mirror of
https://github.com/gdsports/USBHost_t36
synced 2024-11-21 08:35:03 -05:00
e05dbaaee5
Removed some of the #if 1 If defs, plus cleaned up a few comments
992 lines
31 KiB
C++
992 lines
31 KiB
C++
/* USB EHCI Host for Teensy 3.6
|
|
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "USBHost_t36.h" // Read this header first for key info
|
|
|
|
#define print USBHost::print_
|
|
#define println USBHost::println_
|
|
|
|
/************************************************************/
|
|
// Control Transfer For Configuration
|
|
/************************************************************/
|
|
typedef struct {
|
|
uint32_t dwDTERate; // Data Terminal Rate in bits per second
|
|
uint8_t bCharFormat; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
|
uint8_t bParityType; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
|
uint8_t bDataBits; // Data bits (5, 6, 7, 8 or 16)
|
|
} LINE_CODING;
|
|
|
|
/************************************************************/
|
|
// Initialization and claiming of devices & interfaces
|
|
/************************************************************/
|
|
|
|
void USBSerial::init()
|
|
{
|
|
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
|
|
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
|
|
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
|
|
driver_ready_for_device(this);
|
|
}
|
|
|
|
bool USBSerial::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
|
|
{
|
|
// only claim at interface level
|
|
println("USBSerial claim this=", (uint32_t)this, HEX);
|
|
print("vid=", dev->idVendor, HEX);
|
|
print(", pid=", dev->idProduct, HEX);
|
|
print(", bDeviceClass = ", dev->bDeviceClass);
|
|
print(", bDeviceSubClass = ", dev->bDeviceSubClass);
|
|
println(", bDeviceProtocol = ", dev->bDeviceProtocol);
|
|
print_hexbytes(descriptors, len);
|
|
if (type == 0) {
|
|
if (dev->idVendor == 0x0403 && dev->idProduct == 0x6001) {
|
|
// FTDI FT232
|
|
println("len = ", len);
|
|
if (len < 23) return false;
|
|
if (descriptors[0] != 9) return false; // length 9
|
|
if (descriptors[9] != 7) return false; // length 7
|
|
if (descriptors[10] != 5) return false; // ep desc
|
|
uint32_t rxep = descriptors[11];
|
|
if (descriptors[12] != 2) return false; // bulk type
|
|
if (descriptors[13] != 64) return false; // size 64
|
|
if (descriptors[14] != 0) return false;
|
|
if (descriptors[16] != 7) return false; // length 7
|
|
if (descriptors[17] != 5) return false; // ep desc
|
|
uint32_t txep = descriptors[18];
|
|
if (descriptors[19] != 2) return false; // bulk type
|
|
if (descriptors[20] != 64) return false; // size 64
|
|
if (descriptors[21] != 0) return false;
|
|
if (!check_rxtx_ep(rxep, txep)) return false;
|
|
print("FTDI, rxep=", rxep & 15);
|
|
println(", txep=", txep);
|
|
if (!init_buffers(64, 64)) return false;
|
|
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, 64);
|
|
if (!rxpipe) return false;
|
|
txpipe = new_Pipe(dev, 2, txep, 0, 64);
|
|
if (!txpipe) {
|
|
// TODO: free rxpipe
|
|
return false;
|
|
}
|
|
sertype = FTDI;
|
|
rxpipe->callback_function = rx_callback;
|
|
queue_Data_Transfer(rxpipe, rx1, 64, this);
|
|
rxstate = 1;
|
|
if (rxsize > 128) {
|
|
queue_Data_Transfer(rxpipe, rx2, 64, this);
|
|
rxstate = 3;
|
|
}
|
|
txstate = 0;
|
|
txpipe->callback_function = tx_callback;
|
|
baudrate = 115200;
|
|
pending_control = 0x0F;
|
|
mk_setup(setup, 0x40, 0, 0, 0, 0); // reset port
|
|
queue_Control_Transfer(dev, &setup, NULL, this);
|
|
control_queued = true;
|
|
return true;
|
|
} else if ((dev->bDeviceClass == 2) && (dev->bDeviceSubClass == 0)) {
|
|
// It is a communication device see if we can extract the data...
|
|
// Try some ttyACM types?
|
|
// This code may be similar to MIDI code.
|
|
// But first pass see if we can simply look at the interface...
|
|
// Lets walk through end points and see if we
|
|
// can find an RX and TX bulk transfer end point.
|
|
// 0 1 2 3 4 5 6 7 8 *9 10 1 2 3 *4 5 6 7 *8 9 20 1 2 *3 4 5 6 7 8 9*30 1 2 3 4 5 6 7 8 *9 40 1 2 3 4 5 *6 7 8 9 50 1 2
|
|
// USB2AX
|
|
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 04 24 02 06 05 24 06 00 01 07 05 82 03 08 00 FF 09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
|
|
//09 04 01 00 02 0A 00 00 00 07 05 04 02 10 00 01 07 05 83 02 10 00 01
|
|
// Teensy 3.6
|
|
//09 04 00 00 01 02 02 01 00 05 24 00 10 01 05 24 01 01 01 04 24 02 06 05 24 06 00 01 07 05 82 03 10 00 40 09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
|
|
//09 04 01 00 02 0A 00 00 00 07 05 03 02 40 00 00 07 05 84 02 40 00 00
|
|
const uint8_t *p = descriptors;
|
|
const uint8_t *end = p + len;
|
|
|
|
if (p[0] != 9 || p[1] != 4) return false; // interface descriptor
|
|
//println(" bInterfaceClass=", p[5]);
|
|
//println(" bInterfaceSubClass=", p[6]);
|
|
if (p[5] != 2) return false; // bInterfaceClass: 2 Communications
|
|
if (p[6] != 2) return false; // bInterfaceSubClass: 2 serial
|
|
p += 9;
|
|
println(" Interface is Serial");
|
|
uint8_t rx_ep = 0;
|
|
uint8_t tx_ep = 0;
|
|
uint16_t rx_size = 0;
|
|
uint16_t tx_size = 0;
|
|
interface = 0; // clear out any interface numbers passed in.
|
|
|
|
while (p < end) {
|
|
len = *p;
|
|
if (len < 4) return false;
|
|
if (p + len > end) return false; // reject if beyond end of data
|
|
uint32_t type = p[1];
|
|
//println("type: ", type);
|
|
// Unlike Audio, we need to look at Interface as our endpoints are after them...
|
|
if (type == 4 ) { // Interface - lets remember it's number...
|
|
interface = p[2];
|
|
println(" Interface: ", interface);
|
|
}
|
|
else if (type == 0x24) { // 0x24 = CS_INTERFACE,
|
|
uint32_t subtype = p[2];
|
|
print(" CS_INTERFACE - subtype: ", subtype);
|
|
if (len >= 4) print(" ", p[3], HEX);
|
|
if (len >= 5) print(" ", p[4], HEX);
|
|
if (len >= 6) print(" ", p[5], HEX);
|
|
switch (subtype) {
|
|
case 0: println(" - Header Functional Descriptor"); break;
|
|
case 1: println(" - Call Management Functional"); break;
|
|
case 2: println(" - Abstract Control Management"); break;
|
|
case 4: println(" - Telephone Ringer"); break;
|
|
case 6: println(" - union Functional"); break;
|
|
default: println(" - ??? other"); break;
|
|
}
|
|
// First pass ignore...
|
|
} else if (type == 5) {
|
|
// endpoint descriptor
|
|
if (p[0] < 7) return false; // at least 7 bytes
|
|
if (p[3] == 2) { // First try ignore the first one which is interrupt...
|
|
println(" Endpoint: ", p[2], HEX);
|
|
switch (p[2] & 0xF0) {
|
|
case 0x80:
|
|
// IN endpoint
|
|
if (rx_ep == 0) {
|
|
rx_ep = p[2] & 0x0F;
|
|
rx_size = p[4] | (p[5] << 8);
|
|
println(" rx_size = ", rx_size);
|
|
}
|
|
break;
|
|
case 0x00:
|
|
// OUT endpoint
|
|
if (tx_ep == 0) {
|
|
tx_ep = p[2];
|
|
tx_size = p[4] | (p[5] << 8);
|
|
println(" tx_size = ", tx_size);
|
|
}
|
|
break;
|
|
default:
|
|
println(" invalid end point: ", p[2]);
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
println(" Unknown type: ", type);
|
|
return false; // unknown
|
|
}
|
|
p += len;
|
|
}
|
|
print(" exited loop rx:", rx_ep);
|
|
println(", tx:", tx_ep);
|
|
if (!rx_ep || !tx_ep) return false; // did not get our two end points
|
|
if (!init_buffers(rx_size, tx_size)) return false;
|
|
rxpipe = new_Pipe(dev, 2, rx_ep & 15, 1, rx_size);
|
|
if (!rxpipe) return false;
|
|
txpipe = new_Pipe(dev, 2, tx_ep, 0, tx_size);
|
|
if (!txpipe) {
|
|
// TODO: free rxpipe
|
|
return false;
|
|
}
|
|
sertype = CDCACM;
|
|
rxpipe->callback_function = rx_callback;
|
|
queue_Data_Transfer(rxpipe, rx1, (rx_size < 64)? rx_size : 64, this);
|
|
rxstate = 1;
|
|
if (rx_size > 128) {
|
|
queue_Data_Transfer(rxpipe, rx2, rx_size, this);
|
|
rxstate = 3;
|
|
}
|
|
txstate = 0;
|
|
txpipe->callback_function = tx_callback;
|
|
baudrate = 115200;
|
|
// Wish I could just call Control to do the output... Maybe can defer until the user calls begin()
|
|
// control requires that device is setup which is not until this call completes...
|
|
println("Control - CDCACM DTR...");
|
|
// Need to setup the data the line coding data
|
|
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
|
|
queue_Control_Transfer(dev, &setup, NULL, this);
|
|
control_queued = true;
|
|
pending_control = 0x0; // Maybe don't need to do...
|
|
return true;
|
|
}
|
|
|
|
// TODO: Note: there are probably more vendor/product pairs.. Maybe should create table of them
|
|
if (dev->idVendor == 0x67B && dev->idProduct == 0x2303) {
|
|
// Prolific Technology, Inc. PL2303 Serial Port
|
|
println("len = ", len);
|
|
uint8_t count_end_points = descriptors[4];
|
|
if (count_end_points < 2) return false; // not enough end points
|
|
if (len < 23) return false;
|
|
if (descriptors[0] != 9) return false; // length 9
|
|
|
|
// Lets walk through end points and see if we
|
|
// can find an RX and TX bulk transfer end point.
|
|
//vid=67B, pid=2303
|
|
// 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9
|
|
//09 04 00 00 03 FF 00 00 00 07 05 81 03 0A 00 01 07 05 02 02 40 00 00 07 05 83 02 40 00 00
|
|
uint32_t rxep = 0;
|
|
uint32_t txep = 0;
|
|
uint32_t descriptor_index = 9;
|
|
while (count_end_points-- && ((rxep == 0) || txep == 0)) {
|
|
if (descriptors[descriptor_index] != 7) return false; // length 7
|
|
if (descriptors[descriptor_index+1] != 5) return false; // ep desc
|
|
if ((descriptors[descriptor_index+3] == 2)
|
|
&& (descriptors[descriptor_index+4] == 64)
|
|
&& (descriptors[descriptor_index+5] == 0)) {
|
|
// have a bulk EP size
|
|
if (descriptors[descriptor_index+2] & 0x80 ) {
|
|
rxep = descriptors[descriptor_index+2];
|
|
} else {
|
|
txep = descriptors[descriptor_index+2];
|
|
}
|
|
}
|
|
descriptor_index += 7; // setup to look at next one...
|
|
}
|
|
// Try to verify the end points.
|
|
if (!check_rxtx_ep(rxep, txep)) return false;
|
|
print("FTDI, rxep=", rxep & 15);
|
|
println(", txep=", txep);
|
|
if (!init_buffers(64, 64)) return false;
|
|
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, 64);
|
|
if (!rxpipe) return false;
|
|
txpipe = new_Pipe(dev, 2, txep, 0, 64);
|
|
if (!txpipe) {
|
|
// TODO: free rxpipe
|
|
return false;
|
|
}
|
|
|
|
sertype = PL2303;
|
|
rxpipe->callback_function = rx_callback;
|
|
queue_Data_Transfer(rxpipe, rx1, 64, this);
|
|
rxstate = 1;
|
|
if (rxsize > 128) {
|
|
queue_Data_Transfer(rxpipe, rx2, 64, this);
|
|
rxstate = 3;
|
|
}
|
|
txstate = 0;
|
|
txpipe->callback_function = tx_callback;
|
|
baudrate = 115200;
|
|
|
|
// Lets see if it will handle the same CDCACM - messages?
|
|
println("PL2303: readRegister(0x04)");
|
|
// Need to setup the data the line coding data
|
|
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
|
queue_Control_Transfer(dev, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 1; // We are at step one of setup...
|
|
pending_control = 0x3f; // Maybe don't need to do...
|
|
return true;
|
|
}
|
|
} else if (type != 1) return false;
|
|
// TTYACM: <Composit device>
|
|
//
|
|
// We first tried to claim a simple ttyACM device like a teensy who is configured
|
|
// only as Serial at the device level like what was done for midi
|
|
//
|
|
// However some devices are a compisit of multiple Interfaces, so see if this Interface
|
|
// is of the CDC Interface class and 0 for SubClass and protocol
|
|
// Todo: some of this can maybe be combined with the Whole device code above.
|
|
|
|
if (descriptors[0] != 9 || descriptors[1] != 4) return false; // interface descriptor
|
|
if (descriptors[4] < 2) return false; // less than 2 end points
|
|
if (descriptors[5] != 0xA) return false; // bInterfaceClass, 0xa = CDC data
|
|
if (descriptors[6] != 0) return false; // bInterfaceSubClass
|
|
if (descriptors[7] != 0) return false; // bInterfaceProtocol
|
|
|
|
if (descriptors[9] != 7) return false; // length 7
|
|
if (descriptors[10] != 5) return false; // ep desc
|
|
uint32_t txep = descriptors[11];
|
|
uint32_t txsize = descriptors[13];
|
|
if (descriptors[12] != 2) return false; // bulk type
|
|
if (descriptors[13] > 64) return false; // size 64 Max
|
|
if (descriptors[14] != 0) return false;
|
|
|
|
if (descriptors[16] != 7) return false; // length 7
|
|
if (descriptors[17] != 5) return false; // ep desc
|
|
uint32_t rxep = descriptors[18];
|
|
uint32_t rxsize = descriptors[20];
|
|
if (descriptors[19] != 2) return false; // bulk type
|
|
if (descriptors[20] > 64) return false; // size 64 Max
|
|
if (descriptors[21] != 0) return false;
|
|
if (!check_rxtx_ep(rxep, txep)) return false;
|
|
interface = descriptors[2];
|
|
|
|
print("CDC, rxep=", rxep & 15);
|
|
println(", txep=", txep);
|
|
if (!init_buffers(rxsize, txsize)) return false;
|
|
rxpipe = new_Pipe(dev, 2, rxep & 15, 1, rxsize);
|
|
if (!rxpipe) return false;
|
|
txpipe = new_Pipe(dev, 2, txep, 0, txsize);
|
|
if (!txpipe) {
|
|
// TODO: free rxpipe
|
|
return false;
|
|
}
|
|
sertype = CDCACM;
|
|
rxpipe->callback_function = rx_callback;
|
|
queue_Data_Transfer(rxpipe, rx1, 64, this);
|
|
rxstate = 1;
|
|
if (rxsize > 128) {
|
|
queue_Data_Transfer(rxpipe, rx2, 64, this);
|
|
rxstate = 3;
|
|
}
|
|
txstate = 0;
|
|
txpipe->callback_function = tx_callback;
|
|
|
|
// See if we can do just the inteface...
|
|
baudrate = 115200;
|
|
println("Control - CDCACM LINE_CODING");
|
|
setupdata[0] = 0; // Setup baud rate 115200 - 0x1C200
|
|
setupdata[1] = 0xc2;
|
|
setupdata[2] = 0x1;
|
|
setupdata[3] = 0;
|
|
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
|
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
|
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
|
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
|
queue_Control_Transfer(dev, &setup, setupdata, this);
|
|
pending_control = 0x04; // Maybe don't need to do...
|
|
control_queued = true;
|
|
return true;
|
|
}
|
|
|
|
// check if two legal endpoints, 1 receive & 1 transmit
|
|
bool USBSerial::check_rxtx_ep(uint32_t &rxep, uint32_t &txep)
|
|
{
|
|
if ((rxep & 0x0F) == 0) return false;
|
|
if ((txep & 0x0F) == 0) return false;
|
|
uint32_t rxdir = rxep & 0xF0;
|
|
uint32_t txdir = txep & 0xF0;
|
|
if (rxdir == 0x80 && txdir == 0x00) {
|
|
return true;
|
|
}
|
|
if (rxdir == 0x00 && txdir == 0x80) {
|
|
std::swap(rxep, txep);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// initialize buffer sizes and pointers
|
|
bool USBSerial::init_buffers(uint32_t rsize, uint32_t tsize)
|
|
{
|
|
// buffer must be able to hold 2 of each packet, plus buffer
|
|
// space to hold RX and TX data.
|
|
if (sizeof(bigbuffer) < (rsize + tsize) * 3 + 2) return false;
|
|
rx1 = (uint8_t *)bigbuffer;
|
|
rx2 = rx1 + rsize;
|
|
tx1 = rx2 + rsize;
|
|
tx2 = tx1 + tsize;
|
|
rxbuf = tx2 + tsize;
|
|
// FIXME: this assume 50-50 split - not true when rsize != tsize
|
|
rxsize = (sizeof(bigbuffer) - (rsize + tsize) * 2) / 2;
|
|
txsize = rxsize;
|
|
txbuf = rxbuf + rxsize;
|
|
rxhead = 0;
|
|
rxtail = 0;
|
|
txhead = 0;
|
|
txtail = 0;
|
|
rxstate = 0;
|
|
return true;
|
|
}
|
|
|
|
void USBSerial::disconnect()
|
|
{
|
|
}
|
|
|
|
|
|
|
|
void USBSerial::control(const Transfer_t *transfer)
|
|
{
|
|
println("control callback (serial) ", pending_control, HEX);
|
|
control_queued = false;
|
|
|
|
// We will split this up by Serial type, maybe different functions?
|
|
|
|
//-------------------------------------------------------------------------
|
|
// First FTDI
|
|
if (sertype == FTDI) {
|
|
if (pending_control & 1) {
|
|
pending_control &= ~1;
|
|
// set data format
|
|
mk_setup(setup, 0x40, 4, 8, 0, 0); // data format 8N1
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
// set baud rate
|
|
if (pending_control & 2) {
|
|
pending_control &= ~2;
|
|
uint32_t baudval = 3000000 / baudrate;
|
|
mk_setup(setup, 0x40, 3, baudval, 0, 0);
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
// configure flow control
|
|
if (pending_control & 4) {
|
|
pending_control &= ~4;
|
|
mk_setup(setup, 0x40, 2, 0, 1, 0);
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
// set DTR
|
|
if (pending_control & 8) {
|
|
pending_control &= ~8;
|
|
mk_setup(setup, 0x40, 1, 0x0101, 0, 0);
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Now CDCACM
|
|
if (sertype == CDCACM) {
|
|
if (pending_control & 2) {
|
|
pending_control &= ~2;
|
|
// Should probably use data structure, but that may depend on byte ordering...
|
|
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
|
|
setupdata[1] = (baudrate >> 8) & 0xff;
|
|
setupdata[2] = (baudrate >> 16) & 0xff;
|
|
setupdata[3] = (baudrate >> 24) & 0xff;
|
|
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
|
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
|
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
|
print("CDCACM setup: ");
|
|
print_hexbytes(&setupdata, 7);
|
|
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
// configure flow control
|
|
if (pending_control & 4) {
|
|
pending_control &= ~4;
|
|
println("Control - 0x21,0x22, 0x3");
|
|
// Need to setup the data the line coding data
|
|
mk_setup(setup, 0x21, 0x22, 3, 0, 0);
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Now PL2303 - Which appears to be a little more complicated
|
|
if (sertype == PL2303) {
|
|
if (pending_control & 1) {
|
|
// Still in larger setup state mode
|
|
switch (setup_state) {
|
|
case 1:
|
|
println("PL2303: writeRegister(0x04, 0x00)");
|
|
mk_setup(setup, 0x40, 1, 0x0404, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 2;
|
|
control_queued = true;
|
|
return;
|
|
case 2:
|
|
println("PL2303: readRegister(0x04)");
|
|
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 3;
|
|
return;
|
|
case 3:
|
|
println("PL2303: v1 = readRegister(0x03)");
|
|
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 4;
|
|
return;
|
|
case 4:
|
|
println("PL2303: readRegister(0x04)");
|
|
// Do we need this value long term or we could just leave in setup data?
|
|
pl2303_v1 = setupdata[0]; // save the first bye of version
|
|
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 5;
|
|
return;
|
|
case 5:
|
|
println("PL2303: writeRegister(0x04, 0x01)");
|
|
mk_setup(setup, 0x40, 1, 0x0404, 1, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 6;
|
|
control_queued = true;
|
|
return;
|
|
case 6:
|
|
println("PL2303: readRegister(0x04)");
|
|
mk_setup(setup, 0xC0, 0x1, 0x8484, 0, 1);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 7;
|
|
return;
|
|
case 7:
|
|
println("PL2303: v2 = readRegister(0x03)");
|
|
mk_setup(setup, 0xC0, 0x1, 0x8383, 0, 1);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
setup_state = 8;
|
|
return;
|
|
case 8:
|
|
pl2303_v2 = setupdata[0]; // save the first bye of version
|
|
print(" PL2303 Version ", pl2303_v1, HEX);
|
|
println(":", pl2303_v2, HEX);
|
|
println("PL2303: writeRegister(0, 1)");
|
|
mk_setup(setup, 0x40, 1, 0, 1, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 9;
|
|
control_queued = true;
|
|
return;
|
|
case 9:
|
|
println("PL2303: writeRegister(1, 0)");
|
|
mk_setup(setup, 0x40, 1, 1, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 10;
|
|
control_queued = true;
|
|
return;
|
|
case 10:
|
|
println("PL2303: writeRegister(2, 44)");
|
|
mk_setup(setup, 0x40, 1, 2, 0x44, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 11;
|
|
control_queued = true;
|
|
return;
|
|
case 11:
|
|
println("PL2303: writeRegister(8, 0)");
|
|
mk_setup(setup, 0x40, 1, 8, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 12;
|
|
control_queued = true;
|
|
return;
|
|
case 12:
|
|
println("PL2303: writeRegister(9, 0)");
|
|
mk_setup(setup, 0x40, 1, 9, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
setup_state = 13;
|
|
control_queued = true;
|
|
return;
|
|
case 13:
|
|
println("PL2303: Read current Baud/control");
|
|
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
break;
|
|
}
|
|
pending_control &= ~1; // We are finally going to leave this list and join the rest
|
|
if (control_queued) return;
|
|
}
|
|
|
|
// set baud rate
|
|
if (pending_control & 2) {
|
|
pending_control &= ~2;
|
|
// See what the read returned earlier
|
|
print("PL2303: Returned configuration data: ");
|
|
print_hexbytes(setupdata, 7);
|
|
|
|
// Should probably use data structure, but that may depend on byte ordering...
|
|
setupdata[0] = (baudrate) & 0xff; // Setup baud rate 115200 - 0x1C200
|
|
setupdata[1] = (baudrate >> 8) & 0xff;
|
|
setupdata[2] = (baudrate >> 16) & 0xff;
|
|
setupdata[3] = (baudrate >> 24) & 0xff;
|
|
setupdata[4] = 0; // 0 - 1 stop bit, 1 - 1.5 stop bits, 2 - 2 stop bits
|
|
setupdata[5] = 0; // 0 - None, 1 - Odd, 2 - Even, 3 - Mark, 4 - Space
|
|
setupdata[6] = 8; // Data bits (5, 6, 7, 8 or 16)
|
|
print("PL2303: Set baud/control: ", baudrate, HEX);
|
|
print(" = ");
|
|
print_hexbytes(&setupdata, 7);
|
|
mk_setup(setup, 0x21, 0x20, 0, 0, 7);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
if (pending_control & 4) {
|
|
pending_control &= ~4;
|
|
println("PL2303: writeRegister(0, 0)");
|
|
mk_setup(setup, 0x40, 1, 0, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
if (pending_control & 8) {
|
|
pending_control &= ~8;
|
|
println("PL2303: Read current Baud/control");
|
|
memset(setupdata, 0, sizeof(setupdata)); // clear it to see if we read it...
|
|
mk_setup(setup, 0xA1, 0x21, 0, 0, 7);
|
|
queue_Control_Transfer(device, &setup, setupdata, this);
|
|
control_queued = true;
|
|
}
|
|
if (pending_control & 0x10) {
|
|
pending_control &= ~0x10;
|
|
print("PL2303: Returned configuration data: ");
|
|
print_hexbytes(setupdata, 7);
|
|
|
|
println("PL2303: 0x21, 0x22, 0x3");
|
|
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
return;
|
|
}
|
|
if (pending_control & 0x30) {
|
|
pending_control &= ~0x30;
|
|
println("PL2303: 0x21, 0x22, 0x3");
|
|
mk_setup(setup, 0x21, 0x22, 3, 0, 0); //
|
|
queue_Control_Transfer(device, &setup, NULL, this);
|
|
control_queued = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/************************************************************/
|
|
// Interrupt-based Data Movement
|
|
/************************************************************/
|
|
|
|
void USBSerial::rx_callback(const Transfer_t *transfer)
|
|
{
|
|
if (!transfer->driver) return;
|
|
((USBSerial *)(transfer->driver))->rx_data(transfer);
|
|
}
|
|
|
|
void USBSerial::tx_callback(const Transfer_t *transfer)
|
|
{
|
|
if (!transfer->driver) return;
|
|
((USBSerial *)(transfer->driver))->tx_data(transfer);
|
|
}
|
|
|
|
|
|
void USBSerial::rx_data(const Transfer_t *transfer)
|
|
{
|
|
uint32_t len = transfer->length - ((transfer->qtd.token >> 16) & 0x7FFF);
|
|
|
|
// first update rxstate bitmask, since buffer is no longer queued
|
|
if (transfer->buffer == rx1) {
|
|
rxstate &= 0xFE;
|
|
} else if (transfer->buffer == rx2) {
|
|
rxstate &= 0xFD;
|
|
}
|
|
// get start of data and actual length
|
|
const uint8_t *p = (const uint8_t *)transfer->buffer;
|
|
if (sertype == FTDI) {
|
|
if (len >= 2) {
|
|
p += 2;
|
|
len -= 2;
|
|
} else {
|
|
len = 0;
|
|
}
|
|
}
|
|
if (len > 0) {
|
|
print("rx: ");
|
|
print_hexbytes(p, len);
|
|
}
|
|
// Copy data from packet buffer to circular buffer.
|
|
// Assume the buffer will always have space, since we
|
|
// check before queuing the buffers
|
|
uint32_t head = rxhead;
|
|
uint32_t tail = rxtail;
|
|
if (++head >= rxsize) head = 0;
|
|
uint32_t avail;
|
|
if (len > 0) {
|
|
//print("head=", head);
|
|
//print(", tail=", tail);
|
|
avail = rxsize - head;
|
|
//print(", avail=", avail);
|
|
//println(", rxsize=", rxsize);
|
|
if (avail > len) avail = len;
|
|
memcpy(rxbuf + head, p, avail);
|
|
if (len <= avail) {
|
|
head += avail - 1;
|
|
if (head >= rxsize) head = 0;
|
|
} else {
|
|
head = len - avail - 1;
|
|
memcpy(rxbuf, p + avail, head + 1);
|
|
}
|
|
rxhead = head;
|
|
}
|
|
// TODO: can be this more efficient? We know from above which
|
|
// buffer is no longer queued, so possible skip most of this work?
|
|
rx_queue_packets(head, tail);
|
|
}
|
|
|
|
// re-queue packet buffer(s) if possible
|
|
void USBSerial::rx_queue_packets(uint32_t head, uint32_t tail)
|
|
{
|
|
uint32_t avail;
|
|
if (head >= tail) {
|
|
avail = rxsize - 1 - head + tail;
|
|
} else {
|
|
avail = tail - head - 1;
|
|
}
|
|
uint32_t packetsize = rx2 - rx1;
|
|
if (avail >= packetsize) {
|
|
if ((rxstate & 0x01) == 0) {
|
|
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
|
|
rxstate |= 0x01;
|
|
} else if ((rxstate & 0x02) == 0) {
|
|
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
|
|
rxstate |= 0x02;
|
|
}
|
|
if ((rxstate & 0x03) != 0x03 && avail >= packetsize * 2) {
|
|
if ((rxstate & 0x01) == 0) {
|
|
queue_Data_Transfer(rxpipe, rx1, packetsize, this);
|
|
rxstate |= 0x01;
|
|
} else if ((rxstate & 0x02) == 0) {
|
|
queue_Data_Transfer(rxpipe, rx2, packetsize, this);
|
|
rxstate |= 0x02;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void USBSerial::tx_data(const Transfer_t *transfer)
|
|
{
|
|
uint32_t mask;
|
|
uint8_t *p = (uint8_t *)transfer->buffer;
|
|
if (p == tx1) {
|
|
println("tx1:");
|
|
mask = 1;
|
|
//txstate &= 0xFE;
|
|
} else if (p == tx2) {
|
|
println("tx2:");
|
|
mask = 2;
|
|
//txstate &= 0xFD;
|
|
} else {
|
|
return; // should never happen
|
|
}
|
|
// check how much more data remains in the transmit buffer
|
|
uint32_t head = txhead;
|
|
uint32_t tail = txtail;
|
|
uint32_t count;
|
|
if (head >= tail) {
|
|
count = head - tail;
|
|
} else {
|
|
count = txsize + head - tail;
|
|
}
|
|
uint32_t packetsize = tx2 - tx1;
|
|
if (count < packetsize) {
|
|
// not enough data in buffer to fill a full packet
|
|
txstate &= ~mask;
|
|
return;
|
|
}
|
|
// immediately transmit another full packet, if we have enough data
|
|
println("TX:moar data!!!!");
|
|
if (++tail >= txsize) tail = 0;
|
|
uint32_t n = txsize - tail;
|
|
if (n > packetsize) n = packetsize;
|
|
memcpy(p, txbuf + tail, n);
|
|
if (n >= packetsize) {
|
|
tail += n - 1;
|
|
if (tail >= txsize) tail = 0;
|
|
} else {
|
|
uint32_t len = packetsize - n;
|
|
memcpy(p + n, txbuf, len);
|
|
tail = len - 1;
|
|
}
|
|
txtail = tail;
|
|
queue_Data_Transfer(txpipe, p, packetsize, this);
|
|
}
|
|
|
|
|
|
void USBSerial::timer_event(USBDriverTimer *whichTimer)
|
|
{
|
|
println("txtimer");
|
|
uint32_t count;
|
|
uint32_t head = txhead;
|
|
uint32_t tail = txtail;
|
|
if (pending_control) {
|
|
// We are still doing setup postpone for awhile..
|
|
txtimer.start(1200);
|
|
println(" Postpone: setup pending_control");
|
|
return; // no outgoing buffers available, try again later
|
|
}
|
|
if (head == tail) {
|
|
println(" *** Empty ***");
|
|
return; // nothing to transmit
|
|
} else if (head > tail) {
|
|
count = head - tail;
|
|
} else {
|
|
count = txsize + head - tail;
|
|
}
|
|
uint8_t *p;
|
|
if ((txstate & 0x01) == 0) {
|
|
p = tx1;
|
|
txstate |= 0x01;
|
|
} else if ((txstate & 0x02) == 0) {
|
|
p = tx2;
|
|
txstate |= 0x02;
|
|
} else {
|
|
txtimer.start(1200);
|
|
println(" *** No buffers ***");
|
|
return; // no outgoing buffers available, try again later
|
|
}
|
|
if (++tail >= txsize) tail = 0;
|
|
uint32_t n = txsize - tail;
|
|
if (n > count) n = count;
|
|
memcpy(p, txbuf + tail, n);
|
|
if (n >= count) {
|
|
tail += n - 1;
|
|
if (tail >= txsize) tail = 0;
|
|
} else {
|
|
uint32_t len = count - n;
|
|
memcpy(p + n, txbuf, len);
|
|
tail = len - 1;
|
|
}
|
|
txtail = tail;
|
|
print(" TX data (", count);
|
|
print(") ");
|
|
print_hexbytes(p, count);
|
|
queue_Data_Transfer(txpipe, p, count, this);
|
|
}
|
|
|
|
|
|
|
|
/************************************************************/
|
|
// User Functions - must disable USBHQ IRQ for EHCI access
|
|
/************************************************************/
|
|
|
|
void USBSerial::begin(uint32_t baud, uint32_t format)
|
|
{
|
|
NVIC_DISABLE_IRQ(IRQ_USBHS);
|
|
baudrate = baud;
|
|
pending_control |= 2;
|
|
if (!control_queued) control(NULL);
|
|
NVIC_ENABLE_IRQ(IRQ_USBHS);
|
|
}
|
|
|
|
void USBSerial::end(void)
|
|
{
|
|
// TODO: lower DTR
|
|
}
|
|
|
|
int USBSerial::available(void)
|
|
{
|
|
if (!device) return 0;
|
|
uint32_t head = rxhead;
|
|
uint32_t tail = rxtail;
|
|
if (head >= tail) return head - tail;
|
|
return rxsize + head - tail;
|
|
}
|
|
|
|
int USBSerial::peek(void)
|
|
{
|
|
if (!device) return -1;
|
|
uint32_t head = rxhead;
|
|
uint32_t tail = rxtail;
|
|
if (head == tail) return -1;
|
|
if (++tail >= rxsize) tail = 0;
|
|
return rxbuf[tail];
|
|
}
|
|
|
|
int USBSerial::read(void)
|
|
{
|
|
if (!device) return -1;
|
|
uint32_t head = rxhead;
|
|
uint32_t tail = rxtail;
|
|
if (head == tail) return -1;
|
|
if (++tail >= rxsize) tail = 0;
|
|
int c = rxbuf[tail];
|
|
rxtail = tail;
|
|
if ((rxstate & 0x03) != 0x03) {
|
|
NVIC_DISABLE_IRQ(IRQ_USBHS);
|
|
rx_queue_packets(head, tail);
|
|
NVIC_ENABLE_IRQ(IRQ_USBHS);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
int USBSerial::availableForWrite()
|
|
{
|
|
if (!device) return 0;
|
|
uint32_t head = txhead;
|
|
uint32_t tail = txtail;
|
|
if (head >= tail) return txsize - 1 - head + tail;
|
|
return tail - head - 1;
|
|
}
|
|
|
|
size_t USBSerial::write(uint8_t c)
|
|
{
|
|
if (!device) return 0;
|
|
uint32_t head = txhead;
|
|
if (++head >= txsize) head = 0;
|
|
while (txtail == head) {
|
|
// wait...
|
|
}
|
|
txbuf[head] = c;
|
|
txhead = head;
|
|
//print("head=", head);
|
|
//println(", tail=", txtail);
|
|
|
|
// if full packet in buffer and tx packet ready, queue it
|
|
NVIC_DISABLE_IRQ(IRQ_USBHS);
|
|
uint32_t tail = txtail;
|
|
if ((txstate & 0x03) != 0x03) {
|
|
// at least one packet buffer is ready to transmit
|
|
uint32_t count;
|
|
if (head >= tail) {
|
|
count = head - tail;
|
|
} else {
|
|
count = txsize + head - tail;
|
|
}
|
|
uint32_t packetsize = tx2 - tx1;
|
|
if (count >= packetsize) {
|
|
//println("txsize=", txsize);
|
|
uint8_t *p;
|
|
if ((txstate & 0x01) == 0) {
|
|
p = tx1;
|
|
txstate |= 0x01;
|
|
} else /* if ((txstate & 0x02) == 0) */ {
|
|
p = tx2;
|
|
txstate |= 0x02;
|
|
}
|
|
// copy data to packet buffer
|
|
if (++tail >= txsize) tail = 0;
|
|
uint32_t n = txsize - tail;
|
|
if (n > packetsize) n = packetsize;
|
|
//print("memcpy, offset=", tail);
|
|
//println(", len=", n);
|
|
memcpy(p, txbuf + tail, n);
|
|
if (n >= packetsize) {
|
|
tail += n - 1;
|
|
if (tail >= txsize) tail = 0;
|
|
} else {
|
|
//n = txsize - n;
|
|
uint32_t len = packetsize - n;
|
|
//println("memcpy, offset=0, len=", len);
|
|
memcpy(p + n, txbuf, len);
|
|
tail = len - 1;
|
|
}
|
|
txtail = tail;
|
|
//println("queue tx packet, newtail=", tail);
|
|
queue_Data_Transfer(txpipe, p, packetsize, this);
|
|
NVIC_ENABLE_IRQ(IRQ_USBHS);
|
|
return 1;
|
|
}
|
|
}
|
|
// otherwise, set a latency timer to later transmit partial packet
|
|
txtimer.stop();
|
|
txtimer.start(3500);
|
|
NVIC_ENABLE_IRQ(IRQ_USBHS);
|
|
return 1;
|
|
}
|
|
|
|
|
|
|