Shipwright/soh/src/code/z_jpeg.c
M4xw 39cc86c260 git subrepo clone https://github.com/HarbourMasters/soh.git
subrepo:
  subdir:   "soh"
  merged:   "ba904bbd0"
upstream:
  origin:   "https://github.com/HarbourMasters/soh.git"
  branch:   "master"
  commit:   "ba904bbd0"
git-subrepo:
  version:  "0.4.1"
  origin:   "???"
  commit:   "???"
2022-03-22 02:51:23 +01:00

367 lines
13 KiB
C

#include "global.h"
#include "vt.h"
#define MARKER_ESCAPE 0x00
#define MARKER_SOI 0xD8
#define MARKER_SOF 0xC0
#define MARKER_DHT 0xC4
#define MARKER_DQT 0xDB
#define MARKER_DRI 0xDD
#define MARKER_SOS 0xDA
#define MARKER_APP0 0xE0
#define MARKER_APP1 0xE1
#define MARKER_APP2 0xE2
#define MARKER_COM 0xFE
#define MARKER_EOI 0xD9
/**
* Configures and schedules a JPEG decoder task and waits for it to finish.
*/
void Jpeg_ScheduleDecoderTask(JpegContext* ctx)
{
#if 0
static OSTask_t sJpegTask = {
M_NJPEGTASK, // type
0, // flags
NULL, // ucode_boot
0, // ucode_boot_size
gJpegUCode, // ucode
0x1000, // ucode_size
gJpegUCodeData, // ucode_data
0x800, // ucode_data_size
NULL, // dram_stack
0, // dram_stack_size
NULL, // output_buff
NULL, // output_buff_size
NULL, // data_ptr
sizeof(JpegTaskData), // data_size
NULL, // yield_data_ptr
0x200, // yield_data_size
};
JpegWork* workBuf = ctx->workBuf;
s32 pad[2];
workBuf->taskData.address = PHYSICAL_TO_VIRTUAL(&workBuf->data);
workBuf->taskData.mode = ctx->mode;
workBuf->taskData.mbCount = 4;
workBuf->taskData.qTableYPtr = PHYSICAL_TO_VIRTUAL(&workBuf->qTableY);
workBuf->taskData.qTableUPtr = PHYSICAL_TO_VIRTUAL(&workBuf->qTableU);
workBuf->taskData.qTableVPtr = PHYSICAL_TO_VIRTUAL(&workBuf->qTableV);
sJpegTask.flags = 0;
sJpegTask.ucode_boot = SysUcode_GetUCodeBoot();
sJpegTask.ucode_boot_size = SysUcode_GetUCodeBootSize();
sJpegTask.yield_data_ptr = (u64*)&workBuf->yieldData;
sJpegTask.data_ptr = (u64*)&workBuf->taskData;
ctx->scTask.next = NULL;
ctx->scTask.flags = OS_SC_NEEDS_RSP;
ctx->scTask.msgQ = &ctx->mq;
ctx->scTask.msg = NULL;
ctx->scTask.framebuffer = NULL;
ctx->scTask.list.t = sJpegTask;
osSendMesg(&gSchedContext.cmdQ, (OSMesg)&ctx->scTask, OS_MESG_BLOCK);
Sched_SendEntryMsg(&gSchedContext); // osScKickEntryMsg
osRecvMesg(&ctx->mq, NULL, OS_MESG_BLOCK);
#endif
}
/**
* Copies a 16x16 block of decoded image data to the Z-buffer.
*/
void Jpeg_CopyToZbuffer(u16* src, u16* zbuffer, s32 x, s32 y) {
u16* dst = zbuffer + (((y * SCREEN_WIDTH) + x) * 16);
s32 i;
for (i = 0; i < 16; i++) {
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
src += 16;
dst += SCREEN_WIDTH;
}
}
/**
* Reads an u16 from a possibly unaligned address in memory.
*
* Replaces unaligned 16-bit reads with a pair of aligned reads, allowing for reading the possibly
* unaligned values in JPEG header files.
*/
u16 Jpeg_GetUnalignedU16(u8* ptr) {
if (((u32)ptr & 1) == 0) {
// Read the value normally if it's aligned to a 16-bit address.
return *(u16*)ptr;
} else {
// Read unaligned values using two separate aligned memory accesses when it's not.
return *(u16*)(ptr - 1) << 8 | (*(u16*)(ptr + 1) >> 8);
}
}
/**
* Parses the markers in the JPEG file, storing information such as the pointer to the image data
* in `ctx` for later processing.
*/
void Jpeg_ParseMarkers(u8* ptr, JpegContext* ctx) {
u32 exit = false;
ctx->dqtCount = 0;
ctx->dhtCount = 0;
while (true) {
if (exit) {
break;
}
// 0xFF indicates the start of a JPEG marker, so look for the next.
if (*ptr++ == 0xFF) {
switch (*ptr++) {
case MARKER_ESCAPE: {
// Compressed value 0xFF is stored as 0xFF00 to escape it, so ignore it.
break;
}
case MARKER_SOI: {
// Start of Image
osSyncPrintf("MARKER_SOI\n");
break;
}
case MARKER_APP0: {
// Application marker for JFIF
osSyncPrintf("MARKER_APP0 %d\n", Jpeg_GetUnalignedU16(ptr));
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_APP1: {
// Application marker for EXIF
osSyncPrintf("MARKER_APP1 %d\n", Jpeg_GetUnalignedU16(ptr));
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_APP2: {
osSyncPrintf("MARKER_APP2 %d\n", Jpeg_GetUnalignedU16(ptr));
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_DQT: {
// Define Quantization Table, stored for later processing
osSyncPrintf("MARKER_DQT %d %d %02x\n", ctx->dqtCount, Jpeg_GetUnalignedU16(ptr), ptr[2]);
ctx->dqtPtr[ctx->dqtCount++] = ptr + 2;
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_DHT: {
// Define Huffman Table, stored for later processing
osSyncPrintf("MARKER_DHT %d %d %02x\n", ctx->dhtCount, Jpeg_GetUnalignedU16(ptr), ptr[2]);
ctx->dhtPtr[ctx->dhtCount++] = ptr + 2;
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_DRI: {
// Define Restart Interval
osSyncPrintf("MARKER_DRI %d\n", Jpeg_GetUnalignedU16(ptr));
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_SOF: {
// Start of Frame, stores important metadata of the image.
// Only used for extracting the sampling factors (ctx->mode).
osSyncPrintf("MARKER_SOF %d "
"精度%02x " // "accuracy"
"垂直%d " // "vertical"
"水平%d " // "horizontal"
"compo%02x "
"(1:Y)%d (H0=2,V0=1(422) or 2(420))%02x (量子化テーブル)%02x "
"(2:Cb)%d (H1=1,V1=1)%02x (量子化テーブル)%02x "
"(3:Cr)%d (H2=1,V2=1)%02x (量子化テーブル)%02x\n",
Jpeg_GetUnalignedU16(ptr),
ptr[2], // precision
Jpeg_GetUnalignedU16(ptr + 3), // height
Jpeg_GetUnalignedU16(ptr + 5), // width
ptr[7], // component count (assumed to be 3)
ptr[8], ptr[9], ptr[10], // Y component
ptr[11], ptr[12], ptr[13], // Cb component
ptr[14], ptr[15], ptr[16] // Cr component
);
if (ptr[9] == 0x21) {
// component Y : V0 == 1
ctx->mode = 0;
} else if (ptr[9] == 0x22) {
// component Y : V0 == 2
ctx->mode = 2;
}
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
case MARKER_SOS: {
// Start of Scan marker, indicates the start of the image data.
osSyncPrintf("MARKER_SOS %d\n", Jpeg_GetUnalignedU16(ptr));
ptr += Jpeg_GetUnalignedU16(ptr);
ctx->imageData = ptr;
break;
}
case MARKER_EOI: {
// End of Image
osSyncPrintf("MARKER_EOI\n");
exit = true;
break;
}
default: {
osSyncPrintf("マーカー不明 %02x\n", ptr[-1]); // "Unknown marker"
ptr += Jpeg_GetUnalignedU16(ptr);
break;
}
}
}
}
}
s32 Jpeg_Decode(void* data, void* zbuffer, void* work, u32 workSize) {
s32 y;
s32 x;
u32 j;
u32 i;
JpegContext ctx;
JpegHuffmanTable hTables[4];
JpegDecoder decoder;
JpegDecoderState state;
JpegWork* workBuff;
OSTime diff;
OSTime time;
OSTime curTime;
workBuff = work;
time = osGetTime();
// (?) I guess MB_SIZE=0x180, PROC_OF_MBS=5 which means data is not a part of JpegWork
ASSERT(workSize >= sizeof(JpegWork), "worksize >= sizeof(JPEGWork) + MB_SIZE * (PROC_OF_MBS - 1)", "../z_jpeg.c",
527);
osCreateMesgQueue(&ctx.mq, &ctx.msg, 1);
MsgEvent_SendNullTask();
curTime = osGetTime();
diff = curTime - time;
time = curTime;
// "Wait for synchronization of fifo buffer"
osSyncPrintf("*** fifoバッファの同期待ち time = %6.3f ms ***\n", OS_CYCLES_TO_USEC(diff) / 1000.0f);
ctx.workBuf = workBuff;
Jpeg_ParseMarkers(data, &ctx);
curTime = osGetTime();
diff = curTime - time;
time = curTime;
// "Check markers for each segment"
osSyncPrintf("*** 各セグメントのマーカーのチェック time = %6.3f ms ***\n", OS_CYCLES_TO_USEC(diff) / 1000.0f);
switch (ctx.dqtCount) {
case 1:
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[0], &workBuff->qTableY, 3);
break;
case 2:
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[0], &workBuff->qTableY, 1);
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[1], &workBuff->qTableU, 1);
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[1], &workBuff->qTableV, 1);
break;
case 3:
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[0], &workBuff->qTableY, 1);
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[1], &workBuff->qTableU, 1);
JpegUtils_ProcessQuantizationTable(ctx.dqtPtr[2], &workBuff->qTableV, 1);
break;
default:
return -1;
}
curTime = osGetTime();
diff = curTime - time;
time = curTime;
// "Create quantization table"
osSyncPrintf("*** 量子化テーブル作成 time = %6.3f ms ***\n", OS_CYCLES_TO_USEC(diff) / 1000.0f);
switch (ctx.dhtCount) {
case 1:
if (JpegUtils_ProcessHuffmanTable(ctx.dhtPtr[0], &hTables[0], workBuff->codesLengths, workBuff->codes, 4)) {
osSyncPrintf("Error : Cant' make huffman table.\n");
}
break;
case 4:
if (JpegUtils_ProcessHuffmanTable(ctx.dhtPtr[0], &hTables[0], workBuff->codesLengths, workBuff->codes, 1)) {
osSyncPrintf("Error : Cant' make huffman table.\n");
}
if (JpegUtils_ProcessHuffmanTable(ctx.dhtPtr[1], &hTables[1], workBuff->codesLengths, workBuff->codes, 1)) {
osSyncPrintf("Error : Cant' make huffman table.\n");
}
if (JpegUtils_ProcessHuffmanTable(ctx.dhtPtr[2], &hTables[2], workBuff->codesLengths, workBuff->codes, 1)) {
osSyncPrintf("Error : Cant' make huffman table.\n");
}
if (JpegUtils_ProcessHuffmanTable(ctx.dhtPtr[3], &hTables[3], workBuff->codesLengths, workBuff->codes, 1)) {
osSyncPrintf("Error : Cant' make huffman table.\n");
}
break;
default:
return -1;
}
curTime = osGetTime();
diff = curTime - time;
time = curTime;
// "Huffman table creation"
osSyncPrintf("*** ハフマンテーブル作成 time = %6.3f ms ***\n", OS_CYCLES_TO_USEC(diff) / 1000.0f);
decoder.imageData = ctx.imageData;
decoder.mode = ctx.mode;
decoder.unk_05 = 2;
decoder.hTablePtrs[0] = &hTables[0];
decoder.hTablePtrs[1] = &hTables[1];
decoder.hTablePtrs[2] = &hTables[2];
decoder.hTablePtrs[3] = &hTables[3];
decoder.unk_18 = 0;
x = y = 0;
for (i = 0; i < 300; i += 4) {
if (JpegDecoder_Decode(&decoder, (u16*)workBuff->data, 4, i != 0, &state)) {
osSyncPrintf(VT_FGCOL(RED));
osSyncPrintf("Error : Can't decode jpeg\n");
osSyncPrintf(VT_RST);
} else {
Jpeg_ScheduleDecoderTask(&ctx);
osInvalDCache(&workBuff->data, sizeof(workBuff->data[0]));
for (j = 0; j < ARRAY_COUNT(workBuff->data); j++) {
Jpeg_CopyToZbuffer(workBuff->data[j], zbuffer, x, y);
x++;
if (x >= 20) {
x = 0;
y++;
}
}
}
}
curTime = osGetTime();
diff = curTime - time;
time = curTime;
// "Unfold & draw"
osSyncPrintf("*** 展開 & 描画 time = %6.3f ms ***\n", OS_CYCLES_TO_USEC(diff) / 1000.0f);
return 0;
}