gc_n64_usb-v3/tools/gc2n64_adapter.c

864 lines
19 KiB
C

/* gc_n64_usb : Gamecube or N64 controller to USB adapter firmware
Copyright (C) 2007-2015 Raphael Assenat <raph@raphnet.net>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _GNU_SOURCE // for memmem
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gcn64lib.h"
#include "gc2n64_adapter.h"
#include "hexdump.h"
#include "ihex.h"
#include "delay.h"
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
int gc2n64_adapter_echotest(gcn64_hdl_t hdl, int channel, int verbose)
{
unsigned char cmd[30];
unsigned char buf[30];
int i, n;
cmd[0] = 'R';
cmd[1] = 0x00; // echo
for (i=0; i<28; i++) {
cmd[i+2] = 'A'+i;
}
n = gcn64lib_rawSiCommand(hdl, channel, cmd, sizeof(buf), buf, sizeof(buf));
if (n<0) {
return n;
}
if (verbose) {
if ((n != sizeof(buf)) || memcmp(cmd, buf, sizeof(buf))) {
printf("Test failed\n");
printf(" Sent [%d]: ", (int)sizeof(cmd)); printHexBuf(cmd, sizeof(cmd));
printf("Received [%d]: ", n); printHexBuf(buf, n);
return -1;
}
}
return (n!= sizeof(buf)) || memcmp(cmd, buf, sizeof(buf));
}
int gc2n64_adapter_storeCurrentMapping(gcn64_hdl_t hdl, int channel, int dst_slot)
{
int n;
unsigned char cmd[3];
cmd[0] = 'R';
cmd[1] = 0x04; // Save current mapping
cmd[2] = dst_slot;
n = gcn64lib_rawSiCommand(hdl, channel, cmd, sizeof(cmd), cmd, 1);
if (n<0) {
return n;
}
if (n != 1) {
fprintf(stderr, "Communication error while storing mapping\n");
return -1;
}
if (cmd[0] == 0x00) {
return gc2n64_adapter_waitNotBusy(hdl, channel, 0);
}
else {
fprintf(stderr, "storeCurrentMapping: Command NACKed\n");
return -1;
}
}
int gc2n64_adapter_setMapping(gcn64_hdl_t hdl, int channel, struct gc2n64_adapter_mapping *mapping)
{
unsigned char buf[64];
unsigned char mapdata[64];
int i, n;
int maplen, togo, done, chunk;
maplen = mapping->n_pairs * 2;
if (maplen > sizeof(mapdata)) {
fprintf(stderr, "Mapping too large\n");
return -1;
}
for (i=0; i<mapping->n_pairs; i++) {
mapdata[i*2] = mapping->pairs[i].gc;
mapdata[i*2 + 1] = mapping->pairs[i].n64;
}
printf("Map data : ");
printHexBuf(mapdata, maplen);
togo = maplen;
done = 0;
chunk = 0;
while (togo) {
int len;
if (togo > 32) {
len = 32;
} else {
len = togo;
}
buf[0] = 'R';
buf[1] = 0x03; // set mapping
buf[2] = chunk;
memcpy(buf + 3, mapdata + done, len);
done+= len;
// printf("Mapping chunk : ");
// printHexBuf(buf, len + 2);
n = gcn64lib_rawSiCommand(hdl, channel, buf, len + 3, buf, 1);
if (n<0) {
return n;
}
if (n != 1) {
fprintf(stderr, "Communication error setting mapping\n");
return -1;
}
togo -= len;
chunk++;
}
return 0;
}
int gc2n64_adapter_getMapping(gcn64_hdl_t hdl, int channel, int mapping_id, struct gc2n64_adapter_mapping *dst_mapping)
{
unsigned char buf[64];
unsigned char cmd[4];
int n;
int mapping_size;
int togo;
cmd[0] = 'R';
cmd[1] = 0x02; // Get mapping
cmd[2] = mapping_id;
cmd[3] = 0; // chunk 0 (size)
n = gcn64lib_rawSiCommand(hdl, channel, cmd, 4, buf, 1);
if (n<0)
return n;
if (n == 1) {
int i, pos;
mapping_size = buf[0];
// printf("Mapping %d size: %d\n", mapping_id, mapping_size);
togo = mapping_size;
for (pos=0, i=0; pos<mapping_size; i++) {
cmd[0] = 'R';
cmd[1] = 0x02; // Get mapping
cmd[2] = mapping_id;
cmd[3] = i+1; // chunk 1 is first 32 byte block, 2nd is next 32 bytes, etc
// printf("Getting block %d\n", i+1);
n = gcn64lib_rawSiCommand(hdl, channel, cmd, 4, buf + pos, togo > 32 ? 32 : togo);
if (n<0) {
return n;
}
// printf("ret: %d\n", n);
if (n==0)
break;
pos += n;
togo -= n;
}
//printf("Received %d bytes\n", pos);
if (n%2) {
fprintf(stderr, "Error: Odd length mapping received\n");
printHexBuf(buf, pos);
return -1;
}
// TODO : Decode this to dst_mapping
dst_mapping->n_pairs = pos/2;
for (i=0; i<dst_mapping->n_pairs; i++) {
dst_mapping->pairs[i].gc = buf[i*2];
dst_mapping->pairs[i].n64 = buf[i*2+1];
}
}
return 0;
}
const char *gc2n64_adapter_getMappingSlotName(unsigned char id, int default_context)
{
switch (id)
{
case MAPPING_SLOT_BUILTIN_CURRENT:
if (default_context) {
return "[Built-in default]";
} else {
return "[Current mapping]";
}
case MAPPING_SLOT_DPAD_UP: return "[D-Pad UP]";
case MAPPING_SLOT_DPAD_DOWN: return "[D-Pad DOWN]";
case MAPPING_SLOT_DPAD_LEFT: return "[D-Pad LEFT]";
case MAPPING_SLOT_DPAD_RIGHT: return "[D-Pad RIGHT]";
}
return "Invalid ID";
}
const char *gc2n64_adapter_getGCname(unsigned char id)
{
const char *names[] = {
"A","B","Z","Start",
"L","R",
"C-stick up (50% threshold)",
"C-stick down (50% threshold)",
"C-stick left (50% threshold)",
"C-stick right (50% threshold)",
"Dpad-up","Dpad-down","Dpad-left","Dpad-right",
"Joystick left-right axis","Joystick up-down axis",
// Extras
"X","Y",
"Joystick up (50% threshold)", "Joystick down (50% threshold)",
"Joystick left (50% threshold)", "Joystick right (50% threshold)",
"Analogic L slider (50% threshold)",
"Analogic R slider (50% threshold)",
"C-stick left-right axis","C-stick up-down axis",
};
if (id == 0xff)
return "None";
if (id < 0 || id >= ARRAY_SIZE(names)) {
return "Error";
}
return names[id];
}
const char *gc2n64_adapter_getN64name(unsigned char id)
{
const char *names[] = {
"A","B","Z","Start","L","R",
"C-up","C-down","C-left","C-right",
"Dpad-up","Dpad-down","Dpad-left","Dpad-right",
"Joystick left-right axis","Joystick up-down axis",
"Joystick up", "Joystick down",
"Joystick left", "Joystick right",
"None"
};
if (id == 0xff)
return "None";
if (id < 0 || id >= ARRAY_SIZE(names)) {
return "Error";
}
return names[id];
}
struct gc2n64_adapter_mapping *gc2n64_adapter_loadMapping(const char *srcfile)
{
FILE *fptr;
struct gc2n64_adapter_mapping *map = NULL;;
char linebuf[64];
int line = 0, pair = 0;
fptr = fopen(srcfile, "r");
if (!fptr) {
perror("fopen");
return NULL;
}
map = malloc(sizeof(struct gc2n64_adapter_mapping));
if (!map) {
perror("malloc");
goto err;
}
do {
if (fgets(linebuf, sizeof(linebuf), fptr)) {
int gc, n64, n;
line++;
if (line == 1) {
const char *magic = "# gc2n64 mapping";
if (strncmp(magic, linebuf, strlen(magic))) {
fprintf(stderr, "Does not appear to be a valid mapping file\n");
goto err;
}
continue;
}
n = sscanf(linebuf, "%03d;%03d", &gc, &n64);
if (n != 2) {
// printf("Ignoring line %d\n", line);
} else {
// printf("%d -> %d\n", gc, n64);
map->pairs[pair].gc = gc;
map->pairs[pair].n64 = n64;
pair++;
if (pair >= GC2N64_MAX_MAPPING_PAIRS) {
fprintf(stderr, "too many pairs, cannot load mapping.\n");
goto err;
}
}
}
} while (!feof(fptr));
map->n_pairs = pair;
fclose(fptr);
return map;
err:
if (map) {
free(map);
}
fclose(fptr);
return NULL;
}
int gc2n64_adapter_saveMapping(struct gc2n64_adapter_mapping *map, const char *dstfile)
{
FILE *fptr;
int i;
fptr = fopen(dstfile, "w");
if (!fptr) {
perror("fopen");
return -1;
}
fprintf(fptr, "# gc2n64 mapping\n");
for (i=0; i<map->n_pairs; i++) {
fprintf(fptr, "%03d;%03d # %s -> %s\n",
map->pairs[i].gc, map->pairs[i].n64,
gc2n64_adapter_getGCname(map->pairs[i].gc),
gc2n64_adapter_getN64name(map->pairs[i].n64));
}
fflush(fptr);
fclose(fptr);
return 0;
}
void gc2n64_adapter_printMapping(struct gc2n64_adapter_mapping *map)
{
int i;
int is_default;
for (i=0; i<map->n_pairs; i++) {
// Do not display the terminator
if (map->pairs[i].gc == 0xff || map->pairs[i].n64 == 0xff) {
break;
}
/* 0 .. 15 is a 1:1 (same button name) mapping by default */
if (map->pairs[i].gc < 16) {
if (map->pairs[i].gc == map->pairs[i].n64) {
is_default = 1;
}
else {
is_default = 0;
}
}
else {
// 16 and above maps to NONE by default
if (map->pairs[i].n64 == 20) {
is_default = 1;
} else {
is_default = 0;
}
}
if (!is_default) {
printf("%s -> %s, ", gc2n64_adapter_getGCname(map->pairs[i].gc),
gc2n64_adapter_getN64name(map->pairs[i].n64));
}
}
}
void gc2n64_adapter_printInfo(struct gc2n64_adapter_info *inf)
{
int i;
if (!inf->in_bootloader) {
printf("gc_to_n64 adapter info: {\n");
printf("\tDefault mapping id: %d (%s)\n", inf->app.default_mapping_id, gc2n64_adapter_getMappingSlotName(inf->app.default_mapping_id, 1) );
printf("\tDeadzone enabled: %d\n", inf->app.deadzone_enabled);
printf("\tOld v1.5 conversion: %d\n", inf->app.old_v1_5_conversion);
printf("\tFirmware version: %s\n", inf->app.version);
printf("\tUpgradable: %s\n", inf->app.upgradeable ? "Yes":"No (Atmega8)");
for (i=0; i<GC2N64_NUM_MAPPINGS; i++) {
printf("\tMapping %d (%-13s): { ", i, gc2n64_adapter_getMappingSlotName(i, 0));
gc2n64_adapter_printMapping(&inf->app.mappings[i]);
printf(" }\n");
}
} else {
printf("gc_to_n64 adapter in bootloader mode: {\n");
printf("\tBootloader firmware version: %s\n", inf->bootldr.version);
printf("\tMCU page size: %d bytes\n", inf->bootldr.mcu_page_size);
printf("\tBootloader code start address: 0x%04x\n", inf->bootldr.bootloader_start_address);
}
printf("}\n");
}
int gc2n64_adapter_getInfo(gcn64_hdl_t hdl, int channel, struct gc2n64_adapter_info *inf)
{
unsigned char buf[32];
int n;
buf[0] = 'R';
buf[1] = 0x01; // Get device info
n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf));
if (n<0)
return n;
if (n > 0) {
// On N64, when receiving an all 0xFF reply, catch it here.
if (buf[0] == 0xff)
return -1;
if (!inf)
return 0;
inf->in_bootloader = buf[0];
if (!inf->in_bootloader) {
inf->app.default_mapping_id = buf[1];
inf->app.deadzone_enabled = buf[2];
inf->app.old_v1_5_conversion = buf[3];
inf->app.upgradeable = buf[9];
inf->app.version[sizeof(inf->app.version)-1]=0;
strncpy(inf->app.version, (char*)buf+10, sizeof(inf->app.version)-1);
} else {
inf->bootldr.mcu_page_size = buf[1];
inf->bootldr.bootloader_start_address = buf[2] << 8 | buf[3];
inf->bootldr.version[sizeof(inf->bootldr.version)-1]=0;
strncpy(inf->bootldr.version, (char*)buf+10, sizeof(inf->bootldr.version)-1);
}
for (n=0; n<GC2N64_NUM_MAPPINGS; n++) {
gc2n64_adapter_getMapping(hdl, channel, n, &inf->app.mappings[n]);
}
} else {
printf("No answer (old version?)\n");
return -1;
}
return 0;
}
int gc2n64_adapter_isBusy(gcn64_hdl_t hdl, int channel)
{
unsigned char buf[64];
int n;
buf[0] = 'R';
buf[1] = 0xf9;
n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1);
if (n<0)
return n;
if (n != 1) {
return 2; // Busy inferred from lack of answer
}
if (buf[0] != 0x00) {
return 1; // Busy
}
return 0; // Idle
}
int gc2n64_adapter_waitNotBusy(gcn64_hdl_t hdl, int channel, int verbose)
{
char spinner[4] = { '|','/','-','\\' };
int busy, no_reply_count=0;
int c=0;
while ((busy = gc2n64_adapter_isBusy(hdl, channel)))
{
if (busy < 0) {
return -1;
}
if (busy == 2) {
no_reply_count++;
if (no_reply_count > 200) {
fprintf(stderr, "Adapter answer timeout\n");
return -1;
}
}
printf("%c\b", spinner[c%4]); fflush(stdout);
c++;
_delay_us(50000);
}
return 0;
}
int gc2n64_adapter_boot_eraseAll(gcn64_hdl_t hdl, int channel)
{
unsigned char buf[64];
int n;
buf[0] = 'R';
buf[1] = 0xf0;
n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1);
if (n<0)
return n;
if (n != 1) {
fprintf(stderr, "Invalid answer. %d bytes received.\n", n);
return -1;
}
if (buf[0] != 0x00) {
fprintf(stderr, "eraseAll request NACK!\n");
return -1;
}
return 0;
}
int gc2n64_adapter_boot_readBlock(gcn64_hdl_t hdl, int channel, unsigned int block_id, unsigned char dst[32])
{
unsigned char buf[32];
int n;
buf[0] = 'R';
buf[1] = 0xf1;
buf[2] = block_id >> 8;
buf[3] = block_id & 0xff;
n = gcn64lib_rawSiCommand(hdl, channel, buf, 4, buf, sizeof(buf));
if (n<0)
return n;
if (n != 32) {
fprintf(stderr, "Invalid answer\n");
return -1;
}
memcpy(dst, buf, 32);
return 0;
}
int gc2n64_adapter_dumpFlash(gcn64_hdl_t hdl, int channel)
{
int i;
unsigned char buf[0x10000];
struct gc2n64_adapter_info inf;
i = gc2n64_adapter_getInfo(hdl, channel, &inf);
if (i)
return i;
if (!inf.in_bootloader) {
fprintf(stderr, "dumpFlash: Nnot in bootloader\n");
return -1;
}
// Atmega168 : 16K
for (i=0; i<16*1024; i+= 32)
{
gc2n64_adapter_boot_readBlock(hdl, channel, i/32, buf + i);
printf("0x%04x: ", i);
printHexBuf(buf + i, 32);
}
return 0;
}
int gc2n64_adapter_enterBootloader(gcn64_hdl_t hdl, int channel)
{
unsigned char buf[4];
int n;
int t = 1000; // > 100ms timeout
/* The bootloader starts the application automatically if it is
* installed. To prevent the application from being restarted right
* away when are entering the bootloader, the bootloader waits
* 50 ms at startup, and if it receives the 'enter bootloader' command
* within this window, the application is not started.
*
* Also, contrary to the application, the bootloader actually answers
* this command. So it doubles as a handshake to know the bootloader has
* started and is ready to receive instructions.
*
* */
do {
buf[0] = 'R';
buf[1] = 0xff;
n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf));
if (n<0) {
return n;
}
if (buf[0] == 0xff && buf[1] == 0xff) {
n = 0;
}
_delay_us(1000);
t--;
if (!t) {
fprintf(stderr, "Timeout waiting for bootloader\n");
return -1;
}
}
while(n==0);
return 0;
}
int gc2n64_adapter_bootApplication(gcn64_hdl_t hdl, int channel)
{
unsigned char buf[2];
int n;
buf[0] = 'R';
buf[1] = 0xfe;
n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1);
if (n<0)
return n;
if (n != 1) {
fprintf(stderr, "boot application: Invalid answer\n");
return -1;
}
if (buf[0]) {
fprintf(stderr, "Boot nack\n");
return -1;
}
return 0;
}
// Note: eraseAll needs to be performed first
int gc2n64_adapter_sendFirmwareBlocks(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len)
{
unsigned char buf[64];
int i, block_id;
int n;
for (i=0; i<len; i+=32) {
block_id = i / 32;
buf[0] = 'R';
buf[1] = 0xf2;
buf[2] = block_id >> 8;
buf[3] = block_id & 0xff;
memcpy(buf + 4, firmware+i, 32);
printf("Block %d / %d\r", block_id+1, len / 32); fflush(stdout);
n = gcn64lib_rawSiCommand(hdl, channel, buf, 4 + 32, buf, 4);
if (n<0) {
fprintf(stderr, "\nRaw command failed\n");
return n;
}
if (n != 4) {
fprintf(stderr, "\nInvalid upload block answer\n");
return -1;
}
// [0] ACK (should be 0x00)
// [1] Need to poll?
// [2] Block ID high
// [3] Block ID low
if (buf[0] != 0x00) {
fprintf(stderr, "Busy\n");
return -1;
}
if (buf[1]) {
if (gc2n64_adapter_waitNotBusy(hdl, channel, 1)) {
fprintf(stderr, "Error waiting not busy\n");
return -1;
}
}
// printf("\n");
// printf("Block ID: 0x%04x\n", (buf[2]<<8) | buf[3]);
}
return 0;
}
int gc2n64_adapter_verifyFirmware(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len)
{
unsigned char buf[32];
int i;
for (i=0; i<len; i+=32) {
gc2n64_adapter_boot_readBlock(hdl, channel, i/32, buf);
if (memcmp(buf, firmware + i, 32)) {
printf("\nMismatch in block address 0x%04x\n", i);
printf("Written: "); printHexBuf(firmware + i, 32);
printf(" Read: "); printHexBuf(buf, 32);
return -1;
} else {
printf("Block %d / %d ok\r", i/32 + 1, len / 32); fflush(stdout);
}
}
return 0;
}
int gc2n64_adapter_waitForBootloader(gcn64_hdl_t hdl, int channel, int timeout_s)
{
struct gc2n64_adapter_info inf;
int i;
int n;
for (i=0; i<=timeout_s; i++) {
n = gc2n64_adapter_getInfo(hdl, channel, &inf);
// Errors (caused by timeouts) are just ignored since they are expected.
if (n == 0) {
gc2n64_adapter_printInfo(&inf);
if (inf.in_bootloader)
return 0;
}
_delay_s(1);
}
return -1;
}
#define FIRMWARE_BUF_SIZE 0x10000
int gc2n64_adapter_updateFirmware(gcn64_hdl_t hdl, int channel, const char *hexfile)
{
unsigned char *buf;
int max_addr;
int ret = 0, res;
struct gc2n64_adapter_info inf;
const char *signature = "41d938a8-6f8a-11e5-a45e-001bfca3c593";
////////////////////
printf("step [1/7] : Load .hex file...\n");
buf = malloc(FIRMWARE_BUF_SIZE);
if (!buf) {
perror("malloc");
return -1;
}
memset(buf, 0xff, FIRMWARE_BUF_SIZE);
max_addr = load_ihex(hexfile, buf, FIRMWARE_BUF_SIZE);
if (max_addr < 0) {
fprintf(stderr, "Update failed : Could not load hex file\n");
ret = -1;
goto err;
}
// look for the signature somewhere in the file to make sure
// this firmware is intended for this product
if (!memmem(buf, max_addr + 1, signature, strlen(signature))) {
fprintf(stderr, "Update aborted : Signature not found. This hex file is not for this adapter.\n");
ret = -1;
printHexBuf(buf + 0x1bde, 30);
goto err;
}
printf("Firmware size: %d bytes\n", max_addr+1);
////////////////////
printf("step [2/7] : Get adapter info...\n");
res = gc2n64_adapter_getInfo(hdl, channel, &inf);
if (res < 0) {
fprintf(stderr, "Failed to read adapter info\n");
return -1;
}
gc2n64_adapter_printInfo(&inf);
if (inf.in_bootloader) {
printf("step [3/7] : Enter bootloader... Skipped. Already in bootloader.\n");
} else {
// Catch Atmega8 adapters programmed with a new firmware but without bootloader.
if (!inf.app.upgradeable) {
fprintf(stderr, "Error : This adapter is not upgradable. (i.e. No bootloader on Atmega8)\n");
ret = -1;
goto err;
}
printf("step [3/7] : Enter bootloader...\n");
res = gc2n64_adapter_enterBootloader(hdl, channel);
if (res < 0) {
fprintf(stderr, "Failed to enter the bootloader\n");
ret = -1;
goto err;
}
// Re-read the info structure, as we will need the bootloader start address.
res = gc2n64_adapter_getInfo(hdl, channel, &inf);
if (res < 0) {
fprintf(stderr, "Failed to read info after enterring bootloader\n");
ret = -1;
goto err;
}
}
////////////////////
printf("step [4/7] : Erase current firmware... "); fflush(stdout);
gc2n64_adapter_boot_eraseAll(hdl, channel);
if (gc2n64_adapter_waitNotBusy(hdl, channel, 1)) {
ret = -1;
goto err;
}
printf("Ok\n");
printf("step [5/7] : Write new firmware...\n");
// Note: We write up to the bootloader, even if the firmware was shorter (it usually is).
// This is to make sure that the marker we placed at the end gets written.
res = gc2n64_adapter_sendFirmwareBlocks(hdl, channel, buf, inf.bootldr.bootloader_start_address);
if (res < 0) {
ret = -1;
goto err;
}
printf("step [6/7] : Verify firmware...\n");
res = gc2n64_adapter_verifyFirmware(hdl, channel, buf, inf.bootldr.bootloader_start_address);
if (res < 0) {
printf("Verify failed : Update failed\n");
ret = -1;
goto err;
}
printf("step [7/7] : Launch new firmware.\n");
gc2n64_adapter_bootApplication(hdl, channel);
err:
free(buf);
return ret;
}