceClass = ", dev->bDeviceClass);
|
||||
print(", bDeviceSubClass = ", dev->bDeviceSubClass);
|
||||
println(", bDeviceProtocol = ", dev->bDeviceProtocol);
|
||||
print_hexbytes(descriptors, len);
|
||||
if (type == 0) {
|
||||
if (dev->idVendor == 0x0403 && dev->idProduct == 0x6001) {
|
||||
// FTDI FT232
|
||||
@ -90,9 +104,265 @@ bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint3
|
||||
queue_Control_Transfer(dev, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
return true;
|
||||
} else if ((dev->bDeviceClass == 2) && (dev->bDeviceSubClass == 0)) {
|
||||
// It is a communication device see if we can extract the data...
|
||||
// Try some ttyACM types?
|
||||
// This code may be similar to MIDI code.
|
||||
// But first pass see if we can simply look at the interface...
|
||||
// Lets walk through end points and see if we
|
||||
// can find an RX and TX bulk transfer end point.
|
||||
// 0 1 2 3 4 5 6 7 8 *9 10 1 2 3 *4 5 6 7 *8 9 20 1 2 *3 4 5 6 7 8 9*30 1 2 3 4 5 6 7 8 *9 40 1 2 3 4 5 *6 7 8 9 50 1 2
|
||||
// USB2AX
|
||||
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 04 24 02 06 05 24 06 00 01 07 05 82 03 08 00 FF 09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
|
||||
//09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
|
||||
// Teensy 3.6
|
||||
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 05 24 01 01 01 04 24 02 06 05 24 06 00 01 07 05 82 03 10 00 40 09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
|
||||
//09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
|
||||
const uint8_t *p = descriptors;
|
||||
const uint8_t *end = p + len;
|
||||
|
||||
if (p[0] != 9 || p[1] != 4) return false; // interface descriptor
|
||||
//println(" bInterfaceClass=", p[5]);
|
||||
//println(" bInterfaceSubClass=", p[6]);
|
||||
if (p[5] != 2) return false; // bInterfaceClass: 2 Communications
|
||||
if (p[6] != 2) return false; // bInterfaceSubClass: 2 serial
|
||||
p += 9;
|
||||
println(" Interface is Serial");
|
||||
uint8_t rx_ep = 0;
|
||||
uint8_t tx_ep = 0;
|
||||
uint16_t rx_size = 0;
|
||||
uint16_t tx_size = 0;
|
||||
interface = 0; // clear out any interface numbers passed in.
|
||||
|
||||
while (p < end) {
|
||||
len = *p;
|
||||
if (len < 4) return false;
|
||||
if (p + len > end) return false; // reject if beyond end of data
|
||||
uint32_t type = p[1];
|
||||
//println("type: ", type);
|
||||
// Unlike Audio, we need to look at Interface as our endpoints are after them...
|
||||
if (type == 4 ) { // Interface - lets remember it's number...
|
||||
interface = p[2];
|
||||
println(" Interface: ", interface);
|
||||
}
|
||||
else if (type == 0x24) { // 0x24 = CS_INTERFACE,
|
||||
uint32_t subtype = p[2];
|
||||
print(" CS_INTERFACE - subtype: ", subtype);
|
||||
if (len >= 4) print(" ", p[3], HEX);
|
||||
if (len >= 5) print(" ", p[4], HEX);
|
||||
if (len >= 6) print(" ", p[5], HEX);
|
||||
switch (subtype) {
|
||||
case 0: println(" - Header Functional Descriptor"); break;
|
||||
case 1: println(" - Call Management Functional"); break;
|
||||
case 2: println(" - Abstract Control Management"); break;
|
||||
case 4: println(" - Telephone Ringer"); break;
|
||||
case 6: println(" - union Functional"); break;
|
||||
default: println(" - ??? other"); break;
|
||||
}
|
||||
// First pass ignore...
|
||||
} else if (type == 5) {
|
||||
// endpoint descriptor
|
||||
if (p[0] < 7) return false; // at least 7 bytes
|
||||
if (p[3] == 2) { // First try ignore the first one which is interrupt...
|
||||
println(" Endpoint: ", p[2], HEX);
|
||||
switch (p[2] & 0xF0) {
|
||||
case 0x80:
|
||||
// IN endpoint
|
||||
if (rx_ep == 0) {
|
||||
rx_ep = p[2] & 0x0F;
|
||||
rx_size = p[4] | (p[5] << 8);
|
||||
println(" rx_size = ", rx_size);
|
||||
}
|
||||
break;
|
||||
case 0x00:
|
||||
// OUT endpoint
|
||||
if (tx_ep == 0) {
|
||||
tx_ep = p[2];
|
||||
tx_size = p[4] | (p[5] << 8);
|
||||
println(" tx_size = ", tx_size);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
println(" invalid end point: ", p[2]);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
println(" Unknown type: ", type);
|
||||
return false; // unknown
|
||||
}
|
||||
p += len;
|
||||
}
|
||||
print(" exited loop rx:", rx_ep);
|
||||
println(", tx:", tx_ep);
|
||||
if (!rx_ep || !tx_ep) return false; // did not get our two end points
|
||||
if (!init_buffers(rx_size, tx_size)) return false;
|
||||
rxpipe = new_Pipe(dev, 2, rx_ep & 15, 1, rx_size);
|
||||
if (!rxpipe) return false;
|
||||
txpipe = new_Pipe(dev, 2, tx_ep, 0, tx_size);
|
||||
if (!txpipe) {
|
||||
// TODO: free rxpipe
|
||||
return false;
|
||||
}
|
||||
sertype = CDCACM;
|
||||
rxpipe->callback_function = rx_callback;
|
||||
queue_Data_Transfer(rxpipe, rx1, (rx_size < 64)? rx_size : 64, this);
|
||||
rxstate = 1;
|
||||
if (rx_size > 128) {
|
||||
queue_Data_Transfer(rxpipe, rx2, rx_size, this);
|
||||
rxstate = 3;
|
||||
}
|
||||
txstate = 0;
|
||||
txpipe->callback_function = tx_callback;
|
||||
baudrate = 115200;
|
||||
// Wish I could just call Control to do the output... Maybe can defer until the user calls begin()
|
||||
// control requires that device is setup which is not until this call completes...
|
||||
println("Control - CDCACM DTR...");
|
||||
// Need to setup the data the line coding data
|
||||
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
|
||||
queue_Control_Transfer(dev, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
pending_control = 0x0; // Maybe don't need to do...
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: Note: there are probably more vendor/product pairs.. Maybe should create table of them
|
||||
if (dev->idVendor == 0x67B && dev->idProduct == 0x2303) {
|
||||
// Prolific Technology, Inc. PL2303 Serial Port
|
||||
println("len = ", len);
|
||||
uint8_t count_end_points = descriptors[4];
|
||||
if (count_end_points < 2) return false; // not enough end points
|
||||
if (len < 23) return false;
|
||||
if (descriptors[0] != 9) return false; // length 9
|
||||
|
||||
// Lets walk through end points and see if we
|
||||
// can find an RX and TX bulk transfer end point.
|
||||
//vid=67B, pid=2303
|
||||
// 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9
|
||||
//09 04 00 00 03 FF 00 00 00 07 05 81 03 0A 00 01 07 05 02 02 40 00 00 07 05 83 02 40 00 00
|
||||
uint32_t rxep = 0;
|
||||
uint32_t txep = 0;
|
||||
uint32_t descriptor_index = 9;
|
||||
while (count_end_points-- && ((rxep == 0) || txep == 0)) {
|
||||
if (descriptors[descriptor_index] != 7) return false; // length 7
|
||||
if (descriptors[descriptor_index+1] != 5) return false; // ep desc
|
||||
if ((descriptors[descriptor_index+3] == 2)
|
||||
&& (descriptors[descriptor_index+4] == 64)
|
||||
&& (descriptors[descriptor_index+5] == 0)) {
|
||||
// have a bulk EP size
|
||||
if (descriptors[descriptor_index+2] & 0x80 ) {
|
||||
rxep = descriptors[descriptor_index+2];
|
||||
} else {
|
||||
txep = descriptors[descriptor_index+2];
|
||||
}
|
||||
}
|
||||
descriptor_index += 7; // setup to look at next one...
|
||||
}
|
||||
// Try to verify the end points.
|
||||
if (!check_rxtx_ep(rxep, txep)) return false;
|
||||
print("FTDI, rxep=", rxep & 15);
|
||||
println(", txep=", txep);
|
||||
if (!init_buffers(64, 64)) return false;
|
||||
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, 64);
|
||||
if (!rxpipe) return false;
|
||||
txpipe = new_Pipe(dev, 2, txep, 0, 64);
|
||||
if (!txpipe) {
|
||||
// TODO: free rxpipe
|
||||
return false;
|
||||
}
|
||||
|
||||
sertype = PL2303;
|
||||
rxpipe->callback_function = rx_callback;
|
||||
queue_Data_Transfer(rxpipe, rx1, 64, this);
|
||||
rxstate = 1;
|
||||
if (rxsize > 128) {
|
||||
queue_Data_Transfer(rxpipe, rx2, 64, this);
|
||||
rxstate = 3;
|
||||
}
|
||||
txstate = 0;
|
||||
txpipe->callback_function = tx_callback;
|
||||
baudrate = 115200;
|
||||
|
||||
// Lets see if it will handle the same CDCACM - messages?
|
||||
println("PL2303: readRegister(0x04)");
|
||||
// Need to setup the data the line coding data
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
||||
queue_Control_Transfer(dev, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 1; // We are at step one of setup...
|
||||
pending_control = 0x3f; // Maybe don't need to do...
|
||||
return true;
|
||||
}
|
||||
} else if (type != 1) return false;
|
||||
// TTYACM: <Composit device>
|
||||
//
|
||||
// We first tried to claim a simple ttyACM device like a teensy who is configured
|
||||
// only as Serial at the device level like what was done for midi
|
||||
//
|
||||
// However some devices are a compisit of multiple Interfaces, so see if this Interface
|
||||
// is of the CDC Interface class and 0 for SubClass and protocol
|
||||
// Todo: some of this can maybe be combined with the Whole device code above.
|
||||
|
||||
if (descriptors[0] != 9 || descriptors[1] != 4) return false; // interface descriptor
|
||||
if (descriptors[4] < 2) return false; // less than 2 end points
|
||||
if (descriptors[5] != 0xA) return false; // bInterfaceClass, 0xa = CDC data
|
||||
if (descriptors[6] != 0) return false; // bInterfaceSubClass
|
||||
if (descriptors[7] != 0) return false; // bInterfaceProtocol
|
||||
|
||||
if (descriptors[9] != 7) return false; // length 7
|
||||
if (descriptors[10] != 5) return false; // ep desc
|
||||
uint32_t txep = descriptors[11];
|
||||
uint32_t txsize = descriptors[13];
|
||||
if (descriptors[12] != 2) return false; // bulk type
|
||||
if (descriptors[13] > 64) return false; // size 64 Max
|
||||
if (descriptors[14] != 0) return false;
|
||||
|
||||
if (descriptors[16] != 7) return false; // length 7
|
||||
if (descriptors[17] != 5) return false; // ep desc
|
||||
uint32_t rxep = descriptors[18];
|
||||
uint32_t rxsize = descriptors[20];
|
||||
if (descriptors[19] != 2) return false; // bulk type
|
||||
if (descriptors[20] > 64) return false; // size 64 Max
|
||||
if (descriptors[21] != 0) return false;
|
||||
if (!check_rxtx_ep(rxep, txep)) return false;
|
||||
interface = descriptors[2];
|
||||
|
||||
print("CDC, rxep=", rxep & 15);
|
||||
println(", txep=", txep);
|
||||
if (!init_buffers(rxsize, txsize)) return false;
|
||||
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rxsize);
|
||||
if (!rxpipe) return false;
|
||||
txpipe = new_Pipe(dev, 2, txep, 0, txsize);
|
||||
if (!txpipe) {
|
||||
// TODO: free rxpipe
|
||||
return false;
|
||||
}
|
||||
sertype = CDCACM;
|
||||
rxpipe->callback_function = rx_callback;
|
||||
queue_Data_Transfer(rxpipe, rx1, 64, this);
|
||||
rxstate = 1;
|
||||
if (rxsize > 128) {
|
||||
queue_Data_Transfer(rxpipe, rx2, 64, this);
|
||||
rxstate = 3;
|
||||
}
|
||||
txstate = 0;
|
||||
txpipe->callback_function = tx_callback;
|
||||
|
||||
// See if we can do just the inteface...
|
||||
baudrate = 115200;
|
||||
println("Control - CDCACM LINE_CODING");
|
||||
setupdata[0] = 0; // Setup baud rate 115200 - 0x1C200
|
||||
setupdata[1] = 0xc2;
|
||||
setupdata[2] = 0x1;
|
||||
setupdata[3] = 0;
|
||||
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
||||
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
||||
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
||||
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
||||
queue_Control_Transfer(dev, &setup, setupdata, this);
|
||||
pending_control = 0x04; // Maybe don't need to do...
|
||||
control_queued = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
// check if two legal endpoints, 1 receive & 1 transmit
|
||||
@ -115,7 +385,8 @@ bool USBSerial::check_rxtx_ep(uint32_t &rxep, uint32_t &txep)
|
||||
// initialize buffer sizes and pointers
|
||||
bool USBSerial::init_buffers(uint32_t rsize, uint32_t tsize)
|
||||
{
|
||||
// buffer must be able to hold 2 of each packet, plus have room to
|
||||
// buffer must be able to hold 2 of each packet, plus buffer
|
||||
// space to hold RX and TX data.
|
||||
if (sizeof(bigbuffer) < (rsize + tsize) * 3 + 2) return false;
|
||||
rx1 = (uint8_t *)bigbuffer;
|
||||
rx2 = rx1 + rsize;
|
||||
@ -139,19 +410,20 @@ void USBSerial::disconnect()
|
||||
}
|
||||
|
||||
|
||||
/************************************************************/
|
||||
// Control Transfer For Configuration
|
||||
/************************************************************/
|
||||
|
||||
|
||||
void USBSerial::control(const Transfer_t *transfer)
|
||||
{
|
||||
println("control callback (serial)");
|
||||
println("control callback (serial) ", pending_control, HEX);
|
||||
control_queued = false;
|
||||
|
||||
// set data format
|
||||
// We will split this up by Serial type, maybe different functions?
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// First FTDI
|
||||
if (sertype == FTDI) {
|
||||
if (pending_control & 1) {
|
||||
pending_control &= ~1;
|
||||
// set data format
|
||||
mk_setup(setup, 0x40, 4, 8, 0, 0); // data format 8N1
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
@ -169,7 +441,7 @@ void USBSerial::control(const Transfer_t *transfer)
|
||||
// configure flow control
|
||||
if (pending_control & 4) {
|
||||
pending_control &= ~4;
|
||||
mk_setup(setup, 0x40, 2, 0, 0, 0);
|
||||
mk_setup(setup, 0x40, 2, 0, 1, 0);
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
@ -182,6 +454,205 @@ void USBSerial::control(const Transfer_t *transfer)
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Now CDCACM
|
||||
if (sertype == CDCACM) {
|
||||
if (pending_control & 2) {
|
||||
pending_control &= ~2;
|
||||
// Should probably use data structure, but that may depend on byte ordering...
|
||||
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
|
||||
setupdata[1] = (baudrate >> 8) & 0xff;
|
||||
setupdata[2] = (baudrate >> 16) & 0xff;
|
||||
setupdata[3] = (baudrate >> 24) & 0xff;
|
||||
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
||||
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
||||
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
||||
print("CDCACM setup: ");
|
||||
print_hexbytes(&setupdata, 7);
|
||||
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
// configure flow control
|
||||
if (pending_control & 4) {
|
||||
pending_control &= ~4;
|
||||
println("Control - 0x21,0x22, 0x3");
|
||||
// Need to setup the data the line coding data
|
||||
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Now PL2303 - Which appears to be a little more complicated
|
||||
if (sertype == PL2303) {
|
||||
if (pending_control & 1) {
|
||||
// Still in larger setup state mode
|
||||
switch (setup_state) {
|
||||
case 1:
|
||||
println("PL2303: writeRegister(0x04, 0x00)");
|
||||
mk_setup(setup, 0x40, 1, 0x0404, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 2;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 2:
|
||||
println("PL2303: readRegister(0x04)");
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 3;
|
||||
return;
|
||||
case 3:
|
||||
println("PL2303: v1 = readRegister(0x03)");
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 4;
|
||||
return;
|
||||
case 4:
|
||||
println("PL2303: readRegister(0x04)");
|
||||
// Do we need this value long term or we could just leave in setup data?
|
||||
pl2303_v1 = setupdata[0]; // save the first bye of version
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 5;
|
||||
return;
|
||||
case 5:
|
||||
println("PL2303: writeRegister(0x04, 0x01)");
|
||||
mk_setup(setup, 0x40, 1, 0x0404, 1, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 6;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 6:
|
||||
println("PL2303: readRegister(0x04)");
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 7;
|
||||
return;
|
||||
case 7:
|
||||
println("PL2303: v2 = readRegister(0x03)");
|
||||
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
setup_state = 8;
|
||||
return;
|
||||
case 8:
|
||||
pl2303_v2 = setupdata[0]; // save the first bye of version
|
||||
print(" PL2303 Version ", pl2303_v1, HEX);
|
||||
println(":", pl2303_v2, HEX);
|
||||
println("PL2303: writeRegister(0, 1)");
|
||||
mk_setup(setup, 0x40, 1, 0, 1, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 9;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 9:
|
||||
println("PL2303: writeRegister(1, 0)");
|
||||
mk_setup(setup, 0x40, 1, 1, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 10;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 10:
|
||||
println("PL2303: writeRegister(2, 44)");
|
||||
mk_setup(setup, 0x40, 1, 2, 0x44, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 11;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 11:
|
||||
println("PL2303: writeRegister(8, 0)");
|
||||
mk_setup(setup, 0x40, 1, 8, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 12;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 12:
|
||||
println("PL2303: writeRegister(9, 0)");
|
||||
mk_setup(setup, 0x40, 1, 9, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
setup_state = 13;
|
||||
control_queued = true;
|
||||
return;
|
||||
case 13:
|
||||
println("PL2303: Read current Baud/control");
|
||||
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
break;
|
||||
}
|
||||
pending_control &= ~1; // We are finally going to leave this list and join the rest
|
||||
if (control_queued) return;
|
||||
}
|
||||
|
||||
// set baud rate
|
||||
if (pending_control & 2) {
|
||||
pending_control &= ~2;
|
||||
// See what the read returned earlier
|
||||
print("PL2303: Returned configuration data: ");
|
||||
print_hexbytes(setupdata, 7);
|
||||
|
||||
// Should probably use data structure, but that may depend on byte ordering...
|
||||
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
|
||||
setupdata[1] = (baudrate >> 8) & 0xff;
|
||||
setupdata[2] = (baudrate >> 16) & 0xff;
|
||||
setupdata[3] = (baudrate >> 24) & 0xff;
|
||||
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
||||
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
||||
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
||||
print("PL2303: Set baud/control: ", baudrate, HEX);
|
||||
print(" = ");
|
||||
print_hexbytes(&setupdata, 7);
|
||||
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
if (pending_control & 4) {
|
||||
pending_control &= ~4;
|
||||
println("PL2303: writeRegister(0, 0)");
|
||||
mk_setup(setup, 0x40, 1, 0, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
if (pending_control & 8) {
|
||||
pending_control &= ~8;
|
||||
println("PL2303: Read current Baud/control");
|
||||
memset(setupdata, 0, sizeof(setupdata)); // clear it to see if we read it...
|
||||
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
|
||||
queue_Control_Transfer(device, &setup, setupdata, this);
|
||||
control_queued = true;
|
||||
}
|
||||
if (pending_control & 0x10) {
|
||||
pending_control &= ~0x10;
|
||||
print("PL2303: Returned configuration data: ");
|
||||
print_hexbytes(setupdata, 7);
|
||||
|
||||
println("PL2303: 0x21, 0x22, 0x3");
|
||||
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
return;
|
||||
}
|
||||
if (pending_control & 0x30) {
|
||||
pending_control &= ~0x30;
|
||||
println("PL2303: 0x21, 0x22, 0x3");
|
||||
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
|
||||
queue_Control_Transfer(device, &setup, NULL, this);
|
||||
control_queued = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -201,6 +672,7 @@ void USBSerial::tx_callback(const Transfer_t *transfer)
|
||||
((USBSerial *)(transfer->driver))->tx_data(transfer);
|
||||
}
|
||||
|
||||
|
||||
void USBSerial::rx_data(const Transfer_t *transfer)
|
||||
{
|
||||
uint32_t len = transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF);
|
||||
@ -221,10 +693,10 @@ void USBSerial::rx_data(const Transfer_t *transfer)
|
||||
len = 0;
|
||||
}
|
||||
}
|
||||
//if (len > 0) {
|
||||
//print("rx: ");
|
||||
//print_hexbytes(p, len);
|
||||
//}
|
||||
if (len > 0) {
|
||||
print("rx: ");
|
||||
print_hexbytes(p, len);
|
||||
}
|
||||
// Copy data from packet buffer to circular buffer.
|
||||
// Assume the buffer will always have space, since we
|
||||
// check before queuing the buffers
|
||||
@ -339,7 +811,14 @@ void USBSerial::timer_event(USBDriverTimer *whichTimer)
|
||||
uint32_t count;
|
||||
uint32_t head = txhead;
|
||||
uint32_t tail = txtail;
|
||||
if (pending_control) {
|
||||
// We are still doing setup postpone for awhile..
|
||||
txtimer.start(1200);
|
||||
println(" Postpone: setup pending_control");
|
||||
return; // no outgoing buffers available, try again later
|
||||
}
|
||||
if (head == tail) {
|
||||
println(" *** Empty ***");
|
||||
return; // nothing to transmit
|
||||
} else if (head > tail) {
|
||||
count = head - tail;
|
||||
@ -355,6 +834,7 @@ void USBSerial::timer_event(USBDriverTimer *whichTimer)
|
||||
txstate |= 0x02;
|
||||
} else {
|
||||
txtimer.start(1200);
|
||||
println(" *** No buffers ***");
|
||||
return; // no outgoing buffers available, try again later
|
||||
}
|
||||
if (++tail >= txsize) tail = 0;
|
||||
@ -370,6 +850,9 @@ void USBSerial::timer_event(USBDriverTimer *whichTimer)
|
||||
tail = len - 1;
|
||||
}
|
||||
txtail = tail;
|
||||
print(" TX data (", count);
|
||||
print(") ");
|
||||
print_hexbytes(p, count);
|
||||
queue_Data_Transfer(txpipe, p, count, this);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user