4nes4snes/usbdrv/usbdrvasm16.S

473 lines
18 KiB
ArmAsm

/* Name: usbdrvasm16.S
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2007-06-15
* Tabsize: 4
* Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* Revision: $Id: usbdrvasm16.S,v 1.1 2013-04-25 02:18:15 cvs Exp $
*/
/* Do not link this file! Link usbdrvasm.S instead, which includes the
* appropriate implementation!
*/
/*
General Description:
This file is the 16 MHz version of the asssembler part of the USB driver. It
requires a 16 MHz crystal (not a ceramic resonator and not a calibrated RC
oscillator).
See usbdrv.h for a description of the entire driver.
Since almost all of this code is timing critical, don't change unless you
really know what you are doing! Many parts require not only a maximum number
of CPU cycles, but even an exact number of cycles!
*/
;max stack usage: [ret(2), YL, SREG, YH, bitcnt, shift, x1, x2, x3, x4, cnt] = 12 bytes
;nominal frequency: 16 MHz -> 10.6666666 cycles per bit, 85.333333333 cycles per byte
; Numbers in brackets are clocks counted from center of last sync bit
; when instruction starts
USB_INTR_VECTOR:
;order of registers pushed: YL, SREG YH, [sofError], bitcnt, shift, x1, x2, x3, x4, cnt
push YL ;[-25] push only what is necessary to sync with edge ASAP
in YL, SREG ;[-23]
push YL ;[-22]
push YH ;[-20]
;----------------------------------------------------------------------------
; Synchronize with sync pattern:
;----------------------------------------------------------------------------
;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
;sync up with J to K edge during sync pattern -- use fastest possible loops
;first part has no timeout because it waits for IDLE or SE1 (== disconnected)
waitForJ:
sbis USBIN, USBMINUS ;[-18] wait for D- == 1
rjmp waitForJ
waitForK:
;The following code results in a sampling window of < 1/4 bit which meets the spec.
sbis USBIN, USBMINUS ;[-15]
rjmp foundK ;[-14]
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
sbis USBIN, USBMINUS
rjmp foundK
#if USB_COUNT_SOF
lds YL, usbSofCount
inc YL
sts usbSofCount, YL
#endif /* USB_COUNT_SOF */
rjmp sofError
foundK: ;[-12]
;{3, 5} after falling D- edge, average delay: 4 cycles [we want 5 for center sampling]
;we have 1 bit time for setup purposes, then sample again. Numbers in brackets
;are cycles from center of first sync (double K) bit after the instruction
push bitcnt ;[-12]
; [---] ;[-11]
lds YL, usbInputBufOffset;[-10]
; [---] ;[-9]
clr YH ;[-8]
subi YL, lo8(-(usbRxBuf));[-7] [rx loop init]
sbci YH, hi8(-(usbRxBuf));[-6] [rx loop init]
push shift ;[-5]
; [---] ;[-4]
ldi bitcnt, 0x55 ;[-3] [rx loop init]
sbis USBIN, USBMINUS ;[-2] we want two bits K (sample 2 cycles too early)
rjmp haveTwoBitsK ;[-1]
pop shift ;[0] undo the push from before
pop bitcnt ;[2] undo the push from before
rjmp waitForK ;[4] this was not the end of sync, retry
; The entire loop from waitForK until rjmp waitForK above must not exceed two
; bit times (= 21 cycles).
;----------------------------------------------------------------------------
; push more registers and initialize values while we sample the first bits:
;----------------------------------------------------------------------------
haveTwoBitsK:
push x1 ;[1]
push x2 ;[3]
push x3 ;[5]
ldi shift, 0 ;[7]
ldi x3, 1<<4 ;[8] [rx loop init] first sample is inverse bit, compensate that
push x4 ;[9] == leap
in x1, USBIN ;[11] <-- sample bit 0
andi x1, USBMASK ;[12]
bst x1, USBMINUS ;[13]
bld shift, 7 ;[14]
push cnt ;[15]
ldi leap, 0 ;[17] [rx loop init]
ldi cnt, USB_BUFSIZE;[18] [rx loop init]
rjmp rxbit1 ;[19] arrives at [21]
;----------------------------------------------------------------------------
; Receiver loop (numbers in brackets are cycles within byte after instr)
;----------------------------------------------------------------------------
unstuff6:
andi x2, USBMASK ;[03]
ori x3, 1<<6 ;[04] will not be shifted any more
andi shift, ~0x80;[05]
mov x1, x2 ;[06] sampled bit 7 is actually re-sampled bit 6
subi leap, 3 ;[07] since this is a short (10 cycle) bit, enforce leap bit
rjmp didUnstuff6 ;[08]
unstuff7:
ori x3, 1<<7 ;[09] will not be shifted any more
in x2, USBIN ;[00] [10] re-sample bit 7
andi x2, USBMASK ;[01]
andi shift, ~0x80;[02]
subi leap, 3 ;[03] since this is a short (10 cycle) bit, enforce leap bit
rjmp didUnstuff7 ;[04]
unstuffEven:
ori x3, 1<<6 ;[09] will be shifted right 6 times for bit 0
in x1, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x1, USBMASK ;[02]
breq se0 ;[03]
subi leap, 3 ;[04] since this is a short (10 cycle) bit, enforce leap bit
nop ;[05]
rjmp didUnstuffE ;[06]
unstuffOdd:
ori x3, 1<<5 ;[09] will be shifted right 4 times for bit 1
in x2, USBIN ;[00] [10]
andi shift, ~0x80;[01]
andi x2, USBMASK ;[02]
breq se0 ;[03]
subi leap, 3 ;[04] since this is a short (10 cycle) bit, enforce leap bit
nop ;[05]
rjmp didUnstuffO ;[06]
rxByteLoop:
andi x1, USBMASK ;[03]
eor x2, x1 ;[04]
subi leap, 1 ;[05]
brpl skipLeap ;[06]
subi leap, -3 ;1 one leap cycle every 3rd byte -> 85 + 1/3 cycles per byte
nop ;1
skipLeap:
subi x2, 1 ;[08]
ror shift ;[09]
didUnstuff6:
cpi shift, 0xfc ;[10]
in x2, USBIN ;[00] [11] <-- sample bit 7
brcc unstuff6 ;[01]
andi x2, USBMASK ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
didUnstuff7:
cpi shift, 0xfc ;[06]
brcc unstuff7 ;[07]
eor x3, shift ;[08] reconstruct: x3 is 1 at bit locations we changed, 0 at others
st y+, x3 ;[09] store data
rxBitLoop:
in x1, USBIN ;[00] [11] <-- sample bit 0/2/4
andi x1, USBMASK ;[01]
eor x2, x1 ;[02]
andi x3, 0x3f ;[03] topmost two bits reserved for 6 and 7
subi x2, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffEven ;[07]
didUnstuffE:
lsr x3 ;[08]
lsr x3 ;[09]
rxbit1:
in x2, USBIN ;[00] [10] <-- sample bit 1/3/5
andi x2, USBMASK ;[01]
breq se0 ;[02]
eor x1, x2 ;[03]
subi x1, 1 ;[04]
ror shift ;[05]
cpi shift, 0xfc ;[06]
brcc unstuffOdd ;[07]
didUnstuffO:
subi bitcnt, 0xab;[08] == addi 0x55, 0x55 = 0x100/3
brcs rxBitLoop ;[09]
subi cnt, 1 ;[10]
in x1, USBIN ;[00] [11] <-- sample bit 6
brcc rxByteLoop ;[01]
rjmp ignorePacket; overflow
;----------------------------------------------------------------------------
; Processing of received packet (numbers in brackets are cycles after center of SE0)
;----------------------------------------------------------------------------
;This is the only non-error exit point for the software receiver loop
;we don't check any CRCs here because there is no time left.
#define token x1
se0:
subi cnt, USB_BUFSIZE ;[5]
neg cnt ;[6]
cpi cnt, 3 ;[7]
ldi x2, 1<<USB_INTR_PENDING_BIT ;[8]
USB_STORE_PENDING(x2) ;[9] clear pending intr and check flag later. SE0 should be over.
brlo doReturn ;[10] this is probably an ACK, NAK or similar packet
sub YL, cnt ;[11]
sbci YH, 0 ;[12]
ld token, y ;[13]
cpi token, USBPID_DATA0 ;[15]
breq handleData ;[16]
cpi token, USBPID_DATA1 ;[17]
breq handleData ;[18]
ldd x2, y+1 ;[19] ADDR and 1 bit endpoint number
mov x3, x2 ;[21] store for endpoint number
andi x2, 0x7f ;[22] x2 is now ADDR
lds shift, usbDeviceAddr;[23]
cp x2, shift ;[25]
overflow: ; This is a hack: brcs overflow will never have Z flag set
brne ignorePacket ;[26] packet for different address
cpi token, USBPID_IN ;[27]
breq handleIn ;[28]
cpi token, USBPID_SETUP ;[29]
breq handleSetupOrOut ;[30]
cpi token, USBPID_OUT ;[31]
breq handleSetupOrOut ;[32]
; rjmp ignorePacket ;fallthrough, should not happen anyway.
ignorePacket:
clr shift
sts usbCurrentTok, shift
doReturn:
pop cnt
pop x4
pop x3
pop x2
pop x1
pop shift
pop bitcnt
sofError:
pop YH
pop YL
out SREG, YL
pop YL
reti
;Setup and Out are followed by a data packet two bit times (16 cycles) after
;the end of SE0. The sync code allows up to 40 cycles delay from the start of
;the sync pattern until the first bit is sampled. That's a total of 56 cycles.
handleSetupOrOut: ;[34]
#if USB_CFG_IMPLEMENT_FN_WRITEOUT /* if we have data for second OUT endpoint, set usbCurrentTok to -1 */
sbrc x3, 7 ;[34] skip if endpoint 0
ldi token, -1 ;[35] indicate that this is endpoint 1 OUT
#endif
sts usbCurrentTok, token;[36]
pop cnt ;[38]
pop x4 ;[40]
pop x3 ;[42]
pop x2 ;[44]
pop x1 ;[46]
pop shift ;[48]
pop bitcnt ;[50]
USB_LOAD_PENDING(YL) ;[52]
sbrc YL, USB_INTR_PENDING_BIT;[53] check whether data is already arriving
rjmp waitForJ ;[54] save the pops and pushes -- a new interrupt is aready pending
rjmp sofError ;[55] not an error, but it does the pops and reti we want
handleData:
lds token, usbCurrentTok;[20]
tst token ;[22]
breq doReturn ;[23]
lds x2, usbRxLen ;[24]
tst x2 ;[26]
brne sendNakAndReti ;[27]
; 2006-03-11: The following two lines fix a problem where the device was not
; recognized if usbPoll() was called less frequently than once every 4 ms.
cpi cnt, 4 ;[28] zero sized data packets are status phase only -- ignore and ack
brmi sendAckAndReti ;[29] keep rx buffer clean -- we must not NAK next SETUP
sts usbRxLen, cnt ;[30] store received data, swap buffers
sts usbRxToken, token ;[32]
lds x2, usbInputBufOffset;[34] swap buffers
ldi cnt, USB_BUFSIZE ;[36]
sub cnt, x2 ;[37]
sts usbInputBufOffset, cnt;[38] buffers now swapped
rjmp sendAckAndReti ;[40] 42 + 17 = 59 until SOP
handleIn:
;We don't send any data as long as the C code has not processed the current
;input data and potentially updated the output data. That's more efficient
;in terms of code size than clearing the tx buffers when a packet is received.
lds x1, usbRxLen ;[30]
cpi x1, 1 ;[32] negative values are flow control, 0 means "buffer free"
brge sendNakAndReti ;[33] unprocessed input packet?
ldi x1, USBPID_NAK ;[34] prepare value for usbTxLen
#if USB_CFG_HAVE_INTRIN_ENDPOINT
sbrc x3, 7 ;[35] x3 contains addr + endpoint
rjmp handleIn1 ;[36]
#endif
lds cnt, usbTxLen ;[37]
sbrc cnt, 4 ;[39] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[40] 42 + 16 = 58 until SOP
sts usbTxLen, x1 ;[41] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf) ;[43]
ldi YH, hi8(usbTxBuf) ;[44]
rjmp usbSendAndReti ;[45] 47 + 12 = 59 until SOP
; Comment about when to set usbTxLen to USBPID_NAK:
; We should set it back when we receive the ACK from the host. This would
; be simple to implement: One static variable which stores whether the last
; tx was for endpoint 0 or 1 and a compare in the receiver to distinguish the
; ACK. However, we set it back immediately when we send the package,
; assuming that no error occurs and the host sends an ACK. We save one byte
; RAM this way and avoid potential problems with endless retries. The rest of
; the driver assumes error-free transfers anyway.
#if USB_CFG_HAVE_INTRIN_ENDPOINT /* placed here due to relative jump range */
handleIn1: ;[38]
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
; 2006-06-10 as suggested by O.Tamura: support second INTR IN / BULK IN endpoint
ldd x2, y+2 ;[38]
sbrc x2, 0 ;[40]
rjmp handleIn3 ;[41]
#endif
lds cnt, usbTxLen1 ;[42]
sbrc cnt, 4 ;[44] all handshake tokens have bit 4 set
rjmp sendCntAndReti ;[45] 47 + 16 = 63 until SOP
sts usbTxLen1, x1 ;[46] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf1) ;[48]
ldi YH, hi8(usbTxBuf1) ;[49]
rjmp usbSendAndReti ;[50] 52 + 12 + 64 until SOP
#endif
#if USB_CFG_HAVE_INTRIN_ENDPOINT && USB_CFG_HAVE_INTRIN_ENDPOINT3
handleIn3:
lds cnt, usbTxLen3 ;[43]
sbrc cnt, 4 ;[45]
rjmp sendCntAndReti ;[46] 48 + 16 = 64 until SOP
sts usbTxLen3, x1 ;[47] x1 == USBPID_NAK from above
ldi YL, lo8(usbTxBuf3) ;[49]
ldi YH, hi8(usbTxBuf3) ;[50]
rjmp usbSendAndReti ;[51] 53 + 12 = 65 until SOP
#endif
; USB spec says:
; idle = J
; J = (D+ = 0), (D- = 1)
; K = (D+ = 1), (D- = 0)
; Spec allows 7.5 bit times from EOP to SOP for replies
bitstuffN:
eor x1, x4 ;[5]
ldi x2, 0 ;[6]
nop2 ;[7]
nop ;[9]
out USBOUT, x1 ;[10] <-- out
rjmp didStuffN ;[0]
bitstuff6:
eor x1, x4 ;[4]
ldi x2, 0 ;[5]
nop2 ;[6] C is zero (brcc)
rjmp didStuff6 ;[8]
bitstuff7:
eor x1, x4 ;[3]
ldi x2, 0 ;[4]
rjmp didStuff7 ;[5]
sendNakAndReti:
ldi x3, USBPID_NAK ;[-18]
rjmp sendX3AndReti ;[-17]
sendAckAndReti:
ldi cnt, USBPID_ACK ;[-17]
sendCntAndReti:
mov x3, cnt ;[-16]
sendX3AndReti:
ldi YL, 20 ;[-15] x3==r20 address is 20
ldi YH, 0 ;[-14]
ldi cnt, 2 ;[-13]
; rjmp usbSendAndReti fallthrough
;usbSend:
;pointer to data in 'Y'
;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
;uses: x1...x4, btcnt, shift, cnt, Y
;Numbers in brackets are time since first bit of sync pattern is sent
;We don't match the transfer rate exactly (don't insert leap cycles every third
;byte) because the spec demands only 1.5% precision anyway.
usbSendAndReti: ; 12 cycles until SOP
in x2, USBDDR ;[-12]
ori x2, USBMASK ;[-11]
sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
in x1, USBOUT ;[-8] port mirror for tx loop
out USBDDR, x2 ;[-7] <- acquire bus
; need not init x2 (bitstuff history) because sync starts with 0
ldi x4, USBMASK ;[-6] exor mask
ldi shift, 0x80 ;[-5] sync byte is first byte sent
txByteLoop:
ldi bitcnt, 0x2a ;[-4] [6] binary 00101010
txBitLoop:
sbrs shift, 0 ;[-3] [7]
eor x1, x4 ;[-2] [8]
out USBOUT, x1 ;[-1] [9] <-- out N
ror shift ;[0] [10]
ror x2 ;[1]
didStuffN:
cpi x2, 0xfc ;[2]
brcc bitstuffN ;[3]
lsr bitcnt ;[4]
brcc txBitLoop ;[5]
brne txBitLoop ;[6]
sbrs shift, 0 ;[7]
eor x1, x4 ;[8]
ror shift ;[9]
didStuff6:
out USBOUT, x1 ;[-1] [10] <-- out 6
ror x2 ;[0] [11]
cpi x2, 0xfc ;[1]
brcc bitstuff6 ;[2]
sbrs shift, 0 ;[3]
eor x1, x4 ;[4]
ror shift ;[5]
ror x2 ;[6]
didStuff7:
nop ;[7]
nop2 ;[8]
out USBOUT, x1 ;[-1][10] <-- out 7
cpi x2, 0xfc ;[0] [11]
brcc bitstuff7 ;[1]
ld shift, y+ ;[2]
dec cnt ;[4]
brne txByteLoop ;[4]
;make SE0:
cbr x1, USBMASK ;[7] prepare SE0 [spec says EOP may be 21 to 25 cycles]
lds x2, usbNewDeviceAddr;[8]
out USBOUT, x1 ;[10] <-- out SE0 -- from now 2 bits = 22 cycles until bus idle
;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
;set address only after data packet was sent, not after handshake
subi YL, 2 ;[0]
sbci YH, 0 ;[1]
breq skipAddrAssign ;[2]
sts usbDeviceAddr, x2; if not skipped: SE0 is one cycle longer
skipAddrAssign:
;end of usbDeviceAddress transfer
ldi x2, 1<<USB_INTR_PENDING_BIT;[4] int0 occurred during TX -- clear pending flag
USB_STORE_PENDING(x2) ;[5]
ori x1, USBIDLE ;[6]
in x2, USBDDR ;[7]
cbr x2, USBMASK ;[8] set both pins to input
mov x3, x1 ;[9]
cbr x3, USBMASK ;[10] configure no pullup on both pins
ldi x4, 4 ;[11]
se0Delay:
dec x4 ;[12] [15] [18] [21]
brne se0Delay ;[13] [16] [19] [22]
out USBOUT, x1 ;[23] <-- out J (idle) -- end of SE0 (EOP signal)
out USBDDR, x2 ;[24] <-- release bus now
out USBOUT, x3 ;[25] <-- ensure no pull-up resistors are active
rjmp doReturn