1
0
mirror of https://github.com/raphnet/4nes4snes synced 2024-12-21 14:38:50 -05:00
4nes4snes/usbdrv/usbdrv.h
2014-08-23 23:58:32 +00:00

656 lines
26 KiB
C

/* Name: usbdrv.h
* Project: AVR USB driver
* Author: Christian Starkjohann
* Creation Date: 2004-12-29
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbdrv.h,v 1.3 2014-08-23 23:58:32 cvs Exp $
*/
#ifndef __usbdrv_h_included__
#define __usbdrv_h_included__
#include "usbconfig.h"
#include "iarcompat.h"
/*
Hardware Prerequisites:
=======================
USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+
triggers the interrupt (best achieved by using INT0 for D+), but it is also
possible to trigger the interrupt from D-. If D- is used, interrupts are also
triggered by SOF packets. D- requires a pullup of 1.5k to +3.5V (and the device
must be powered at 3.5V) to identify as low-speed USB device. A pullup of
1M SHOULD be connected from D+ to +3.5V to prevent interference when no USB
master is connected. We use D+ as interrupt source and not D- because it
does not trigger on keep-alive and RESET states.
As a compile time option, the 1.5k pullup resistor on D- can be made
switchable to allow the device to disconnect at will. See the definition of
usbDeviceConnect() and usbDeviceDisconnect() further down in this file.
Please adapt the values in usbconfig.h according to your hardware!
The device MUST be clocked at exactly 12 MHz, 15 MHz or 16 MHz
or at 16.5 MHz +/- 1%. See usbconfig-prototype.h for details.
Limitations:
============
Robustness with respect to communication errors:
The driver assumes error-free communication. It DOES check for errors in
the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte,
token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due
to timing constraints: We must start sending a reply within 7 bit times.
Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU
performance does not permit that. The driver does not check Data0/Data1
toggling, but application software can implement the check.
Input characteristics:
Since no differential receiver circuit is used, electrical interference
robustness may suffer. The driver samples only one of the data lines with
an ordinary I/O pin's input characteristics. However, since this is only a
low speed USB implementation and the specification allows for 8 times the
bit rate over the same hardware, we should be on the safe side. Even the spec
requires detection of asymmetric states at high bit rate for SE0 detection.
Number of endpoints:
The driver supports up to four endpoints: One control endpoint (endpoint 0),
two interrupt-in (or bulk-in) endpoints (endpoint 1 and 3) and one
interrupt-out (or bulk-out) endpoint (endpoint 1). Please note that the USB
standard forbids bulk endpoints for low speed devices! Most operating systems
allow them anyway, but the AVR will spend 90% of the CPU time in the USB
interrupt polling for bulk data.
By default, only the control endpoint 0 is enabled. To get the other endpoints,
define USB_CFG_HAVE_INTRIN_ENDPOINT, USB_CFG_HAVE_INTRIN_ENDPOINT3 and/or
USB_CFG_IMPLEMENT_FN_WRITEOUT respectively (see usbconfig-prototype.h for
details).
Maximum data payload:
Data payload of control in and out transfers may be up to 254 bytes. In order
to accept payload data of out transfers, you need to implement
'usbFunctionWrite()'.
USB Suspend Mode supply current:
The USB standard limits power consumption to 500uA when the bus is in suspend
mode. This is not a problem for self-powered devices since they don't need
bus power anyway. Bus-powered devices can achieve this only by putting the
CPU in sleep mode. The driver does not implement suspend handling by itself.
However, the application may implement activity monitoring and wakeup from
sleep. The host sends regular SE0 states on the bus to keep it active. These
SE0 states can be detected by wiring the INT1 pin to D-. It is not necessary
to enable the interrupt, checking the interrupt pending flag should suffice.
Before entering sleep mode, the application should enable INT1 for a wakeup
on the next bus activity.
Operation without an USB master:
The driver behaves neutral without connection to an USB master if D- reads
as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M)
pullup resistor on D+ (interrupt). If D- becomes statically 0, the driver may
block in the interrupt routine.
Interrupt latency:
The application must ensure that the USB interrupt is not disabled for more
than 25 cycles (this is for 12 MHz, faster clocks allow longer latency).
This implies that all interrupt routines must either be declared as "INTERRUPT"
instead of "SIGNAL" (see "avr/signal.h") or that they are written in assembler
with "sei" as the first instruction.
Maximum interrupt duration / CPU cycle consumption:
The driver handles all USB communication during the interrupt service
routine. The routine will not return before an entire USB message is received
and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if
the host conforms to the standard. The driver will consume CPU cycles for all
USB messages, even if they address another (low-speed) device on the same bus.
*/
/* ------------------------------------------------------------------------- */
/* --------------------------- Module Interface ---------------------------- */
/* ------------------------------------------------------------------------- */
#define USBDRV_VERSION 20070919
/* This define uniquely identifies a driver version. It is a decimal number
* constructed from the driver's release date in the form YYYYMMDD. If the
* driver's behavior or interface changes, you can use this constant to
* distinguish versions. If it is not defined, the driver's release date is
* older than 2006-01-25.
*/
#ifndef USB_PUBLIC
#define USB_PUBLIC
#endif
/* USB_PUBLIC is used as declaration attribute for all functions exported by
* the USB driver. The default is no attribute (see above). You may define it
* to static either in usbconfig.h or from the command line if you include
* usbdrv.c instead of linking against it. Including the C module of the driver
* directly in your code saves a couple of bytes in flash memory.
*/
#ifndef __ASSEMBLER__
#ifndef uchar
#define uchar unsigned char
#endif
#ifndef schar
#define schar signed char
#endif
/* shortcuts for well defined 8 bit integer types */
struct usbRequest; /* forward declaration */
USB_PUBLIC void usbInit(void);
/* This function must be called before interrupts are enabled and the main
* loop is entered.
*/
USB_PUBLIC void usbPoll(void);
/* This function must be called at regular intervals from the main loop.
* Maximum delay between calls is somewhat less than 50ms (USB timeout for
* accepting a Setup message). Otherwise the device will not be recognized.
* Please note that debug outputs through the UART take ~ 0.5ms per byte
* at 19200 bps.
*/
extern uchar *usbMsgPtr;
/* This variable may be used to pass transmit data to the driver from the
* implementation of usbFunctionWrite(). It is also used internally by the
* driver for standard control requests.
*/
USB_PUBLIC uchar usbFunctionSetup(uchar data[8]);
/* This function is called when the driver receives a SETUP transaction from
* the host which is not answered by the driver itself (in practice: class and
* vendor requests). All control transfers start with a SETUP transaction where
* the host communicates the parameters of the following (optional) data
* transfer. The SETUP data is available in the 'data' parameter which can
* (and should) be casted to 'usbRequest_t *' for a more user-friendly access
* to parameters.
*
* If the SETUP indicates a control-in transfer, you should provide the
* requested data to the driver. There are two ways to transfer this data:
* (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data
* block and return the length of the data in 'usbFunctionSetup()'. The driver
* will handle the rest. Or (2) return 0xff in 'usbFunctionSetup()'. The driver
* will then call 'usbFunctionRead()' when data is needed. See the
* documentation for usbFunctionRead() for details.
*
* If the SETUP indicates a control-out transfer, the only way to receive the
* data from the host is through the 'usbFunctionWrite()' call. If you
* implement this function, you must return 0xff in 'usbFunctionSetup()' to
* indicate that 'usbFunctionWrite()' should be used. See the documentation of
* this function for more information. If you just want to ignore the data sent
* by the host, return 0 in 'usbFunctionSetup()'.
*
* Note that calls to the functions usbFunctionRead() and usbFunctionWrite()
* are only done if enabled by the configuration in usbconfig.h.
*/
USB_PUBLIC uchar usbFunctionDescriptor(struct usbRequest *rq);
/* You need to implement this function ONLY if you provide USB descriptors at
* runtime (which is an expert feature). It is very similar to
* usbFunctionSetup() above, but it is called only to request USB descriptor
* data. See the documentation of usbFunctionSetup() above for more info.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len);
/* This function sets the message which will be sent during the next interrupt
* IN transfer. The message is copied to an internal buffer and must not exceed
* a length of 8 bytes. The message may be 0 bytes long just to indicate the
* interrupt status to the host.
* If you need to transfer more bytes, use a control read after the interrupt.
*/
extern volatile uchar usbTxLen1;
#define usbInterruptIsReady() (usbTxLen1 & 0x10)
/* This macro indicates whether the last interrupt message has already been
* sent. If you set a new interrupt message before the old was sent, the
* message already buffered will be lost.
*/
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len);
extern volatile uchar usbTxLen3;
#define usbInterruptIsReady3() (usbTxLen3 & 0x10)
/* Same as above for endpoint 3 */
#endif
#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */
#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */
#define usbHidReportDescriptor usbDescriptorHidReport
/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */
/* If you implement an HID device, you need to provide a report descriptor.
* The HID report descriptor syntax is a bit complex. If you understand how
* report descriptors are constructed, we recommend that you use the HID
* Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/.
* Otherwise you should probably start with a working example.
*/
#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */
#if USB_CFG_IMPLEMENT_FN_WRITE
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len);
/* This function is called by the driver to provide a control transfer's
* payload data (control-out). It is called in chunks of up to 8 bytes. The
* total count provided in the current control transfer can be obtained from
* the 'length' property in the setup data. If an error occurred during
* processing, return 0xff (== -1). The driver will answer the entire transfer
* with a STALL token in this case. If you have received the entire payload
* successfully, return 1. If you expect more data, return 0. If you don't
* know whether the host will send more data (you should know, the total is
* provided in the usbFunctionSetup() call!), return 1.
* NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called
* for the remaining data. You must continue to return 0xff for STALL in these
* calls.
* In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITE */
#if USB_CFG_IMPLEMENT_FN_READ
USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len);
/* This function is called by the driver to ask the application for a control
* transfer's payload data (control-in). It is called in chunks of up to 8
* bytes each. You should copy the data to the location given by 'data' and
* return the actual number of bytes copied. If you return less than requested,
* the control-in transfer is terminated. If you return 0xff, the driver aborts
* the transfer with a STALL token.
* In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
*/
#endif /* USB_CFG_IMPLEMENT_FN_READ */
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len);
/* This function is called by the driver when data on interrupt-out or bulk-
* out endpoint 1 is received. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT
* to 1 in usbconfig.h to get this function called.
*/
#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT)))
/* This macro (intended to look like a function) connects the device to the
* USB bus. It is only available if you have defined the constants
* USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT in usbconfig.h.
*/
#define usbDeviceDisconnect() ((USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT)), \
(USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT)))
/* This macro (intended to look like a function) disconnects the device from
* the USB bus. It is only available if you have defined the constants
* USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT in usbconfig.h.
*/
#endif /* USB_CFG_PULLUP_IOPORT */
extern unsigned usbCrc16(unsigned data, uchar len);
#define usbCrc16(data, len) usbCrc16((unsigned)(data), len)
/* This function calculates the binary complement of the data CRC used in
* USB data packets. The value is used to build raw transmit packets.
* You may want to use this function for data checksums or to verify received
* data. We enforce 16 bit calling conventions for compatibility with IAR's
* tiny memory model.
*/
extern unsigned usbCrc16Append(unsigned data, uchar len);
#define usbCrc16Append(data, len) usbCrc16Append((unsigned)(data), len)
/* This function is equivalent to usbCrc16() above, except that it appends
* the 2 bytes CRC (lowbyte first) in the 'data' buffer after reading 'len'
* bytes.
*/
extern uchar usbConfiguration;
/* This value contains the current configuration set by the host. The driver
* allows setting and querying of this variable with the USB SET_CONFIGURATION
* and GET_CONFIGURATION requests, but does not use it otherwise.
* You may want to reflect the "configured" status with a LED on the device or
* switch on high power parts of the circuit only if the device is configured.
*/
#if USB_COUNT_SOF
extern volatile uchar usbSofCount;
/* This variable is incremented on every SOF packet. It is only available if
* the macro USB_COUNT_SOF is defined to a value != 0.
*/
#endif
#define USB_STRING_DESCRIPTOR_HEADER(stringLength) ((2*(stringLength)+2) | (3<<8))
/* This macro builds a descriptor header for a string descriptor given the
* string's length. See usbdrv.c for an example how to use it.
*/
#if USB_CFG_HAVE_FLOWCONTROL
extern volatile schar usbRxLen;
#define usbDisableAllRequests() usbRxLen = -1
/* Must be called from usbFunctionWrite(). This macro disables all data input
* from the USB interface. Requests from the host are answered with a NAK
* while they are disabled.
*/
#define usbEnableAllRequests() usbRxLen = 0
/* May only be called if requests are disabled. This macro enables input from
* the USB interface after it has been disabled with usbDisableAllRequests().
*/
#define usbAllRequestsAreDisabled() (usbRxLen < 0)
/* Use this macro to find out whether requests are disabled. It may be needed
* to ensure that usbEnableAllRequests() is never called when requests are
* enabled.
*/
#endif
#define USB_SET_DATATOKEN1(token) usbTxBuf1[0] = token
#define USB_SET_DATATOKEN3(token) usbTxBuf3[0] = token
/* These two macros can be used by application software to reset data toggling
* for interrupt-in endpoints 1 and 3.
*/
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ----------------- Definitions for Descriptor Properties ----------------- */
/* ------------------------------------------------------------------------- */
/* This is advanced stuff. See usbconfig-prototype.h for more information
* about the various methods to define USB descriptors. If you do nothing,
* the default descriptors will be used.
*/
#define USB_PROP_IS_DYNAMIC (1 << 8)
/* If this property is set for a descriptor, usbFunctionDescriptor() will be
* used to obtain the particular descriptor.
*/
#define USB_PROP_IS_RAM (1 << 9)
/* If this property is set for a descriptor, the data is read from RAM
* memory instead of Flash. The property is used for all methods to provide
* external descriptors.
*/
#define USB_PROP_LENGTH(len) ((len) & 0xff)
/* If a static external descriptor is used, this is the total length of the
* descriptor in bytes.
*/
/* all descriptors which may have properties: */
#ifndef USB_CFG_DESCR_PROPS_DEVICE
#define USB_CFG_DESCR_PROPS_DEVICE 0
#endif
#ifndef USB_CFG_DESCR_PROPS_CONFIGURATION
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRINGS
#define USB_CFG_DESCR_PROPS_STRINGS 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_VENDOR
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_PRODUCT
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#endif
#ifndef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#endif
#ifndef USB_CFG_DESCR_PROPS_HID
#define USB_CFG_DESCR_PROPS_HID 0
#endif
#if !(USB_CFG_DESCR_PROPS_HID_REPORT)
# undef USB_CFG_DESCR_PROPS_HID_REPORT
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* do some backward compatibility tricks */
# define USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# else
# define USB_CFG_DESCR_PROPS_HID_REPORT 0
# endif
#endif
#ifndef USB_CFG_DESCR_PROPS_UNKNOWN
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
#endif
/* ------------------ forward declaration of descriptors ------------------- */
/* If you use external static descriptors, they must be stored in global
* arrays as declared below:
*/
#ifndef __ASSEMBLER__
extern
#if !(USB_CFG_DESCR_PROPS_DEVICE & USB_PROP_IS_RAM)
const PROGMEM
#endif
char usbDescriptorDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_CONFIGURATION & USB_PROP_IS_RAM)
const PROGMEM
#endif
char usbDescriptorConfiguration[];
extern
#if !(USB_CFG_DESCR_PROPS_HID_REPORT & USB_PROP_IS_RAM)
const PROGMEM
#endif
char usbDescriptorHidReport[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_0 & USB_PROP_IS_RAM)
const PROGMEM
#endif
char usbDescriptorString0[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_VENDOR & USB_PROP_IS_RAM)
const PROGMEM
#endif
int usbDescriptorStringVendor[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_PRODUCT & USB_PROP_IS_RAM)
const PROGMEM
#endif
int usbDescriptorStringDevice[];
extern
#if !(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER & USB_PROP_IS_RAM)
const PROGMEM
#endif
int usbDescriptorStringSerialNumber[];
#endif /* __ASSEMBLER__ */
/* ------------------------------------------------------------------------- */
/* ------------------------ General Purpose Macros ------------------------- */
/* ------------------------------------------------------------------------- */
#define USB_CONCAT(a, b) a ## b
#define USB_CONCAT_EXPANDED(a, b) USB_CONCAT(a, b)
#define USB_OUTPORT(name) USB_CONCAT(PORT, name)
#define USB_INPORT(name) USB_CONCAT(PIN, name)
#define USB_DDRPORT(name) USB_CONCAT(DDR, name)
/* The double-define trick above lets us concatenate strings which are
* defined by macros.
*/
/* ------------------------------------------------------------------------- */
/* ------------------------- Constant definitions -------------------------- */
/* ------------------------------------------------------------------------- */
#if !defined __ASSEMBLER__ && (!defined USB_CFG_VENDOR_ID || !defined USB_CFG_DEVICE_ID)
#warning "You should define USB_CFG_VENDOR_ID and USB_CFG_DEVICE_ID in usbconfig.h"
/* If the user has not defined IDs, we default to obdev's free IDs.
* See USBID-License.txt for details.
*/
#endif
/* make sure we have a VID and PID defined, byte order is lowbyte, highbyte */
#ifndef USB_CFG_VENDOR_ID
# define USB_CFG_VENDOR_ID 0xc0, 0x16 /* 5824 in dec, stands for VOTI */
#endif
#ifndef USB_CFG_DEVICE_ID
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
# define USB_CFG_DEVICE_ID 0xdf, 0x05 /* 1503 in dec, shared PID for HIDs */
# elif USB_CFG_INTERFACE_CLASS == 2
# define USB_CFG_DEVICE_ID 0xe1, 0x05 /* 1505 in dec, shared PID for CDC Modems */
# else
# define USB_CFG_DEVICE_ID 0xdc, 0x05 /* 1500 in dec, obdev's free PID */
# endif
#endif
/* Derive Output, Input and DataDirection ports from port names */
#ifndef USB_CFG_IOPORTNAME
#error "You must define USB_CFG_IOPORTNAME in usbconfig.h, see usbconfig-prototype.h"
#endif
#define USBOUT USB_OUTPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_OUT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBIN USB_INPORT(USB_CFG_IOPORTNAME)
#define USBDDR USB_DDRPORT(USB_CFG_IOPORTNAME)
#define USB_PULLUP_DDR USB_DDRPORT(USB_CFG_PULLUP_IOPORTNAME)
#define USBMINUS USB_CFG_DMINUS_BIT
#define USBPLUS USB_CFG_DPLUS_BIT
#define USBIDLE (1<<USB_CFG_DMINUS_BIT) /* value representing J state */
#define USBMASK ((1<<USB_CFG_DPLUS_BIT) | (1<<USB_CFG_DMINUS_BIT)) /* mask for USB I/O bits */
/* defines for backward compatibility with older driver versions: */
#define USB_CFG_IOPORT USB_OUTPORT(USB_CFG_IOPORTNAME)
#ifdef USB_CFG_PULLUP_IOPORTNAME
#define USB_CFG_PULLUP_IOPORT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
#endif
#define USB_BUFSIZE 11 /* PID, 8 bytes data, 2 bytes CRC */
/* ----- Try to find registers and bits responsible for ext interrupt 0 ----- */
#ifndef USB_INTR_CFG /* allow user to override our default */
# if defined EICRA
# define USB_INTR_CFG EICRA
# else
# define USB_INTR_CFG MCUCR
# endif
#endif
#ifndef USB_INTR_CFG_SET /* allow user to override our default */
# define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) /* cfg for rising edge */
#endif
#ifndef USB_INTR_CFG_CLR /* allow user to override our default */
# define USB_INTR_CFG_CLR 0 /* no bits to clear */
#endif
#ifndef USB_INTR_ENABLE /* allow user to override our default */
# if defined GIMSK
# define USB_INTR_ENABLE GIMSK
# elif defined EIMSK
# define USB_INTR_ENABLE EIMSK
# else
# define USB_INTR_ENABLE GICR
# endif
#endif
#ifndef USB_INTR_ENABLE_BIT /* allow user to override our default */
# define USB_INTR_ENABLE_BIT INT0
#endif
#ifndef USB_INTR_PENDING /* allow user to override our default */
# if defined EIFR
# define USB_INTR_PENDING EIFR
# else
# define USB_INTR_PENDING GIFR
# endif
#endif
#ifndef USB_INTR_PENDING_BIT /* allow user to override our default */
# define USB_INTR_PENDING_BIT INTF0
#endif
/*
The defines above don't work for the following chips
at90c8534: no ISC0?, no PORTB, can't find a data sheet
at86rf401: no PORTB, no MCUCR etc, low clock rate
atmega103: no ISC0? (maybe omission in header, can't find data sheet)
atmega603: not defined in avr-libc
at43usb320, at43usb355, at76c711: have USB anyway
at94k: is different...
at90s1200, attiny11, attiny12, attiny15, attiny28: these have no RAM
*/
/* ------------------------------------------------------------------------- */
/* ----------------- USB Specification Constants and Types ----------------- */
/* ------------------------------------------------------------------------- */
/* USB Token values */
#define USBPID_SETUP 0x2d
#define USBPID_OUT 0xe1
#define USBPID_IN 0x69
#define USBPID_DATA0 0xc3
#define USBPID_DATA1 0x4b
#define USBPID_ACK 0xd2
#define USBPID_NAK 0x5a
#define USBPID_STALL 0x1e
#ifndef USB_INITIAL_DATATOKEN
#define USB_INITIAL_DATATOKEN USBPID_DATA0
#endif
#ifndef __ASSEMBLER__
extern uchar usbTxBuf1[USB_BUFSIZE], usbTxBuf3[USB_BUFSIZE];
typedef union usbWord{
unsigned word;
uchar bytes[2];
}usbWord_t;
typedef struct usbRequest{
uchar bmRequestType;
uchar bRequest;
usbWord_t wValue;
usbWord_t wIndex;
usbWord_t wLength;
}usbRequest_t;
/* This structure matches the 8 byte setup request */
#endif
/* bmRequestType field in USB setup:
* d t t r r r r r, where
* d ..... direction: 0=host->device, 1=device->host
* t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved
* r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other
*/
/* USB setup recipient values */
#define USBRQ_RCPT_MASK 0x1f
#define USBRQ_RCPT_DEVICE 0
#define USBRQ_RCPT_INTERFACE 1
#define USBRQ_RCPT_ENDPOINT 2
/* USB request type values */
#define USBRQ_TYPE_MASK 0x60
#define USBRQ_TYPE_STANDARD (0<<5)
#define USBRQ_TYPE_CLASS (1<<5)
#define USBRQ_TYPE_VENDOR (2<<5)
/* USB direction values: */
#define USBRQ_DIR_MASK 0x80
#define USBRQ_DIR_HOST_TO_DEVICE (0<<7)
#define USBRQ_DIR_DEVICE_TO_HOST (1<<7)
/* USB Standard Requests */
#define USBRQ_GET_STATUS 0
#define USBRQ_CLEAR_FEATURE 1
#define USBRQ_SET_FEATURE 3
#define USBRQ_SET_ADDRESS 5
#define USBRQ_GET_DESCRIPTOR 6
#define USBRQ_SET_DESCRIPTOR 7
#define USBRQ_GET_CONFIGURATION 8
#define USBRQ_SET_CONFIGURATION 9
#define USBRQ_GET_INTERFACE 10
#define USBRQ_SET_INTERFACE 11
#define USBRQ_SYNCH_FRAME 12
/* USB descriptor constants */
#define USBDESCR_DEVICE 1
#define USBDESCR_CONFIG 2
#define USBDESCR_STRING 3
#define USBDESCR_INTERFACE 4
#define USBDESCR_ENDPOINT 5
#define USBDESCR_HID 0x21
#define USBDESCR_HID_REPORT 0x22
#define USBDESCR_HID_PHYS 0x23
#define USBATTR_BUSPOWER 0x80
#define USBATTR_SELFPOWER 0x40
#define USBATTR_REMOTEWAKE 0x20
/* USB HID Requests */
#define USBRQ_HID_GET_REPORT 0x01
#define USBRQ_HID_GET_IDLE 0x02
#define USBRQ_HID_GET_PROTOCOL 0x03
#define USBRQ_HID_SET_REPORT 0x09
#define USBRQ_HID_SET_IDLE 0x0a
#define USBRQ_HID_SET_PROTOCOL 0x0b
/* ------------------------------------------------------------------------- */
#endif /* __usbdrv_h_included__ */