/* gc_n64_usb : Gamecube or N64 controller to USB adapter firmware Copyright (C) 2007-2015 Raphael Assenat This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define _GNU_SOURCE // for memmem #include #include #include #include "gcn64lib.h" #include "gc2n64_adapter.h" #include "hexdump.h" #include "ihex.h" #include "delay.h" #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) #endif int gc2n64_adapter_echotest(gcn64_hdl_t hdl, int channel, int verbose) { unsigned char cmd[30]; unsigned char buf[30]; int i, n; cmd[0] = 'R'; cmd[1] = 0x00; // echo for (i=0; i<28; i++) { cmd[i+2] = 'A'+i; } n = gcn64lib_rawSiCommand(hdl, channel, cmd, sizeof(buf), buf, sizeof(buf)); if (n<0) { return n; } if (verbose) { if ((n != sizeof(buf)) || memcmp(cmd, buf, sizeof(buf))) { printf("Test failed\n"); printf(" Sent [%d]: ", (int)sizeof(cmd)); printHexBuf(cmd, sizeof(cmd)); printf("Received [%d]: ", n); printHexBuf(buf, n); return -1; } } return (n!= sizeof(buf)) || memcmp(cmd, buf, sizeof(buf)); } int gc2n64_adapter_storeCurrentMapping(gcn64_hdl_t hdl, int channel, int dst_slot) { int n; unsigned char cmd[3]; cmd[0] = 'R'; cmd[1] = 0x04; // Save current mapping cmd[2] = dst_slot; n = gcn64lib_rawSiCommand(hdl, channel, cmd, sizeof(cmd), cmd, 1); if (n<0) { return n; } if (n != 1) { fprintf(stderr, "Communication error while storing mapping\n"); return -1; } if (cmd[0] == 0x00) { return gc2n64_adapter_waitNotBusy(hdl, channel, 0); } else { fprintf(stderr, "storeCurrentMapping: Command NACKed\n"); return -1; } } int gc2n64_adapter_setMapping(gcn64_hdl_t hdl, int channel, struct gc2n64_adapter_mapping *mapping) { unsigned char buf[64]; unsigned char mapdata[64]; int i, n; int maplen, togo, done, chunk; maplen = mapping->n_pairs * 2; if (maplen > sizeof(mapdata)) { fprintf(stderr, "Mapping too large\n"); return -1; } for (i=0; in_pairs; i++) { mapdata[i*2] = mapping->pairs[i].gc; mapdata[i*2 + 1] = mapping->pairs[i].n64; } printf("Map data : "); printHexBuf(mapdata, maplen); togo = maplen; done = 0; chunk = 0; while (togo) { int len; if (togo > 32) { len = 32; } else { len = togo; } buf[0] = 'R'; buf[1] = 0x03; // set mapping buf[2] = chunk; memcpy(buf + 3, mapdata + done, len); done+= len; // printf("Mapping chunk : "); // printHexBuf(buf, len + 2); n = gcn64lib_rawSiCommand(hdl, channel, buf, len + 3, buf, 1); if (n<0) { return n; } if (n != 1) { fprintf(stderr, "Communication error setting mapping\n"); return -1; } togo -= len; chunk++; } return 0; } int gc2n64_adapter_getMapping(gcn64_hdl_t hdl, int channel, int mapping_id, struct gc2n64_adapter_mapping *dst_mapping) { unsigned char buf[64]; unsigned char cmd[4]; int n; int mapping_size; int togo; cmd[0] = 'R'; cmd[1] = 0x02; // Get mapping cmd[2] = mapping_id; cmd[3] = 0; // chunk 0 (size) n = gcn64lib_rawSiCommand(hdl, channel, cmd, 4, buf, 1); if (n<0) return n; if (n == 1) { int i, pos; mapping_size = buf[0]; // printf("Mapping %d size: %d\n", mapping_id, mapping_size); togo = mapping_size; for (pos=0, i=0; pos 32 ? 32 : togo); if (n<0) { return n; } // printf("ret: %d\n", n); if (n==0) break; pos += n; togo -= n; } //printf("Received %d bytes\n", pos); if (n%2) { fprintf(stderr, "Error: Odd length mapping received\n"); printHexBuf(buf, pos); return -1; } // TODO : Decode this to dst_mapping dst_mapping->n_pairs = pos/2; for (i=0; in_pairs; i++) { dst_mapping->pairs[i].gc = buf[i*2]; dst_mapping->pairs[i].n64 = buf[i*2+1]; } } return 0; } const char *gc2n64_adapter_getMappingSlotName(unsigned char id, int default_context) { switch (id) { case MAPPING_SLOT_BUILTIN_CURRENT: if (default_context) { return "[Built-in default]"; } else { return "[Current mapping]"; } case MAPPING_SLOT_DPAD_UP: return "[D-Pad UP]"; case MAPPING_SLOT_DPAD_DOWN: return "[D-Pad DOWN]"; case MAPPING_SLOT_DPAD_LEFT: return "[D-Pad LEFT]"; case MAPPING_SLOT_DPAD_RIGHT: return "[D-Pad RIGHT]"; } return "Invalid ID"; } const char *gc2n64_adapter_getGCname(unsigned char id) { const char *names[] = { "A","B","Z","Start", "L","R", "C-stick up (50% threshold)", "C-stick down (50% threshold)", "C-stick left (50% threshold)", "C-stick right (50% threshold)", "Dpad-up","Dpad-down","Dpad-left","Dpad-right", "Joystick left-right axis","Joystick up-down axis", // Extras "X","Y", "Joystick up (50% threshold)", "Joystick down (50% threshold)", "Joystick left (50% threshold)", "Joystick right (50% threshold)", "Analogic L slider (50% threshold)", "Analogic R slider (50% threshold)", "C-stick left-right axis","C-stick up-down axis", }; if (id == 0xff) return "None"; if (id < 0 || id >= ARRAY_SIZE(names)) { return "Error"; } return names[id]; } const char *gc2n64_adapter_getN64name(unsigned char id) { const char *names[] = { "A","B","Z","Start","L","R", "C-up","C-down","C-left","C-right", "Dpad-up","Dpad-down","Dpad-left","Dpad-right", "Joystick left-right axis","Joystick up-down axis", "Joystick up", "Joystick down", "Joystick left", "Joystick right", "None" }; if (id == 0xff) return "None"; if (id < 0 || id >= ARRAY_SIZE(names)) { return "Error"; } return names[id]; } struct gc2n64_adapter_mapping *gc2n64_adapter_loadMapping(const char *srcfile) { FILE *fptr; struct gc2n64_adapter_mapping *map = NULL;; char linebuf[64]; int line = 0, pair = 0; fptr = fopen(srcfile, "r"); if (!fptr) { perror("fopen"); return NULL; } map = malloc(sizeof(struct gc2n64_adapter_mapping)); if (!map) { perror("malloc"); goto err; } do { if (fgets(linebuf, sizeof(linebuf), fptr)) { int gc, n64, n; line++; if (line == 1) { const char *magic = "# gc2n64 mapping"; if (strncmp(magic, linebuf, strlen(magic))) { fprintf(stderr, "Does not appear to be a valid mapping file\n"); goto err; } continue; } n = sscanf(linebuf, "%03d;%03d", &gc, &n64); if (n != 2) { // printf("Ignoring line %d\n", line); } else { // printf("%d -> %d\n", gc, n64); map->pairs[pair].gc = gc; map->pairs[pair].n64 = n64; pair++; if (pair >= GC2N64_MAX_MAPPING_PAIRS) { fprintf(stderr, "too many pairs, cannot load mapping.\n"); goto err; } } } } while (!feof(fptr)); map->n_pairs = pair; fclose(fptr); return map; err: if (map) { free(map); } fclose(fptr); return NULL; } int gc2n64_adapter_saveMapping(struct gc2n64_adapter_mapping *map, const char *dstfile) { FILE *fptr; int i; fptr = fopen(dstfile, "w"); if (!fptr) { perror("fopen"); return -1; } fprintf(fptr, "# gc2n64 mapping\n"); for (i=0; in_pairs; i++) { fprintf(fptr, "%03d;%03d # %s -> %s\n", map->pairs[i].gc, map->pairs[i].n64, gc2n64_adapter_getGCname(map->pairs[i].gc), gc2n64_adapter_getN64name(map->pairs[i].n64)); } fflush(fptr); fclose(fptr); return 0; } void gc2n64_adapter_printMapping(struct gc2n64_adapter_mapping *map) { int i; int is_default; for (i=0; in_pairs; i++) { // Do not display the terminator if (map->pairs[i].gc == 0xff || map->pairs[i].n64 == 0xff) { break; } /* 0 .. 15 is a 1:1 (same button name) mapping by default */ if (map->pairs[i].gc < 16) { if (map->pairs[i].gc == map->pairs[i].n64) { is_default = 1; } else { is_default = 0; } } else { // 16 and above maps to NONE by default if (map->pairs[i].n64 == 20) { is_default = 1; } else { is_default = 0; } } if (!is_default) { printf("%s -> %s, ", gc2n64_adapter_getGCname(map->pairs[i].gc), gc2n64_adapter_getN64name(map->pairs[i].n64)); } } } void gc2n64_adapter_printInfo(struct gc2n64_adapter_info *inf) { int i; if (!inf->in_bootloader) { printf("gc_to_n64 adapter info: {\n"); printf("\tDefault mapping id: %d (%s)\n", inf->app.default_mapping_id, gc2n64_adapter_getMappingSlotName(inf->app.default_mapping_id, 1) ); printf("\tDeadzone enabled: %d\n", inf->app.deadzone_enabled); printf("\tOld v1.5 conversion: %d\n", inf->app.old_v1_5_conversion); printf("\tFirmware version: %s\n", inf->app.version); printf("\tUpgradable: %s\n", inf->app.upgradeable ? "Yes":"No (Atmega8)"); for (i=0; iapp.mappings[i]); printf(" }\n"); } } else { printf("gc_to_n64 adapter in bootloader mode: {\n"); printf("\tBootloader firmware version: %s\n", inf->bootldr.version); printf("\tMCU page size: %d bytes\n", inf->bootldr.mcu_page_size); printf("\tBootloader code start address: 0x%04x\n", inf->bootldr.bootloader_start_address); } printf("}\n"); } int gc2n64_adapter_getInfo(gcn64_hdl_t hdl, int channel, struct gc2n64_adapter_info *inf) { unsigned char buf[32]; int n; buf[0] = 'R'; buf[1] = 0x01; // Get device info n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf)); if (n<0) return n; if (n > 0) { // On N64, when receiving an all 0xFF reply, catch it here. if (buf[0] == 0xff) return -1; if (!inf) return 0; inf->in_bootloader = buf[0]; if (!inf->in_bootloader) { inf->app.default_mapping_id = buf[1]; inf->app.deadzone_enabled = buf[2]; inf->app.old_v1_5_conversion = buf[3]; inf->app.upgradeable = buf[9]; inf->app.version[sizeof(inf->app.version)-1]=0; strncpy(inf->app.version, (char*)buf+10, sizeof(inf->app.version)-1); } else { inf->bootldr.mcu_page_size = buf[1]; inf->bootldr.bootloader_start_address = buf[2] << 8 | buf[3]; inf->bootldr.version[sizeof(inf->bootldr.version)-1]=0; strncpy(inf->bootldr.version, (char*)buf+10, sizeof(inf->bootldr.version)-1); } for (n=0; napp.mappings[n]); } } else { printf("No answer (old version?)\n"); return -1; } return 0; } int gc2n64_adapter_isBusy(gcn64_hdl_t hdl, int channel) { unsigned char buf[64]; int n; buf[0] = 'R'; buf[1] = 0xf9; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { return 2; // Busy inferred from lack of answer } if (buf[0] != 0x00) { return 1; // Busy } return 0; // Idle } int gc2n64_adapter_waitNotBusy(gcn64_hdl_t hdl, int channel, int verbose) { char spinner[4] = { '|','/','-','\\' }; int busy, no_reply_count=0; int c=0; while ((busy = gc2n64_adapter_isBusy(hdl, channel))) { if (busy < 0) { return -1; } if (busy == 2) { no_reply_count++; if (no_reply_count > 200) { fprintf(stderr, "Adapter answer timeout\n"); return -1; } } printf("%c\b", spinner[c%4]); fflush(stdout); c++; _delay_us(50000); } return 0; } int gc2n64_adapter_boot_eraseAll(gcn64_hdl_t hdl, int channel) { unsigned char buf[64]; int n; buf[0] = 'R'; buf[1] = 0xf0; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { fprintf(stderr, "Invalid answer. %d bytes received.\n", n); return -1; } if (buf[0] != 0x00) { fprintf(stderr, "eraseAll request NACK!\n"); return -1; } return 0; } int gc2n64_adapter_boot_readBlock(gcn64_hdl_t hdl, int channel, unsigned int block_id, unsigned char dst[32]) { unsigned char buf[32]; int n; buf[0] = 'R'; buf[1] = 0xf1; buf[2] = block_id >> 8; buf[3] = block_id & 0xff; n = gcn64lib_rawSiCommand(hdl, channel, buf, 4, buf, sizeof(buf)); if (n<0) return n; if (n != 32) { fprintf(stderr, "Invalid answer\n"); return -1; } memcpy(dst, buf, 32); return 0; } int gc2n64_adapter_dumpFlash(gcn64_hdl_t hdl, int channel) { int i; unsigned char buf[0x10000]; struct gc2n64_adapter_info inf; i = gc2n64_adapter_getInfo(hdl, channel, &inf); if (i) return i; if (!inf.in_bootloader) { fprintf(stderr, "dumpFlash: Nnot in bootloader\n"); return -1; } // Atmega168 : 16K for (i=0; i<16*1024; i+= 32) { gc2n64_adapter_boot_readBlock(hdl, channel, i/32, buf + i); printf("0x%04x: ", i); printHexBuf(buf + i, 32); } return 0; } int gc2n64_adapter_enterBootloader(gcn64_hdl_t hdl, int channel) { unsigned char buf[4]; int n; int t = 1000; // > 100ms timeout /* The bootloader starts the application automatically if it is * installed. To prevent the application from being restarted right * away when are entering the bootloader, the bootloader waits * 50 ms at startup, and if it receives the 'enter bootloader' command * within this window, the application is not started. * * Also, contrary to the application, the bootloader actually answers * this command. So it doubles as a handshake to know the bootloader has * started and is ready to receive instructions. * * */ do { buf[0] = 'R'; buf[1] = 0xff; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, sizeof(buf)); if (n<0) { return n; } if (buf[0] == 0xff && buf[1] == 0xff) { n = 0; } _delay_us(1000); t--; if (!t) { fprintf(stderr, "Timeout waiting for bootloader\n"); return -1; } } while(n==0); return 0; } int gc2n64_adapter_bootApplication(gcn64_hdl_t hdl, int channel) { unsigned char buf[2]; int n; buf[0] = 'R'; buf[1] = 0xfe; n = gcn64lib_rawSiCommand(hdl, channel, buf, 2, buf, 1); if (n<0) return n; if (n != 1) { fprintf(stderr, "boot application: Invalid answer\n"); return -1; } if (buf[0]) { fprintf(stderr, "Boot nack\n"); return -1; } return 0; } // Note: eraseAll needs to be performed first int gc2n64_adapter_sendFirmwareBlocks(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len) { unsigned char buf[64]; int i, block_id; int n; for (i=0; i> 8; buf[3] = block_id & 0xff; memcpy(buf + 4, firmware+i, 32); printf("Block %d / %d\r", block_id+1, len / 32); fflush(stdout); n = gcn64lib_rawSiCommand(hdl, channel, buf, 4 + 32, buf, 4); if (n<0) { fprintf(stderr, "\nRaw command failed\n"); return n; } if (n != 4) { fprintf(stderr, "\nInvalid upload block answer\n"); return -1; } // [0] ACK (should be 0x00) // [1] Need to poll? // [2] Block ID high // [3] Block ID low if (buf[0] != 0x00) { fprintf(stderr, "Busy\n"); return -1; } if (buf[1]) { if (gc2n64_adapter_waitNotBusy(hdl, channel, 1)) { fprintf(stderr, "Error waiting not busy\n"); return -1; } } // printf("\n"); // printf("Block ID: 0x%04x\n", (buf[2]<<8) | buf[3]); } return 0; } int gc2n64_adapter_verifyFirmware(gcn64_hdl_t hdl, int channel, unsigned char *firmware, int len) { unsigned char buf[32]; int i; for (i=0; i