Shipwright/soh/src/code/z_lib.c

573 lines
14 KiB
C
Raw Normal View History

#include "global.h"
f32 Math_CosS(s16 angle) {
return coss(angle) * SHT_MINV;
}
f32 Math_SinS(s16 angle) {
return sins(angle) * SHT_MINV;
}
/**
* Changes pValue by step (scaled by the update rate) towards target, setting it equal when the target is reached.
* Returns true when target is reached, false otherwise.
*/
s32 Math_ScaledStepToS(s16* pValue, s16 target, s16 step) {
if (step != 0) {
f32 updateScale = R_UPDATE_RATE * 0.5f;
if ((s16)(*pValue - target) > 0) {
step = -step;
}
*pValue += (s16)(step * updateScale);
if (((s16)(*pValue - target) * step) >= 0) {
*pValue = target;
return true;
}
} else if (target == *pValue) {
return true;
}
return false;
}
/**
* Changes pValue by step towards target, setting it equal when the target is reached.
* Returns true when target is reached, false otherwise.
*/
s32 Math_StepToS(s16* pValue, s16 target, s16 step) {
if (step != 0) {
if (target < *pValue) {
step = -step;
}
*pValue += step;
if (((*pValue - target) * step) >= 0) {
*pValue = target;
return true;
}
} else if (target == *pValue) {
return true;
}
return false;
}
/**
* Changes pValue by step towards target, setting it equal when the target is reached.
* Returns true when target is reached, false otherwise.
*/
s32 Math_StepToF(f32* pValue, f32 target, f32 step) {
if (step != 0.0f) {
if (target < *pValue) {
step = -step;
}
*pValue += step;
if (((*pValue - target) * step) >= 0) {
*pValue = target;
return true;
}
} else if (target == *pValue) {
return true;
}
return false;
}
/**
* Changes pValue by step. If pvalue reaches limit angle or its opposite, sets it equal to limit angle.
* Returns true when limit angle or its opposite is reached, false otherwise.
*/
s32 Math_StepUntilAngleS(s16* pValue, s16 limit, s16 step) {
s16 orig = *pValue;
*pValue += step;
if (((s16)(*pValue - limit) * (s16)(orig - limit)) <= 0) {
*pValue = limit;
return true;
}
return false;
}
/**
* Changes pValue by step. If pvalue reaches limit, sets it equal to limit.
* Returns true when limit is reached, false otherwise.
*/
s32 Math_StepUntilS(s16* pValue, s16 limit, s16 step) {
s16 orig = *pValue;
*pValue += step;
if (((*pValue - limit) * (orig - limit)) <= 0) {
*pValue = limit;
return true;
}
return false;
}
/**
* Changes pValue by step towards target angle, setting it equal when the target is reached.
* Returns true when target is reached, false otherwise.
*/
s32 Math_StepToAngleS(s16* pValue, s16 target, s16 step) {
s32 diff = target - *pValue;
if (diff < 0) {
step = -step;
}
if (diff >= 0x8000) {
step = -step;
diff = -0xFFFF - -diff;
} else if (diff <= -0x8000) {
diff += 0xFFFF;
step = -step;
}
if (step != 0) {
*pValue += step;
if ((diff * step) <= 0) {
*pValue = target;
return true;
}
} else if (target == *pValue) {
return true;
}
return false;
}
/**
* Changes pValue by step. If pvalue reaches limit, sets it equal to limit.
* Returns true when limit is reached, false otherwise.
*/
s32 Math_StepUntilF(f32* pValue, f32 limit, f32 step) {
f32 orig = *pValue;
*pValue += step;
if (((*pValue - limit) * (orig - limit)) <= 0) {
*pValue = limit;
return true;
}
return false;
}
/**
* Changes pValue toward target by incrStep if pValue is smaller and by decrStep if it is greater, setting it equal when
* target is reached. Returns true when target is reached, false otherwise.
*/
s32 Math_AsymStepToF(f32* pValue, f32 target, f32 incrStep, f32 decrStep) {
f32 step = (target >= *pValue) ? incrStep : decrStep;
if (step != 0.0f) {
if (target < *pValue) {
step = -step;
}
*pValue += step;
if (((*pValue - target) * step) >= 0) {
*pValue = target;
return 1;
}
} else if (target == *pValue) {
return 1;
}
return 0;
}
void func_80077D10(f32* arg0, s16* arg1, Input* input) {
f32 relX = input->rel.stick_x;
f32 relY = input->rel.stick_y;
*arg0 = sqrtf(SQ(relX) + SQ(relY));
*arg0 = (60.0f < *arg0) ? 60.0f : *arg0;
*arg1 = Math_Atan2S(relY, -relX);
}
s16 Rand_S16Offset(s16 base, s16 range) {
return (s16)(Rand_ZeroOne() * range) + base;
}
s16 Rand_S16OffsetStride(s16 base, s16 stride, s16 range) {
return (s16)(Rand_ZeroOne() * range) * stride + base;
}
void Math_Vec3f_Copy(Vec3f* dest, Vec3f* src) {
dest->x = src->x;
dest->y = src->y;
dest->z = src->z;
}
void Math_Vec3s_ToVec3f(Vec3f* dest, Vec3s* src) {
dest->x = src->x;
dest->y = src->y;
dest->z = src->z;
}
void Math_Vec3f_Sum(Vec3f* a, Vec3f* b, Vec3f* dest) {
dest->x = a->x + b->x;
dest->y = a->y + b->y;
dest->z = a->z + b->z;
}
void Math_Vec3f_Diff(Vec3f* a, Vec3f* b, Vec3f* dest) {
dest->x = a->x - b->x;
dest->y = a->y - b->y;
dest->z = a->z - b->z;
}
void Math_Vec3s_DiffToVec3f(Vec3f* dest, Vec3s* a, Vec3s* b) {
dest->x = a->x - b->x;
dest->y = a->y - b->y;
dest->z = a->z - b->z;
}
void Math_Vec3f_Scale(Vec3f* vec, f32 scaleF) {
vec->x *= scaleF;
vec->y *= scaleF;
vec->z *= scaleF;
}
f32 Math_Vec3f_DistXYZ(Vec3f* a, Vec3f* b) {
f32 dx = b->x - a->x;
f32 dy = b->y - a->y;
f32 dz = b->z - a->z;
return sqrtf(SQ(dx) + SQ(dy) + SQ(dz));
}
f32 Math_Vec3f_DistXYZAndStoreDiff(Vec3f* a, Vec3f* b, Vec3f* dest) {
dest->x = b->x - a->x;
dest->y = b->y - a->y;
dest->z = b->z - a->z;
return sqrtf(SQ(dest->x) + SQ(dest->y) + SQ(dest->z));
}
f32 Math_Vec3f_DistXZ(Vec3f* a, Vec3f* b) {
f32 dx = b->x - a->x;
f32 dz = b->z - a->z;
return sqrtf(SQ(dx) + SQ(dz));
}
f32 Math_Vec3f_DiffY(Vec3f* a, Vec3f* b) {
return b->y - a->y;
}
s16 Math_Vec3f_Yaw(Vec3f* a, Vec3f* b) {
f32 dx = b->x - a->x;
f32 dz = b->z - a->z;
return Math_Atan2S(dz, dx);
}
s16 Math_Vec3f_Pitch(Vec3f* a, Vec3f* b) {
return Math_Atan2S(Math_Vec3f_DistXZ(a, b), a->y - b->y);
}
void IChain_Apply_u8(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_s8(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_u16(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_s16(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_u32(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_s32(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_f32(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_f32div1000(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_Vec3f(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_Vec3fdiv1000(u8* ptr, InitChainEntry* ichain);
void IChain_Apply_Vec3s(u8* ptr, InitChainEntry* ichain);
void (*sInitChainHandlers[])(u8* ptr, InitChainEntry* ichain) = {
IChain_Apply_u8, IChain_Apply_s8, IChain_Apply_u16, IChain_Apply_s16,
IChain_Apply_u32, IChain_Apply_s32, IChain_Apply_f32, IChain_Apply_f32div1000,
IChain_Apply_Vec3f, IChain_Apply_Vec3fdiv1000, IChain_Apply_Vec3s,
};
void Actor_ProcessInitChain(Actor* actor, InitChainEntry* ichain) {
do {
sInitChainHandlers[ichain->type]((u8*)actor, ichain);
} while ((ichain++)->cont);
}
void IChain_Apply_u8(u8* ptr, InitChainEntry* ichain) {
*(u8*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_s8(u8* ptr, InitChainEntry* ichain) {
*(s8*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_u16(u8* ptr, InitChainEntry* ichain) {
*(u16*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_s16(u8* ptr, InitChainEntry* ichain) {
*(s16*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_u32(u8* ptr, InitChainEntry* ichain) {
*(u32*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_s32(u8* ptr, InitChainEntry* ichain) {
*(s32*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_f32(u8* ptr, InitChainEntry* ichain) {
*(f32*)(ptr + ichain->offset) = ichain->value;
}
void IChain_Apply_f32div1000(u8* ptr, InitChainEntry* ichain) {
*(f32*)(ptr + ichain->offset) = ichain->value / 1000.0f;
}
void IChain_Apply_Vec3f(u8* ptr, InitChainEntry* ichain) {
Vec3f* vec = (Vec3f*)(ptr + ichain->offset);
f32 val = ichain->value;
vec->z = val;
vec->y = val;
vec->x = val;
}
void IChain_Apply_Vec3fdiv1000(u8* ptr, InitChainEntry* ichain) {
Vec3f* vec = (Vec3f*)(ptr + ichain->offset);
f32 val;
osSyncPrintf("pp=%x data=%f\n", vec, ichain->value / 1000.0f);
val = ichain->value / 1000.0f;
vec->z = val;
vec->y = val;
vec->x = val;
}
void IChain_Apply_Vec3s(u8* ptr, InitChainEntry* ichain) {
Vec3s* vec = (Vec3s*)(ptr + ichain->offset);
s16 val = ichain->value;
vec->z = val;
vec->y = val;
vec->x = val;
}
/**
* Changes pValue by step towards target. If this step is more than fraction of the remaining distance, step by that
* instead, with a minimum step of minStep. Returns remaining distance to target.
*/
f32 Math_SmoothStepToF(f32* pValue, f32 target, f32 fraction, f32 step, f32 minStep) {
if (*pValue != target) {
f32 stepSize = (target - *pValue) * fraction;
if ((stepSize >= minStep) || (stepSize <= -minStep)) {
if (stepSize > step) {
stepSize = step;
}
if (stepSize < -step) {
stepSize = -step;
}
*pValue += stepSize;
} else {
if (stepSize < minStep) {
*pValue += minStep;
stepSize = minStep;
if (target < *pValue) {
*pValue = target;
}
}
if (stepSize > -minStep) {
*pValue += -minStep;
if (*pValue < target) {
*pValue = target;
}
}
}
}
return fabsf(target - *pValue);
}
/**
* Changes pValue by step towards target. If step is more than fraction of the remaining distance, step by that instead.
*/
void Math_ApproachF(f32* pValue, f32 target, f32 fraction, f32 step) {
if (*pValue != target) {
f32 stepSize = (target - *pValue) * fraction;
if (stepSize > step) {
stepSize = step;
} else if (stepSize < -step) {
stepSize = -step;
}
*pValue += stepSize;
}
}
/**
* Changes pValue by step towards zero. If step is more than fraction of the remaining distance, step by that instead.
*/
void Math_ApproachZeroF(f32* pValue, f32 fraction, f32 step) {
f32 stepSize = *pValue * fraction;
if (stepSize > step) {
stepSize = step;
} else if (stepSize < -step) {
stepSize = -step;
}
*pValue -= stepSize;
}
/**
* Changes pValue by step towards target angle in degrees. If this step is more than fraction of the remaining distance,
* step by that instead, with a minimum step of minStep. Returns the value of the step taken.
*/
f32 Math_SmoothStepToDegF(f32* pValue, f32 target, f32 fraction, f32 step, f32 minStep) {
f32 stepSize = 0.0f;
f32 diff = target - *pValue;
if (*pValue != target) {
if (diff > 180.0f) {
diff = -(360.0f - diff);
} else if (diff < -180.0f) {
diff = 360.0f + diff;
}
stepSize = diff * fraction;
if ((stepSize >= minStep) || (stepSize <= -minStep)) {
if (stepSize > step) {
stepSize = step;
}
if (stepSize < -step) {
stepSize = -step;
}
*pValue += stepSize;
} else {
if (stepSize < minStep) {
stepSize = minStep;
*pValue += stepSize;
if (*pValue > target) {
*pValue = target;
}
}
if (stepSize > -minStep) {
stepSize = -minStep;
*pValue += stepSize;
if (*pValue < target) {
*pValue = target;
}
}
}
}
if (*pValue >= 360.0f) {
*pValue -= 360.0f;
}
if (*pValue < 0.0f) {
*pValue += 360.0f;
}
return stepSize;
}
/**
* Changes pValue by step towards target. If this step is more than 1/scale of the remaining distance, step by that
* instead, with a minimum step of minStep. Returns remaining distance to target.
*/
s16 Math_SmoothStepToS(s16* pValue, s16 target, s16 scale, s16 step, s16 minStep) {
s16 stepSize = 0;
s16 diff = target - *pValue;
if (*pValue != target) {
stepSize = diff / scale;
if ((stepSize > minStep) || (stepSize < -minStep)) {
if (stepSize > step) {
stepSize = step;
}
if (stepSize < -step) {
stepSize = -step;
}
*pValue += stepSize;
} else {
if (diff >= 0) {
*pValue += minStep;
if ((s16)(target - *pValue) <= 0) {
*pValue = target;
}
} else {
*pValue -= minStep;
if ((s16)(target - *pValue) >= 0) {
*pValue = target;
}
}
}
}
return diff;
}
/**
* Changes pValue by step towards target. If step is more than 1/scale of the remaining distance, step by that instead.
*/
void Math_ApproachS(s16* pValue, s16 target, s16 scale, s16 maxStep) {
s16 diff = target - *pValue;
diff /= scale;
if (diff > maxStep) {
*pValue += maxStep;
} else if (diff < -maxStep) {
*pValue -= maxStep;
} else {
*pValue += diff;
}
}
void Color_RGBA8_Copy(Color_RGBA8* dst, Color_RGBA8* src) {
dst->r = src->r;
dst->g = src->g;
dst->b = src->b;
dst->a = src->a;
}
void func_80078884(u16 sfxId) {
Audio_PlaySoundGeneral(sfxId, &D_801333D4, 4, &D_801333E0, &D_801333E0, &D_801333E8);
}
void func_800788CC(u16 sfxId) {
Audio_PlaySoundGeneral(sfxId, &D_801333D4, 4, &D_801333E0, &D_801333E0, &D_801333E8);
}
void func_80078914(Vec3f* arg0, u16 sfxId) {
Audio_PlaySoundGeneral(sfxId, arg0, 4, &D_801333E0, &D_801333E0, &D_801333E8);
}