diff --git a/xep-0300.xml b/xep-0300.xml index 3637078e..a251ca3f 100644 --- a/xep-0300.xml +++ b/xep-0300.xml @@ -23,6 +23,12 @@ &stpeter; &mwild; &ksmith; + + 0.3 + 2012-02-07 + psa +

Modified XML structure to remove wrapper element; added recommendations for new XMPP extensions; softened recommendations for existing extensions.

+
0.2 2011-12-05 @@ -63,18 +69,14 @@ -

This document defines a new XML element (and child elements) that can be used in any XMPP protocol extension. An example follows.

+

This document defines a new XML element that can be used in any XMPP protocol extension. An example follows.

- 2XarmwTlNxDAMkvymloX3S5+VbylNrJt/l5QyPa+YoU= - +algo='sha-256'>2XarmwTlNxDAMkvymloX3S5+VbylNrJt/l5QyPa+YoU= ]]> -

The <hashes/> element MAY contain more than one <hash/> child, as in the following example.

+

An XMPP protocol can include more than one instance of the <hash/> element, as long as each one has a different value for the 'algo' attribute:

- 2AfMGH8O7UNPTvUVAM9aK13mpCY= - 2XarmwTlNxDAMkvymloX3S5+VbylNrJt/l5QyPa+YoU= - +2AfMGH8O7UNPTvUVAM9aK13mpCY= +2XarmwTlNxDAMkvymloX3S5+VbylNrJt/l5QyPa+YoU= ]]>

The value of the 'algo' attribute MUST be one of the values from the &ianahashes; maintained by &IANA;.

@@ -95,30 +97,7 @@

The SHA-1 algorithm was developed by the U.S. National Security Agency and first published in 1995 to fix problems with SHA-0. The SHA-1 algorithm is currently the most widely-deployed hash function. As described in &rfc4270; in 2005, attacks have been found against the collision resistance property of SHA-1. &rfc6194; notes that no published results indicate improvement upon those attacks. In addition, RFC 6194 notes that "[t]here are no known pre-image or second pre-image attacks that are specific to the full round SHA-1 algorithm". Furthermore, there is no indication that attacks on SHA-1 can be extended to HMAC-SHA-1. Nevertheless, the U.S. National Institute of Standards and Technology (NIST) has recommended that SHA-1 not be used for generating digital signatures after December 31, 2010.

-

The SHA-1 algorithm is used in the following XMPP protocols:

- -

Both &xep0065; and &xep0260; use SHA-1 to hash the Stream ID, Requester's JID, and Target's JID, and this hash can be communicated via the 'dstaddr' attribute. Although this usage is not security-critical, currently it has no agility to specify newer algorithms. Because the hash is communicated by means of an attribute, it cannot directly use the extension defined in this specification.

-
- -

In &xep0084;, the &xep0060; ItemId for the metadata node is the SHA-1 hash of the image data for the "image/png" media type. There is no hash agility for this usage. Although attacks against the collision resistance property could potentially result in confusion over the avatar for a user, the fact that avatars cannot be uploaded without authentication as the node owner or authorization as a node publisher reduces the practicality of attacks. In addition, XEP-0084 should be updated to specify that avatars must not be compared across JIDs.

-
- -

&xep0115; typically uses SHA-1 to compute the verification string, however hash agility is supported by use of the 'hash' attribute. Because the hash is communicated by means of an attribute, it cannot directly use the extension defined in this specification.

-
- -

&xep0124; uses SHA-1 to generate the key sequence used to secure sessions that are not protected via SSL/TLS. Because these keys are ephemeral, it is unlikely that an attacker could reproduce or poison the key sequence quickly enough to successfully attack the session. However, attackers can be discouraged more significantly by protecting sessions with SSL/TLS. That said, this use of SHA-1 in BOSH does not support hash agility.

-
- -

&xep0153;. This specification is historical but still widely used. Probably it is more valuable to modify XEP-0084 so that it supports hash agility.

-
- -

&xep0174; uses SHA-1 to hash the avatar image (i.e., the "phsh" field) advertised in the DNS TXT record for a user, mirroring the usage from XEP-0115. Because the "hash" field can be used to specify alternative hash algorithms, and thus supports hash agility. However, in practice it is likely that only SHA-1 is supported in implementations. Because the hash is represented in a DNS TXT record, it cannot directly use the extension defined in this specification.

-
- -

&xep0231;. This specification supports hash agility through the structure of values for the 'cid' attribute, but does not mandate support for any particular algorithm.

-
-

Of the foregoing, the use in XEP-0115 has the most significant security implications.

-

The XSF is strongly encouraged to consider migrating its existing uses of SHA-1 to the SHA-2 family of algorithms, and to the SHA-3 family when available.

+

The SHA-1 algorithm is used in a number of XMPP protocols. See Analysis of Existing XMPP Extensions for details.

The SHA-2 family of algorithms (SHA-224, SHA-256, SHA-384, and SHA-512) was developed by the U.S. National Security Agency and first published in 2001. Because SHA-2 is somewhat similar to SHA-1, it is thought that the security flaws with SHA-1 described above could be extended to SHA-2 (although no such attacks have yet been found on the full-round SHA-2 algorithms).

@@ -129,7 +108,7 @@ -

Support for version 0 of the 'urn:xmpp:hashes' namespace implies the following:

+

Support for version 1 of the 'urn:xmpp:hashes' namespace implies the following:

@@ -164,7 +143,7 @@ -

If an entity supports the protocol defined herein, it MUST report that by including a &xep0030; feature of "urn:xmpp:hashes:0" in response to disco#info requests, along with one service discovery feature for each algorithm it supports:

+

If an entity supports the protocol defined herein, it MUST report that by including a &xep0030; feature of "urn:xmpp:hashes:1" in response to disco#info requests, along with one service discovery feature for each algorithm it supports:

- + @@ -189,6 +168,38 @@

In order for an application to determine whether an entity supports this protocol, where possible it SHOULD use the dynamic, presence-based profile of service discovery defined in &xep0115;. However, if an application has not received entity capabilities information from an entity, it SHOULD use explicit service discovery instead.

+ +

The XSF is strongly encouraged to incorporate hash agility into new XMPP extensions that it develops.

+
+ + +

As mentioned, several existing XMPP extensions make use of the SHA-1 algorithm. This section analyzes those extensions. The final subsection provides recommendations.

+ +

Both &xep0065; and &xep0260; use SHA-1 to hash the Stream ID, Requester's JID, and Target's JID, and this hash can be communicated via the 'dstaddr' attribute. Although this usage is not security-critical, currently it has no agility to specify newer algorithms. Because the hash is communicated by means of an attribute, it cannot directly use the extension defined in this specification.

+
+ +

In &xep0084;, the &xep0060; ItemId for the metadata node is the SHA-1 hash of the image data for the "image/png" media type. There is no hash agility for this usage. Although attacks against the collision resistance property could potentially result in confusion over the avatar for a user, the fact that avatars cannot be uploaded without authentication as the node owner or authorization as a node publisher reduces the practicality of attacks. In addition, XEP-0084 should be updated to specify that avatars must not be compared across JIDs.

+
+ +

&xep0115; typically uses SHA-1 to compute the verification string, however hash agility is supported by use of the 'hash' attribute. Because the hash is communicated by means of an attribute, it cannot directly use the extension defined in this specification.

+
+ +

&xep0124; uses SHA-1 to generate the key sequence used to secure sessions that are not protected via SSL/TLS. Because these keys are ephemeral, it is unlikely that an attacker could reproduce or poison the key sequence quickly enough to successfully attack the session. However, attackers can be discouraged more significantly by protecting sessions with SSL/TLS. That said, this use of SHA-1 in BOSH does not support hash agility.

+
+ +

&xep0153;. This specification is historical but still widely used. Probably it is more valuable to modify XEP-0084 so that it supports hash agility.

+
+ +

&xep0174; uses SHA-1 to hash the avatar image (i.e., the "phsh" field) advertised in the DNS TXT record for a user, mirroring the usage from XEP-0115. Because the "hash" field can be used to specify alternative hash algorithms, and thus supports hash agility. However, in practice it is likely that only SHA-1 is supported in implementations. Because the hash is represented in a DNS TXT record, it cannot directly use the extension defined in this specification.

+
+ +

&xep0231;. This specification supports hash agility through the structure of values for the 'cid' attribute, but does not mandate support for any particular algorithm.

+
+ +

Of the foregoing, the use in XEP-0115 has the most significant security implications. However, there are other security issues with XEP-0115 that make it likely to be replaced in a more wholesale fashion. Although it would be desirable for all XMPP extensions that use cryptographic hashes to incorporate hash agility, realistically this is difficult to achieve after the fact. For now, the XSF is encouraged to focus on new protocols (e.g., XEP-0234 and a replacement for XEP-0115 if there is consensus to work on the latter) rather than spending effort on migrating its existing uses of SHA-1 to the SHA-2 family of algorithms, and to the SHA-3 family when available. Naturally, these priorities might change if XMPP technologies experience significant attacks on existing extensions that use SHA-1.

+
+
+

This entire document discusses security.

@@ -201,7 +212,7 @@

This specification defines the following XML namespace:

    -
  • urn:xmpp:hashes:0
  • +
  • urn:xmpp:hashes:1

The ®ISTRAR; shall include the foregoing namespace in its registry at &NAMESPACES;, as governed by &xep0053;.

@@ -214,39 +225,63 @@ urn:xmpp:hash-function-text-names:md5 Support for the MD5 hashing algorithm - XEP-xxxx + XEP-0300 urn:xmpp:hash-function-text-names:sha-1 Support for the SHA-1 hashing algorithm - XEP-xxxx + XEP-0300 urn:xmpp:hash-function-text-names:sha-224 Support for the SHA-224 hashing algorithm - XEP-xxxx + XEP-0300 urn:xmpp:hash-function-text-names:sha-256 Support for the SHA-256 hashing algorithm - XEP-xxxx + XEP-0300 urn:xmpp:hash-function-text-names:sha-384 Support for the SHA-384 hashing algorithm - XEP-xxxx + XEP-0300 urn:xmpp:hash-function-text-names:sha-512 Support for the SHA-512 hashing algorithm - XEP-xxxx + XEP-0300 ]]> + + + + + + + + + + + + + + + + + ]]> +

Thanks to Dave Cridland, Waqas Hussain, Glenn Maynard, and Remko Tronçon for their input.

+
Algorithm