mirror of
https://github.com/moparisthebest/wget
synced 2024-07-03 16:38:41 -04:00
1047 lines
29 KiB
C
1047 lines
29 KiB
C
/* File retrieval.
|
||
Copyright (C) 1996-2006 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Wget.
|
||
|
||
GNU Wget is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or (at
|
||
your option) any later version.
|
||
|
||
GNU Wget is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Wget. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
In addition, as a special exception, the Free Software Foundation
|
||
gives permission to link the code of its release of Wget with the
|
||
OpenSSL project's "OpenSSL" library (or with modified versions of it
|
||
that use the same license as the "OpenSSL" library), and distribute
|
||
the linked executables. You must obey the GNU General Public License
|
||
in all respects for all of the code used other than "OpenSSL". If you
|
||
modify this file, you may extend this exception to your version of the
|
||
file, but you are not obligated to do so. If you do not wish to do
|
||
so, delete this exception statement from your version. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#ifdef HAVE_UNISTD_H
|
||
# include <unistd.h>
|
||
#endif /* HAVE_UNISTD_H */
|
||
#include <errno.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
|
||
#include "wget.h"
|
||
#include "utils.h"
|
||
#include "retr.h"
|
||
#include "progress.h"
|
||
#include "url.h"
|
||
#include "recur.h"
|
||
#include "ftp.h"
|
||
#include "http.h"
|
||
#include "host.h"
|
||
#include "connect.h"
|
||
#include "hash.h"
|
||
#include "convert.h"
|
||
#include "ptimer.h"
|
||
|
||
/* Total size of downloaded files. Used to enforce quota. */
|
||
SUM_SIZE_INT total_downloaded_bytes;
|
||
|
||
/* Total download time in seconds. */
|
||
double total_download_time;
|
||
|
||
/* If non-NULL, the stream to which output should be written. This
|
||
stream is initialized when `-O' is used. */
|
||
FILE *output_stream;
|
||
|
||
/* Whether output_document is a regular file we can manipulate,
|
||
i.e. not `-' or a device file. */
|
||
bool output_stream_regular;
|
||
|
||
static struct {
|
||
wgint chunk_bytes;
|
||
double chunk_start;
|
||
double sleep_adjust;
|
||
} limit_data;
|
||
|
||
static void
|
||
limit_bandwidth_reset (void)
|
||
{
|
||
xzero (limit_data);
|
||
}
|
||
|
||
/* Limit the bandwidth by pausing the download for an amount of time.
|
||
BYTES is the number of bytes received from the network, and TIMER
|
||
is the timer that started at the beginning of download. */
|
||
|
||
static void
|
||
limit_bandwidth (wgint bytes, struct ptimer *timer)
|
||
{
|
||
double delta_t = ptimer_read (timer) - limit_data.chunk_start;
|
||
double expected;
|
||
|
||
limit_data.chunk_bytes += bytes;
|
||
|
||
/* Calculate the amount of time we expect downloading the chunk
|
||
should take. If in reality it took less time, sleep to
|
||
compensate for the difference. */
|
||
expected = (double) limit_data.chunk_bytes / opt.limit_rate;
|
||
|
||
if (expected > delta_t)
|
||
{
|
||
double slp = expected - delta_t + limit_data.sleep_adjust;
|
||
double t0, t1;
|
||
if (slp < 0.2)
|
||
{
|
||
DEBUGP (("deferring a %.2f ms sleep (%s/%.2f).\n",
|
||
slp * 1000, number_to_static_string (limit_data.chunk_bytes),
|
||
delta_t));
|
||
return;
|
||
}
|
||
DEBUGP (("\nsleeping %.2f ms for %s bytes, adjust %.2f ms\n",
|
||
slp * 1000, number_to_static_string (limit_data.chunk_bytes),
|
||
limit_data.sleep_adjust));
|
||
|
||
t0 = ptimer_read (timer);
|
||
xsleep (slp);
|
||
t1 = ptimer_measure (timer);
|
||
|
||
/* Due to scheduling, we probably slept slightly longer (or
|
||
shorter) than desired. Calculate the difference between the
|
||
desired and the actual sleep, and adjust the next sleep by
|
||
that amount. */
|
||
limit_data.sleep_adjust = slp - (t1 - t0);
|
||
/* If sleep_adjust is very large, it's likely due to suspension
|
||
and not clock inaccuracy. Don't enforce those. */
|
||
if (limit_data.sleep_adjust > 0.5)
|
||
limit_data.sleep_adjust = 0.5;
|
||
else if (limit_data.sleep_adjust < -0.5)
|
||
limit_data.sleep_adjust = -0.5;
|
||
}
|
||
|
||
limit_data.chunk_bytes = 0;
|
||
limit_data.chunk_start = ptimer_read (timer);
|
||
}
|
||
|
||
#ifndef MIN
|
||
# define MIN(i, j) ((i) <= (j) ? (i) : (j))
|
||
#endif
|
||
|
||
/* Write data in BUF to OUT. However, if *SKIP is non-zero, skip that
|
||
amount of data and decrease SKIP. Increment *TOTAL by the amount
|
||
of data written. */
|
||
|
||
static int
|
||
write_data (FILE *out, const char *buf, int bufsize, wgint *skip,
|
||
wgint *written)
|
||
{
|
||
if (!out)
|
||
return 1;
|
||
if (*skip > bufsize)
|
||
{
|
||
*skip -= bufsize;
|
||
return 1;
|
||
}
|
||
if (*skip)
|
||
{
|
||
buf += *skip;
|
||
bufsize -= *skip;
|
||
*skip = 0;
|
||
if (bufsize == 0)
|
||
return 1;
|
||
}
|
||
|
||
fwrite (buf, 1, bufsize, out);
|
||
*written += bufsize;
|
||
|
||
/* Immediately flush the downloaded data. This should not hinder
|
||
performance: fast downloads will arrive in large 16K chunks
|
||
(which stdio would write out immediately anyway), and slow
|
||
downloads wouldn't be limited by disk speed. */
|
||
fflush (out);
|
||
return !ferror (out);
|
||
}
|
||
|
||
/* Read the contents of file descriptor FD until it the connection
|
||
terminates or a read error occurs. The data is read in portions of
|
||
up to 16K and written to OUT as it arrives. If opt.verbose is set,
|
||
the progress is shown.
|
||
|
||
TOREAD is the amount of data expected to arrive, normally only used
|
||
by the progress gauge.
|
||
|
||
STARTPOS is the position from which the download starts, used by
|
||
the progress gauge. If QTYREAD is non-NULL, the value it points to
|
||
is incremented by the amount of data read from the network. If
|
||
QTYWRITTEN is non-NULL, the value it points to is incremented by
|
||
the amount of data written to disk. The time it took to download
|
||
the data is stored to ELAPSED.
|
||
|
||
The function exits and returns the amount of data read. In case of
|
||
error while reading data, -1 is returned. In case of error while
|
||
writing data, -2 is returned. */
|
||
|
||
int
|
||
fd_read_body (int fd, FILE *out, wgint toread, wgint startpos,
|
||
wgint *qtyread, wgint *qtywritten, double *elapsed, int flags)
|
||
{
|
||
int ret = 0;
|
||
|
||
static char dlbuf[16384];
|
||
int dlbufsize = sizeof (dlbuf);
|
||
|
||
struct ptimer *timer = NULL;
|
||
double last_successful_read_tm = 0;
|
||
|
||
/* The progress gauge, set according to the user preferences. */
|
||
void *progress = NULL;
|
||
|
||
/* Non-zero if the progress gauge is interactive, i.e. if it can
|
||
continually update the display. When true, smaller timeout
|
||
values are used so that the gauge can update the display when
|
||
data arrives slowly. */
|
||
bool progress_interactive = false;
|
||
|
||
bool exact = !!(flags & rb_read_exactly);
|
||
wgint skip = 0;
|
||
|
||
/* How much data we've read/written. */
|
||
wgint sum_read = 0;
|
||
wgint sum_written = 0;
|
||
|
||
if (flags & rb_skip_startpos)
|
||
skip = startpos;
|
||
|
||
if (opt.verbose)
|
||
{
|
||
/* If we're skipping STARTPOS bytes, pass 0 as the INITIAL
|
||
argument to progress_create because the indicator doesn't
|
||
(yet) know about "skipping" data. */
|
||
progress = progress_create (skip ? 0 : startpos, startpos + toread);
|
||
progress_interactive = progress_interactive_p (progress);
|
||
}
|
||
|
||
if (opt.limit_rate)
|
||
limit_bandwidth_reset ();
|
||
|
||
/* A timer is needed for tracking progress, for throttling, and for
|
||
tracking elapsed time. If either of these are requested, start
|
||
the timer. */
|
||
if (progress || opt.limit_rate || elapsed)
|
||
{
|
||
timer = ptimer_new ();
|
||
last_successful_read_tm = 0;
|
||
}
|
||
|
||
/* Use a smaller buffer for low requested bandwidths. For example,
|
||
with --limit-rate=2k, it doesn't make sense to slurp in 16K of
|
||
data and then sleep for 8s. With buffer size equal to the limit,
|
||
we never have to sleep for more than one second. */
|
||
if (opt.limit_rate && opt.limit_rate < dlbufsize)
|
||
dlbufsize = opt.limit_rate;
|
||
|
||
/* Read from FD while there is data to read. Normally toread==0
|
||
means that it is unknown how much data is to arrive. However, if
|
||
EXACT is set, then toread==0 means what it says: that no data
|
||
should be read. */
|
||
while (!exact || (sum_read < toread))
|
||
{
|
||
int rdsize = exact ? MIN (toread - sum_read, dlbufsize) : dlbufsize;
|
||
double tmout = opt.read_timeout;
|
||
if (progress_interactive)
|
||
{
|
||
/* For interactive progress gauges, always specify a ~1s
|
||
timeout, so that the gauge can be updated regularly even
|
||
when the data arrives very slowly or stalls. */
|
||
tmout = 0.95;
|
||
if (opt.read_timeout)
|
||
{
|
||
double waittm;
|
||
waittm = ptimer_read (timer) - last_successful_read_tm;
|
||
if (waittm + tmout > opt.read_timeout)
|
||
{
|
||
/* Don't let total idle time exceed read timeout. */
|
||
tmout = opt.read_timeout - waittm;
|
||
if (tmout < 0)
|
||
{
|
||
/* We've already exceeded the timeout. */
|
||
ret = -1, errno = ETIMEDOUT;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
ret = fd_read (fd, dlbuf, rdsize, tmout);
|
||
|
||
if (progress_interactive && ret < 0 && errno == ETIMEDOUT)
|
||
ret = 0; /* interactive timeout, handled above */
|
||
else if (ret <= 0)
|
||
break; /* EOF or read error */
|
||
|
||
if (progress || opt.limit_rate)
|
||
{
|
||
ptimer_measure (timer);
|
||
if (ret > 0)
|
||
last_successful_read_tm = ptimer_read (timer);
|
||
}
|
||
|
||
if (ret > 0)
|
||
{
|
||
sum_read += ret;
|
||
if (!write_data (out, dlbuf, ret, &skip, &sum_written))
|
||
{
|
||
ret = -2;
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
if (opt.limit_rate)
|
||
limit_bandwidth (ret, timer);
|
||
|
||
if (progress)
|
||
progress_update (progress, ret, ptimer_read (timer));
|
||
#ifdef WINDOWS
|
||
if (toread > 0 && !opt.quiet)
|
||
ws_percenttitle (100.0 *
|
||
(startpos + sum_read) / (startpos + toread));
|
||
#endif
|
||
}
|
||
if (ret < -1)
|
||
ret = -1;
|
||
|
||
out:
|
||
if (progress)
|
||
progress_finish (progress, ptimer_read (timer));
|
||
|
||
if (elapsed)
|
||
*elapsed = ptimer_read (timer);
|
||
if (timer)
|
||
ptimer_destroy (timer);
|
||
|
||
if (qtyread)
|
||
*qtyread += sum_read;
|
||
if (qtywritten)
|
||
*qtywritten += sum_written;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Read a hunk of data from FD, up until a terminator. The hunk is
|
||
limited by whatever the TERMINATOR callback chooses as its
|
||
terminator. For example, if terminator stops at newline, the hunk
|
||
will consist of a line of data; if terminator stops at two
|
||
newlines, it can be used to read the head of an HTTP response.
|
||
Upon determining the boundary, the function returns the data (up to
|
||
the terminator) in malloc-allocated storage.
|
||
|
||
In case of read error, NULL is returned. In case of EOF and no
|
||
data read, NULL is returned and errno set to 0. In case of having
|
||
read some data, but encountering EOF before seeing the terminator,
|
||
the data that has been read is returned, but it will (obviously)
|
||
not contain the terminator.
|
||
|
||
The TERMINATOR function is called with three arguments: the
|
||
beginning of the data read so far, the beginning of the current
|
||
block of peeked-at data, and the length of the current block.
|
||
Depending on its needs, the function is free to choose whether to
|
||
analyze all data or just the newly arrived data. If TERMINATOR
|
||
returns NULL, it means that the terminator has not been seen.
|
||
Otherwise it should return a pointer to the charactre immediately
|
||
following the terminator.
|
||
|
||
The idea is to be able to read a line of input, or otherwise a hunk
|
||
of text, such as the head of an HTTP request, without crossing the
|
||
boundary, so that the next call to fd_read etc. reads the data
|
||
after the hunk. To achieve that, this function does the following:
|
||
|
||
1. Peek at incoming data.
|
||
|
||
2. Determine whether the peeked data, along with the previously
|
||
read data, includes the terminator.
|
||
|
||
2a. If yes, read the data until the end of the terminator, and
|
||
exit.
|
||
|
||
2b. If no, read the peeked data and goto 1.
|
||
|
||
The function is careful to assume as little as possible about the
|
||
implementation of peeking. For example, every peek is followed by
|
||
a read. If the read returns a different amount of data, the
|
||
process is retried until all data arrives safely.
|
||
|
||
SIZEHINT is the buffer size sufficient to hold all the data in the
|
||
typical case (it is used as the initial buffer size). MAXSIZE is
|
||
the maximum amount of memory this function is allowed to allocate,
|
||
or 0 if no upper limit is to be enforced.
|
||
|
||
This function should be used as a building block for other
|
||
functions -- see fd_read_line as a simple example. */
|
||
|
||
char *
|
||
fd_read_hunk (int fd, hunk_terminator_t terminator, long sizehint, long maxsize)
|
||
{
|
||
long bufsize = sizehint;
|
||
char *hunk = xmalloc (bufsize);
|
||
int tail = 0; /* tail position in HUNK */
|
||
|
||
assert (maxsize >= bufsize);
|
||
|
||
while (1)
|
||
{
|
||
const char *end;
|
||
int pklen, rdlen, remain;
|
||
|
||
/* First, peek at the available data. */
|
||
|
||
pklen = fd_peek (fd, hunk + tail, bufsize - 1 - tail, -1);
|
||
if (pklen < 0)
|
||
{
|
||
xfree (hunk);
|
||
return NULL;
|
||
}
|
||
end = terminator (hunk, hunk + tail, pklen);
|
||
if (end)
|
||
{
|
||
/* The data contains the terminator: we'll drain the data up
|
||
to the end of the terminator. */
|
||
remain = end - (hunk + tail);
|
||
assert (remain >= 0);
|
||
if (remain == 0)
|
||
{
|
||
/* No more data needs to be read. */
|
||
hunk[tail] = '\0';
|
||
return hunk;
|
||
}
|
||
if (bufsize - 1 < tail + remain)
|
||
{
|
||
bufsize = tail + remain + 1;
|
||
hunk = xrealloc (hunk, bufsize);
|
||
}
|
||
}
|
||
else
|
||
/* No terminator: simply read the data we know is (or should
|
||
be) available. */
|
||
remain = pklen;
|
||
|
||
/* Now, read the data. Note that we make no assumptions about
|
||
how much data we'll get. (Some TCP stacks are notorious for
|
||
read returning less data than the previous MSG_PEEK.) */
|
||
|
||
rdlen = fd_read (fd, hunk + tail, remain, 0);
|
||
if (rdlen < 0)
|
||
{
|
||
xfree_null (hunk);
|
||
return NULL;
|
||
}
|
||
tail += rdlen;
|
||
hunk[tail] = '\0';
|
||
|
||
if (rdlen == 0)
|
||
{
|
||
if (tail == 0)
|
||
{
|
||
/* EOF without anything having been read */
|
||
xfree (hunk);
|
||
errno = 0;
|
||
return NULL;
|
||
}
|
||
else
|
||
/* EOF seen: return the data we've read. */
|
||
return hunk;
|
||
}
|
||
if (end && rdlen == remain)
|
||
/* The terminator was seen and the remaining data drained --
|
||
we got what we came for. */
|
||
return hunk;
|
||
|
||
/* Keep looping until all the data arrives. */
|
||
|
||
if (tail == bufsize - 1)
|
||
{
|
||
/* Double the buffer size, but refuse to allocate more than
|
||
MAXSIZE bytes. */
|
||
if (maxsize && bufsize >= maxsize)
|
||
{
|
||
xfree (hunk);
|
||
errno = ENOMEM;
|
||
return NULL;
|
||
}
|
||
bufsize <<= 1;
|
||
if (maxsize && bufsize > maxsize)
|
||
bufsize = maxsize;
|
||
hunk = xrealloc (hunk, bufsize);
|
||
}
|
||
}
|
||
}
|
||
|
||
static const char *
|
||
line_terminator (const char *start, const char *peeked, int peeklen)
|
||
{
|
||
const char *p = memchr (peeked, '\n', peeklen);
|
||
if (p)
|
||
/* p+1 because the line must include '\n' */
|
||
return p + 1;
|
||
return NULL;
|
||
}
|
||
|
||
/* The maximum size of the single line we agree to accept. This is
|
||
not meant to impose an arbitrary limit, but to protect the user
|
||
from Wget slurping up available memory upon encountering malicious
|
||
or buggy server output. Define it to 0 to remove the limit. */
|
||
#define FD_READ_LINE_MAX 4096
|
||
|
||
/* Read one line from FD and return it. The line is allocated using
|
||
malloc, but is never larger than FD_READ_LINE_MAX.
|
||
|
||
If an error occurs, or if no data can be read, NULL is returned.
|
||
In the former case errno indicates the error condition, and in the
|
||
latter case, errno is NULL. */
|
||
|
||
char *
|
||
fd_read_line (int fd)
|
||
{
|
||
return fd_read_hunk (fd, line_terminator, 128, FD_READ_LINE_MAX);
|
||
}
|
||
|
||
/* Return a printed representation of the download rate, along with
|
||
the units appropriate for the download speed. */
|
||
|
||
const char *
|
||
retr_rate (wgint bytes, double secs)
|
||
{
|
||
static char res[20];
|
||
static const char *rate_names[] = {"B/s", "KB/s", "MB/s", "GB/s" };
|
||
int units;
|
||
|
||
double dlrate = calc_rate (bytes, secs, &units);
|
||
/* Use more digits for smaller numbers (regardless of unit used),
|
||
e.g. "1022", "247", "12.5", "2.38". */
|
||
sprintf (res, "%.*f %s",
|
||
dlrate >= 99.95 ? 0 : dlrate >= 9.995 ? 1 : 2,
|
||
dlrate, rate_names[units]);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Calculate the download rate and trim it as appropriate for the
|
||
speed. Appropriate means that if rate is greater than 1K/s,
|
||
kilobytes are used, and if rate is greater than 1MB/s, megabytes
|
||
are used.
|
||
|
||
UNITS is zero for B/s, one for KB/s, two for MB/s, and three for
|
||
GB/s. */
|
||
|
||
double
|
||
calc_rate (wgint bytes, double secs, int *units)
|
||
{
|
||
double dlrate;
|
||
|
||
assert (secs >= 0);
|
||
assert (bytes >= 0);
|
||
|
||
if (secs == 0)
|
||
/* If elapsed time is exactly zero, it means we're under the
|
||
resolution of the timer. This can easily happen on systems
|
||
that use time() for the timer. Since the interval lies between
|
||
0 and the timer's resolution, assume half the resolution. */
|
||
secs = ptimer_resolution () / 2.0;
|
||
|
||
dlrate = bytes / secs;
|
||
if (dlrate < 1024.0)
|
||
*units = 0;
|
||
else if (dlrate < 1024.0 * 1024.0)
|
||
*units = 1, dlrate /= 1024.0;
|
||
else if (dlrate < 1024.0 * 1024.0 * 1024.0)
|
||
*units = 2, dlrate /= (1024.0 * 1024.0);
|
||
else
|
||
/* Maybe someone will need this, one day. */
|
||
*units = 3, dlrate /= (1024.0 * 1024.0 * 1024.0);
|
||
|
||
return dlrate;
|
||
}
|
||
|
||
/* Maximum number of allowed redirections. 20 was chosen as a
|
||
"reasonable" value, which is low enough to not cause havoc, yet
|
||
high enough to guarantee that normal retrievals will not be hurt by
|
||
the check. */
|
||
|
||
#define MAX_REDIRECTIONS 20
|
||
|
||
#define SUSPEND_POST_DATA do { \
|
||
post_data_suspended = true; \
|
||
saved_post_data = opt.post_data; \
|
||
saved_post_file_name = opt.post_file_name; \
|
||
opt.post_data = NULL; \
|
||
opt.post_file_name = NULL; \
|
||
} while (0)
|
||
|
||
#define RESTORE_POST_DATA do { \
|
||
if (post_data_suspended) \
|
||
{ \
|
||
opt.post_data = saved_post_data; \
|
||
opt.post_file_name = saved_post_file_name; \
|
||
post_data_suspended = false; \
|
||
} \
|
||
} while (0)
|
||
|
||
static char *getproxy (struct url *);
|
||
|
||
/* Retrieve the given URL. Decides which loop to call -- HTTP, FTP,
|
||
FTP, proxy, etc. */
|
||
|
||
/* #### This function should be rewritten so it doesn't return from
|
||
multiple points. */
|
||
|
||
uerr_t
|
||
retrieve_url (const char *origurl, char **file, char **newloc,
|
||
const char *refurl, int *dt, bool recursive)
|
||
{
|
||
uerr_t result;
|
||
char *url;
|
||
bool location_changed;
|
||
int dummy;
|
||
char *mynewloc, *proxy;
|
||
struct url *u, *proxy_url;
|
||
int up_error_code; /* url parse error code */
|
||
char *local_file;
|
||
int redirection_count = 0;
|
||
|
||
bool post_data_suspended = false;
|
||
char *saved_post_data = NULL;
|
||
char *saved_post_file_name = NULL;
|
||
|
||
/* If dt is NULL, use local storage. */
|
||
if (!dt)
|
||
{
|
||
dt = &dummy;
|
||
dummy = 0;
|
||
}
|
||
url = xstrdup (origurl);
|
||
if (newloc)
|
||
*newloc = NULL;
|
||
if (file)
|
||
*file = NULL;
|
||
|
||
u = url_parse (url, &up_error_code);
|
||
if (!u)
|
||
{
|
||
logprintf (LOG_NOTQUIET, "%s: %s.\n", url, url_error (up_error_code));
|
||
xfree (url);
|
||
return URLERROR;
|
||
}
|
||
|
||
if (!refurl)
|
||
refurl = opt.referer;
|
||
|
||
redirected:
|
||
|
||
result = NOCONERROR;
|
||
mynewloc = NULL;
|
||
local_file = NULL;
|
||
proxy_url = NULL;
|
||
|
||
proxy = getproxy (u);
|
||
if (proxy)
|
||
{
|
||
/* Parse the proxy URL. */
|
||
proxy_url = url_parse (proxy, &up_error_code);
|
||
if (!proxy_url)
|
||
{
|
||
logprintf (LOG_NOTQUIET, _("Error parsing proxy URL %s: %s.\n"),
|
||
proxy, url_error (up_error_code));
|
||
xfree (url);
|
||
RESTORE_POST_DATA;
|
||
return PROXERR;
|
||
}
|
||
if (proxy_url->scheme != SCHEME_HTTP && proxy_url->scheme != u->scheme)
|
||
{
|
||
logprintf (LOG_NOTQUIET, _("Error in proxy URL %s: Must be HTTP.\n"), proxy);
|
||
url_free (proxy_url);
|
||
xfree (url);
|
||
RESTORE_POST_DATA;
|
||
return PROXERR;
|
||
}
|
||
}
|
||
|
||
if (u->scheme == SCHEME_HTTP
|
||
#ifdef HAVE_SSL
|
||
|| u->scheme == SCHEME_HTTPS
|
||
#endif
|
||
|| (proxy_url && proxy_url->scheme == SCHEME_HTTP))
|
||
{
|
||
result = http_loop (u, &mynewloc, &local_file, refurl, dt, proxy_url);
|
||
}
|
||
else if (u->scheme == SCHEME_FTP)
|
||
{
|
||
/* If this is a redirection, temporarily turn off opt.ftp_glob
|
||
and opt.recursive, both being undesirable when following
|
||
redirects. */
|
||
bool oldrec = recursive, glob = opt.ftp_glob;
|
||
if (redirection_count)
|
||
oldrec = glob = false;
|
||
|
||
result = ftp_loop (u, dt, proxy_url, recursive, glob);
|
||
recursive = oldrec;
|
||
|
||
/* There is a possibility of having HTTP being redirected to
|
||
FTP. In these cases we must decide whether the text is HTML
|
||
according to the suffix. The HTML suffixes are `.html',
|
||
`.htm' and a few others, case-insensitive. */
|
||
if (redirection_count && local_file && u->scheme == SCHEME_FTP)
|
||
{
|
||
if (has_html_suffix_p (local_file))
|
||
*dt |= TEXTHTML;
|
||
}
|
||
}
|
||
|
||
if (proxy_url)
|
||
{
|
||
url_free (proxy_url);
|
||
proxy_url = NULL;
|
||
}
|
||
|
||
location_changed = (result == NEWLOCATION);
|
||
if (location_changed)
|
||
{
|
||
char *construced_newloc;
|
||
struct url *newloc_parsed;
|
||
|
||
assert (mynewloc != NULL);
|
||
|
||
if (local_file)
|
||
xfree (local_file);
|
||
|
||
/* The HTTP specs only allow absolute URLs to appear in
|
||
redirects, but a ton of boneheaded webservers and CGIs out
|
||
there break the rules and use relative URLs, and popular
|
||
browsers are lenient about this, so wget should be too. */
|
||
construced_newloc = uri_merge (url, mynewloc);
|
||
xfree (mynewloc);
|
||
mynewloc = construced_newloc;
|
||
|
||
/* Now, see if this new location makes sense. */
|
||
newloc_parsed = url_parse (mynewloc, &up_error_code);
|
||
if (!newloc_parsed)
|
||
{
|
||
logprintf (LOG_NOTQUIET, "%s: %s.\n", escnonprint_uri (mynewloc),
|
||
url_error (up_error_code));
|
||
url_free (u);
|
||
xfree (url);
|
||
xfree (mynewloc);
|
||
RESTORE_POST_DATA;
|
||
return result;
|
||
}
|
||
|
||
/* Now mynewloc will become newloc_parsed->url, because if the
|
||
Location contained relative paths like .././something, we
|
||
don't want that propagating as url. */
|
||
xfree (mynewloc);
|
||
mynewloc = xstrdup (newloc_parsed->url);
|
||
|
||
/* Check for max. number of redirections. */
|
||
if (++redirection_count > MAX_REDIRECTIONS)
|
||
{
|
||
logprintf (LOG_NOTQUIET, _("%d redirections exceeded.\n"),
|
||
MAX_REDIRECTIONS);
|
||
url_free (newloc_parsed);
|
||
url_free (u);
|
||
xfree (url);
|
||
xfree (mynewloc);
|
||
RESTORE_POST_DATA;
|
||
return WRONGCODE;
|
||
}
|
||
|
||
xfree (url);
|
||
url = mynewloc;
|
||
url_free (u);
|
||
u = newloc_parsed;
|
||
|
||
/* If we're being redirected from POST, we don't want to POST
|
||
again. Many requests answer POST with a redirection to an
|
||
index page; that redirection is clearly a GET. We "suspend"
|
||
POST data for the duration of the redirections, and restore
|
||
it when we're done. */
|
||
if (!post_data_suspended)
|
||
SUSPEND_POST_DATA;
|
||
|
||
goto redirected;
|
||
}
|
||
|
||
if (local_file)
|
||
{
|
||
if (*dt & RETROKF)
|
||
{
|
||
register_download (u->url, local_file);
|
||
if (redirection_count && 0 != strcmp (origurl, u->url))
|
||
register_redirection (origurl, u->url);
|
||
if (*dt & TEXTHTML)
|
||
register_html (u->url, local_file);
|
||
}
|
||
}
|
||
|
||
if (file)
|
||
*file = local_file ? local_file : NULL;
|
||
else
|
||
xfree_null (local_file);
|
||
|
||
url_free (u);
|
||
|
||
if (redirection_count)
|
||
{
|
||
if (newloc)
|
||
*newloc = url;
|
||
else
|
||
xfree (url);
|
||
}
|
||
else
|
||
{
|
||
if (newloc)
|
||
*newloc = NULL;
|
||
xfree (url);
|
||
}
|
||
|
||
RESTORE_POST_DATA;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Find the URLs in the file and call retrieve_url() for each of them.
|
||
If HTML is true, treat the file as HTML, and construct the URLs
|
||
accordingly.
|
||
|
||
If opt.recursive is set, call retrieve_tree() for each file. */
|
||
|
||
uerr_t
|
||
retrieve_from_file (const char *file, bool html, int *count)
|
||
{
|
||
uerr_t status;
|
||
struct urlpos *url_list, *cur_url;
|
||
|
||
url_list = (html ? get_urls_html (file, NULL, NULL)
|
||
: get_urls_file (file));
|
||
status = RETROK; /* Suppose everything is OK. */
|
||
*count = 0; /* Reset the URL count. */
|
||
|
||
for (cur_url = url_list; cur_url; cur_url = cur_url->next, ++*count)
|
||
{
|
||
char *filename = NULL, *new_file = NULL;
|
||
int dt;
|
||
|
||
if (cur_url->ignore_when_downloading)
|
||
continue;
|
||
|
||
if (opt.quota && total_downloaded_bytes > opt.quota)
|
||
{
|
||
status = QUOTEXC;
|
||
break;
|
||
}
|
||
if ((opt.recursive || opt.page_requisites)
|
||
&& (cur_url->url->scheme != SCHEME_FTP || getproxy (cur_url->url)))
|
||
{
|
||
int old_follow_ftp = opt.follow_ftp;
|
||
|
||
/* Turn opt.follow_ftp on in case of recursive FTP retrieval */
|
||
if (cur_url->url->scheme == SCHEME_FTP)
|
||
opt.follow_ftp = 1;
|
||
|
||
status = retrieve_tree (cur_url->url->url);
|
||
|
||
opt.follow_ftp = old_follow_ftp;
|
||
}
|
||
else
|
||
status = retrieve_url (cur_url->url->url, &filename, &new_file, NULL, &dt, opt.recursive);
|
||
|
||
if (filename && opt.delete_after && file_exists_p (filename))
|
||
{
|
||
DEBUGP (("\
|
||
Removing file due to --delete-after in retrieve_from_file():\n"));
|
||
logprintf (LOG_VERBOSE, _("Removing %s.\n"), filename);
|
||
if (unlink (filename))
|
||
logprintf (LOG_NOTQUIET, "unlink: %s\n", strerror (errno));
|
||
dt &= ~RETROKF;
|
||
}
|
||
|
||
xfree_null (new_file);
|
||
xfree_null (filename);
|
||
}
|
||
|
||
/* Free the linked list of URL-s. */
|
||
free_urlpos (url_list);
|
||
|
||
return status;
|
||
}
|
||
|
||
/* Print `giving up', or `retrying', depending on the impending
|
||
action. N1 and N2 are the attempt number and the attempt limit. */
|
||
void
|
||
printwhat (int n1, int n2)
|
||
{
|
||
logputs (LOG_VERBOSE, (n1 == n2) ? _("Giving up.\n\n") : _("Retrying.\n\n"));
|
||
}
|
||
|
||
/* If opt.wait or opt.waitretry are specified, and if certain
|
||
conditions are met, sleep the appropriate number of seconds. See
|
||
the documentation of --wait and --waitretry for more information.
|
||
|
||
COUNT is the count of current retrieval, beginning with 1. */
|
||
|
||
void
|
||
sleep_between_retrievals (int count)
|
||
{
|
||
static bool first_retrieval = true;
|
||
|
||
if (first_retrieval)
|
||
{
|
||
/* Don't sleep before the very first retrieval. */
|
||
first_retrieval = false;
|
||
return;
|
||
}
|
||
|
||
if (opt.waitretry && count > 1)
|
||
{
|
||
/* If opt.waitretry is specified and this is a retry, wait for
|
||
COUNT-1 number of seconds, or for opt.waitretry seconds. */
|
||
if (count <= opt.waitretry)
|
||
xsleep (count - 1);
|
||
else
|
||
xsleep (opt.waitretry);
|
||
}
|
||
else if (opt.wait)
|
||
{
|
||
if (!opt.random_wait || count > 1)
|
||
/* If random-wait is not specified, or if we are sleeping
|
||
between retries of the same download, sleep the fixed
|
||
interval. */
|
||
xsleep (opt.wait);
|
||
else
|
||
{
|
||
/* Sleep a random amount of time averaging in opt.wait
|
||
seconds. The sleeping amount ranges from 0.5*opt.wait to
|
||
1.5*opt.wait. */
|
||
double waitsecs = (0.5 + random_float ()) * opt.wait;
|
||
DEBUGP (("sleep_between_retrievals: avg=%f,sleep=%f\n",
|
||
opt.wait, waitsecs));
|
||
xsleep (waitsecs);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Free the linked list of urlpos. */
|
||
void
|
||
free_urlpos (struct urlpos *l)
|
||
{
|
||
while (l)
|
||
{
|
||
struct urlpos *next = l->next;
|
||
if (l->url)
|
||
url_free (l->url);
|
||
xfree_null (l->local_name);
|
||
xfree (l);
|
||
l = next;
|
||
}
|
||
}
|
||
|
||
/* Rotate FNAME opt.backups times */
|
||
void
|
||
rotate_backups(const char *fname)
|
||
{
|
||
int maxlen = strlen (fname) + 1 + numdigit (opt.backups) + 1;
|
||
char *from = (char *)alloca (maxlen);
|
||
char *to = (char *)alloca (maxlen);
|
||
struct_stat sb;
|
||
int i;
|
||
|
||
if (stat (fname, &sb) == 0)
|
||
if (S_ISREG (sb.st_mode) == 0)
|
||
return;
|
||
|
||
for (i = opt.backups; i > 1; i--)
|
||
{
|
||
sprintf (from, "%s.%d", fname, i - 1);
|
||
sprintf (to, "%s.%d", fname, i);
|
||
rename (from, to);
|
||
}
|
||
|
||
sprintf (to, "%s.%d", fname, 1);
|
||
rename(fname, to);
|
||
}
|
||
|
||
static bool no_proxy_match (const char *, const char **);
|
||
|
||
/* Return the URL of the proxy appropriate for url U. */
|
||
|
||
static char *
|
||
getproxy (struct url *u)
|
||
{
|
||
char *proxy = NULL;
|
||
char *rewritten_url;
|
||
static char rewritten_storage[1024];
|
||
|
||
if (!opt.use_proxy)
|
||
return NULL;
|
||
if (no_proxy_match (u->host, (const char **)opt.no_proxy))
|
||
return NULL;
|
||
|
||
switch (u->scheme)
|
||
{
|
||
case SCHEME_HTTP:
|
||
proxy = opt.http_proxy ? opt.http_proxy : getenv ("http_proxy");
|
||
break;
|
||
#ifdef HAVE_SSL
|
||
case SCHEME_HTTPS:
|
||
proxy = opt.https_proxy ? opt.https_proxy : getenv ("https_proxy");
|
||
break;
|
||
#endif
|
||
case SCHEME_FTP:
|
||
proxy = opt.ftp_proxy ? opt.ftp_proxy : getenv ("ftp_proxy");
|
||
break;
|
||
case SCHEME_INVALID:
|
||
break;
|
||
}
|
||
if (!proxy || !*proxy)
|
||
return NULL;
|
||
|
||
/* Handle shorthands. `rewritten_storage' is a kludge to allow
|
||
getproxy() to return static storage. */
|
||
rewritten_url = rewrite_shorthand_url (proxy);
|
||
if (rewritten_url)
|
||
{
|
||
strncpy (rewritten_storage, rewritten_url, sizeof (rewritten_storage));
|
||
rewritten_storage[sizeof (rewritten_storage) - 1] = '\0';
|
||
proxy = rewritten_storage;
|
||
}
|
||
|
||
return proxy;
|
||
}
|
||
|
||
/* Returns true if URL would be downloaded through a proxy. */
|
||
|
||
bool
|
||
url_uses_proxy (const char *url)
|
||
{
|
||
bool ret;
|
||
struct url *u = url_parse (url, NULL);
|
||
if (!u)
|
||
return false;
|
||
ret = getproxy (u) != NULL;
|
||
url_free (u);
|
||
return ret;
|
||
}
|
||
|
||
/* Should a host be accessed through proxy, concerning no_proxy? */
|
||
static bool
|
||
no_proxy_match (const char *host, const char **no_proxy)
|
||
{
|
||
if (!no_proxy)
|
||
return false;
|
||
else
|
||
return sufmatch (no_proxy, host);
|
||
}
|