mirror of
https://github.com/moparisthebest/wget
synced 2024-07-03 16:38:41 -04:00
1027 lines
29 KiB
C
1027 lines
29 KiB
C
/* Establishing and handling network connections.
|
|
Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
|
|
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software
|
|
Foundation, Inc.
|
|
|
|
This file is part of GNU Wget.
|
|
|
|
GNU Wget is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GNU Wget is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Wget. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Additional permission under GNU GPL version 3 section 7
|
|
|
|
If you modify this program, or any covered work, by linking or
|
|
combining it with the OpenSSL project's OpenSSL library (or a
|
|
modified version of that library), containing parts covered by the
|
|
terms of the OpenSSL or SSLeay licenses, the Free Software Foundation
|
|
grants you additional permission to convey the resulting work.
|
|
Corresponding Source for a non-source form of such a combination
|
|
shall include the source code for the parts of OpenSSL used as well
|
|
as that of the covered work. */
|
|
|
|
#include "wget.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <sys/select.h>
|
|
|
|
#ifndef WINDOWS
|
|
# ifdef __VMS
|
|
# include "vms_ip.h"
|
|
# else /* def __VMS */
|
|
# include <netdb.h>
|
|
# endif /* def __VMS [else] */
|
|
# include <netinet/in.h>
|
|
# ifndef __BEOS__
|
|
# include <arpa/inet.h>
|
|
# endif
|
|
#endif /* not WINDOWS */
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <sys/time.h>
|
|
#include "utils.h"
|
|
#include "host.h"
|
|
#include "connect.h"
|
|
#include "hash.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
/* Define sockaddr_storage where unavailable (presumably on IPv4-only
|
|
hosts). */
|
|
|
|
#ifndef ENABLE_IPV6
|
|
# ifndef HAVE_STRUCT_SOCKADDR_STORAGE
|
|
# define sockaddr_storage sockaddr_in
|
|
# endif
|
|
#endif /* ENABLE_IPV6 */
|
|
|
|
/* Fill SA as per the data in IP and PORT. SA shoult point to struct
|
|
sockaddr_storage if ENABLE_IPV6 is defined, to struct sockaddr_in
|
|
otherwise. */
|
|
|
|
static void
|
|
sockaddr_set_data (struct sockaddr *sa, const ip_address *ip, int port)
|
|
{
|
|
switch (ip->family)
|
|
{
|
|
case AF_INET:
|
|
{
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
|
|
xzero (*sin);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_port = htons (port);
|
|
sin->sin_addr = ip->data.d4;
|
|
break;
|
|
}
|
|
#ifdef ENABLE_IPV6
|
|
case AF_INET6:
|
|
{
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
|
|
xzero (*sin6);
|
|
sin6->sin6_family = AF_INET6;
|
|
sin6->sin6_port = htons (port);
|
|
sin6->sin6_addr = ip->data.d6;
|
|
#ifdef HAVE_SOCKADDR_IN6_SCOPE_ID
|
|
sin6->sin6_scope_id = ip->ipv6_scope;
|
|
#endif
|
|
break;
|
|
}
|
|
#endif /* ENABLE_IPV6 */
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Get the data of SA, specifically the IP address and the port. If
|
|
you're not interested in one or the other information, pass NULL as
|
|
the pointer. */
|
|
|
|
static void
|
|
sockaddr_get_data (const struct sockaddr *sa, ip_address *ip, int *port)
|
|
{
|
|
switch (sa->sa_family)
|
|
{
|
|
case AF_INET:
|
|
{
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
|
|
if (ip)
|
|
{
|
|
ip->family = AF_INET;
|
|
ip->data.d4 = sin->sin_addr;
|
|
}
|
|
if (port)
|
|
*port = ntohs (sin->sin_port);
|
|
break;
|
|
}
|
|
#ifdef ENABLE_IPV6
|
|
case AF_INET6:
|
|
{
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
|
|
if (ip)
|
|
{
|
|
ip->family = AF_INET6;
|
|
ip->data.d6 = sin6->sin6_addr;
|
|
#ifdef HAVE_SOCKADDR_IN6_SCOPE_ID
|
|
ip->ipv6_scope = sin6->sin6_scope_id;
|
|
#endif
|
|
}
|
|
if (port)
|
|
*port = ntohs (sin6->sin6_port);
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Return the size of the sockaddr structure depending on its
|
|
family. */
|
|
|
|
static socklen_t
|
|
sockaddr_size (const struct sockaddr *sa)
|
|
{
|
|
switch (sa->sa_family)
|
|
{
|
|
case AF_INET:
|
|
return sizeof (struct sockaddr_in);
|
|
#ifdef ENABLE_IPV6
|
|
case AF_INET6:
|
|
return sizeof (struct sockaddr_in6);
|
|
#endif
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Resolve the bind address specified via --bind-address and store it
|
|
to SA. The resolved value is stored in a static variable and
|
|
reused after the first invocation of this function.
|
|
|
|
Returns true on success, false on failure. */
|
|
|
|
static bool
|
|
resolve_bind_address (struct sockaddr *sa)
|
|
{
|
|
struct address_list *al;
|
|
|
|
/* Make sure this is called only once. opt.bind_address doesn't
|
|
change during a Wget run. */
|
|
static bool called, should_bind;
|
|
static ip_address ip;
|
|
if (called)
|
|
{
|
|
if (should_bind)
|
|
sockaddr_set_data (sa, &ip, 0);
|
|
return should_bind;
|
|
}
|
|
called = true;
|
|
|
|
al = lookup_host (opt.bind_address, LH_BIND | LH_SILENT);
|
|
if (!al)
|
|
{
|
|
/* #### We should be able to print the error message here. */
|
|
logprintf (LOG_NOTQUIET,
|
|
_("%s: unable to resolve bind address %s; disabling bind.\n"),
|
|
exec_name, quote (opt.bind_address));
|
|
should_bind = false;
|
|
return false;
|
|
}
|
|
|
|
/* Pick the first address in the list and use it as bind address.
|
|
Perhaps we should try multiple addresses in succession, but I
|
|
don't think that's necessary in practice. */
|
|
ip = *address_list_address_at (al, 0);
|
|
address_list_release (al);
|
|
|
|
sockaddr_set_data (sa, &ip, 0);
|
|
should_bind = true;
|
|
return true;
|
|
}
|
|
|
|
struct cwt_context {
|
|
int fd;
|
|
const struct sockaddr *addr;
|
|
socklen_t addrlen;
|
|
int result;
|
|
};
|
|
|
|
static void
|
|
connect_with_timeout_callback (void *arg)
|
|
{
|
|
struct cwt_context *ctx = (struct cwt_context *)arg;
|
|
ctx->result = connect (ctx->fd, ctx->addr, ctx->addrlen);
|
|
}
|
|
|
|
/* Like connect, but specifies a timeout. If connecting takes longer
|
|
than TIMEOUT seconds, -1 is returned and errno is set to
|
|
ETIMEDOUT. */
|
|
|
|
static int
|
|
connect_with_timeout (int fd, const struct sockaddr *addr, socklen_t addrlen,
|
|
double timeout)
|
|
{
|
|
struct cwt_context ctx;
|
|
ctx.fd = fd;
|
|
ctx.addr = addr;
|
|
ctx.addrlen = addrlen;
|
|
|
|
if (run_with_timeout (timeout, connect_with_timeout_callback, &ctx))
|
|
{
|
|
errno = ETIMEDOUT;
|
|
return -1;
|
|
}
|
|
if (ctx.result == -1 && errno == EINTR)
|
|
errno = ETIMEDOUT;
|
|
return ctx.result;
|
|
}
|
|
|
|
/* Connect via TCP to the specified address and port.
|
|
|
|
If PRINT is non-NULL, it is the host name to print that we're
|
|
connecting to. */
|
|
|
|
int
|
|
connect_to_ip (const ip_address *ip, int port, const char *print)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
struct sockaddr *sa = (struct sockaddr *)&ss;
|
|
int sock;
|
|
|
|
/* If PRINT is non-NULL, print the "Connecting to..." line, with
|
|
PRINT being the host name we're connecting to. */
|
|
if (print)
|
|
{
|
|
const char *txt_addr = print_address (ip);
|
|
if (0 != strcmp (print, txt_addr))
|
|
{
|
|
char *str = NULL, *name;
|
|
|
|
if (opt.enable_iri && (name = idn_decode ((char *) print)) != NULL)
|
|
{
|
|
int len = strlen (print) + strlen (name) + 4;
|
|
str = xmalloc (len);
|
|
snprintf (str, len, "%s (%s)", name, print);
|
|
str[len-1] = '\0';
|
|
xfree (name);
|
|
}
|
|
|
|
logprintf (LOG_VERBOSE, _("Connecting to %s|%s|:%d... "),
|
|
str ? str : escnonprint_uri (print), txt_addr, port);
|
|
|
|
if (str)
|
|
xfree (str);
|
|
}
|
|
else
|
|
{
|
|
if (ip->family == AF_INET)
|
|
logprintf (LOG_VERBOSE, _("Connecting to %s:%d... "), txt_addr, port);
|
|
#ifdef ENABLE_IPV6
|
|
else if (ip->family == AF_INET6)
|
|
logprintf (LOG_VERBOSE, _("Connecting to [%s]:%d... "), txt_addr, port);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Store the sockaddr info to SA. */
|
|
sockaddr_set_data (sa, ip, port);
|
|
|
|
/* Create the socket of the family appropriate for the address. */
|
|
sock = socket (sa->sa_family, SOCK_STREAM, 0);
|
|
if (sock < 0)
|
|
goto err;
|
|
|
|
#if defined(ENABLE_IPV6) && defined(IPV6_V6ONLY)
|
|
if (opt.ipv6_only) {
|
|
int on = 1;
|
|
/* In case of error, we will go on anyway... */
|
|
int err = setsockopt (sock, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof (on));
|
|
IF_DEBUG
|
|
if (err < 0)
|
|
DEBUGP (("Failed setting IPV6_V6ONLY: %s", strerror (errno)));
|
|
}
|
|
#endif
|
|
|
|
/* For very small rate limits, set the buffer size (and hence,
|
|
hopefully, the kernel's TCP window size) to the per-second limit.
|
|
That way we should never have to sleep for more than 1s between
|
|
network reads. */
|
|
if (opt.limit_rate && opt.limit_rate < 8192)
|
|
{
|
|
int bufsize = opt.limit_rate;
|
|
if (bufsize < 512)
|
|
bufsize = 512; /* avoid pathologically small values */
|
|
#ifdef SO_RCVBUF
|
|
setsockopt (sock, SOL_SOCKET, SO_RCVBUF,
|
|
(void *)&bufsize, (socklen_t)sizeof (bufsize));
|
|
#endif
|
|
/* When we add limit_rate support for writing, which is useful
|
|
for POST, we should also set SO_SNDBUF here. */
|
|
}
|
|
|
|
if (opt.bind_address)
|
|
{
|
|
/* Bind the client side of the socket to the requested
|
|
address. */
|
|
struct sockaddr_storage bind_ss;
|
|
struct sockaddr *bind_sa = (struct sockaddr *)&bind_ss;
|
|
if (resolve_bind_address (bind_sa))
|
|
{
|
|
if (bind (sock, bind_sa, sockaddr_size (bind_sa)) < 0)
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Connect the socket to the remote endpoint. */
|
|
if (connect_with_timeout (sock, sa, sockaddr_size (sa),
|
|
opt.connect_timeout) < 0)
|
|
goto err;
|
|
|
|
/* Success. */
|
|
assert (sock >= 0);
|
|
if (print)
|
|
logprintf (LOG_VERBOSE, _("connected.\n"));
|
|
DEBUGP (("Created socket %d.\n", sock));
|
|
return sock;
|
|
|
|
err:
|
|
{
|
|
/* Protect errno from possible modifications by close and
|
|
logprintf. */
|
|
int save_errno = errno;
|
|
if (sock >= 0)
|
|
fd_close (sock);
|
|
if (print)
|
|
logprintf (LOG_VERBOSE, _("failed: %s.\n"), strerror (errno));
|
|
errno = save_errno;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Connect via TCP to a remote host on the specified port.
|
|
|
|
HOST is resolved as an Internet host name. If HOST resolves to
|
|
more than one IP address, they are tried in the order returned by
|
|
DNS until connecting to one of them succeeds. */
|
|
|
|
int
|
|
connect_to_host (const char *host, int port)
|
|
{
|
|
int i, start, end;
|
|
int sock;
|
|
|
|
struct address_list *al = lookup_host (host, 0);
|
|
|
|
retry:
|
|
if (!al)
|
|
{
|
|
logprintf (LOG_NOTQUIET,
|
|
_("%s: unable to resolve host address %s\n"),
|
|
exec_name, quote (host));
|
|
return E_HOST;
|
|
}
|
|
|
|
address_list_get_bounds (al, &start, &end);
|
|
for (i = start; i < end; i++)
|
|
{
|
|
const ip_address *ip = address_list_address_at (al, i);
|
|
sock = connect_to_ip (ip, port, host);
|
|
if (sock >= 0)
|
|
{
|
|
/* Success. */
|
|
address_list_set_connected (al);
|
|
address_list_release (al);
|
|
return sock;
|
|
}
|
|
|
|
/* The attempt to connect has failed. Continue with the loop
|
|
and try next address. */
|
|
|
|
address_list_set_faulty (al, i);
|
|
}
|
|
|
|
/* Failed to connect to any of the addresses in AL. */
|
|
|
|
if (address_list_connected_p (al))
|
|
{
|
|
/* We connected to AL before, but cannot do so now. That might
|
|
indicate that our DNS cache entry for HOST has expired. */
|
|
address_list_release (al);
|
|
al = lookup_host (host, LH_REFRESH);
|
|
goto retry;
|
|
}
|
|
address_list_release (al);
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Create a socket, bind it to local interface BIND_ADDRESS on port
|
|
*PORT, set up a listen backlog, and return the resulting socket, or
|
|
-1 in case of error.
|
|
|
|
BIND_ADDRESS is the address of the interface to bind to. If it is
|
|
NULL, the socket is bound to the default address. PORT should
|
|
point to the port number that will be used for the binding. If
|
|
that number is 0, the system will choose a suitable port, and the
|
|
chosen value will be written to *PORT.
|
|
|
|
Calling accept() on such a socket waits for and accepts incoming
|
|
TCP connections. */
|
|
|
|
int
|
|
bind_local (const ip_address *bind_address, int *port)
|
|
{
|
|
int sock;
|
|
struct sockaddr_storage ss;
|
|
struct sockaddr *sa = (struct sockaddr *)&ss;
|
|
|
|
/* For setting options with setsockopt. */
|
|
int setopt_val = 1;
|
|
void *setopt_ptr = (void *)&setopt_val;
|
|
socklen_t setopt_size = sizeof (setopt_val);
|
|
|
|
sock = socket (bind_address->family, SOCK_STREAM, 0);
|
|
if (sock < 0)
|
|
return -1;
|
|
|
|
#ifdef SO_REUSEADDR
|
|
setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, setopt_ptr, setopt_size);
|
|
#endif
|
|
|
|
xzero (ss);
|
|
sockaddr_set_data (sa, bind_address, *port);
|
|
if (bind (sock, sa, sockaddr_size (sa)) < 0)
|
|
{
|
|
fd_close (sock);
|
|
return -1;
|
|
}
|
|
DEBUGP (("Local socket fd %d bound.\n", sock));
|
|
|
|
/* If *PORT is 0, find out which port we've bound to. */
|
|
if (*port == 0)
|
|
{
|
|
socklen_t addrlen = sockaddr_size (sa);
|
|
if (getsockname (sock, sa, &addrlen) < 0)
|
|
{
|
|
/* If we can't find out the socket's local address ("name"),
|
|
something is seriously wrong with the socket, and it's
|
|
unusable for us anyway because we must know the chosen
|
|
port. */
|
|
fd_close (sock);
|
|
return -1;
|
|
}
|
|
sockaddr_get_data (sa, NULL, port);
|
|
DEBUGP (("binding to address %s using port %i.\n",
|
|
print_address (bind_address), *port));
|
|
}
|
|
if (listen (sock, 1) < 0)
|
|
{
|
|
fd_close (sock);
|
|
return -1;
|
|
}
|
|
return sock;
|
|
}
|
|
|
|
/* Like a call to accept(), but with the added check for timeout.
|
|
|
|
In other words, accept a client connection on LOCAL_SOCK, and
|
|
return the new socket used for communication with the client.
|
|
LOCAL_SOCK should have been bound, e.g. using bind_local().
|
|
|
|
The caller is blocked until a connection is established. If no
|
|
connection is established for opt.connect_timeout seconds, the
|
|
function exits with an error status. */
|
|
|
|
int
|
|
accept_connection (int local_sock)
|
|
{
|
|
int sock;
|
|
|
|
/* We don't need the values provided by accept, but accept
|
|
apparently requires them to be present. */
|
|
struct sockaddr_storage ss;
|
|
struct sockaddr *sa = (struct sockaddr *)&ss;
|
|
socklen_t addrlen = sizeof (ss);
|
|
|
|
if (opt.connect_timeout)
|
|
{
|
|
int test = select_fd (local_sock, opt.connect_timeout, WAIT_FOR_READ);
|
|
if (test == 0)
|
|
errno = ETIMEDOUT;
|
|
if (test <= 0)
|
|
return -1;
|
|
}
|
|
sock = accept (local_sock, sa, &addrlen);
|
|
DEBUGP (("Accepted client at socket %d.\n", sock));
|
|
return sock;
|
|
}
|
|
|
|
/* Get the IP address associated with the connection on FD and store
|
|
it to IP. Return true on success, false otherwise.
|
|
|
|
If ENDPOINT is ENDPOINT_LOCAL, it returns the address of the local
|
|
(client) side of the socket. Else if ENDPOINT is ENDPOINT_PEER, it
|
|
returns the address of the remote (peer's) side of the socket. */
|
|
|
|
bool
|
|
socket_ip_address (int sock, ip_address *ip, int endpoint)
|
|
{
|
|
struct sockaddr_storage storage;
|
|
struct sockaddr *sockaddr = (struct sockaddr *) &storage;
|
|
socklen_t addrlen = sizeof (storage);
|
|
int ret;
|
|
|
|
memset (sockaddr, 0, addrlen);
|
|
if (endpoint == ENDPOINT_LOCAL)
|
|
ret = getsockname (sock, sockaddr, &addrlen);
|
|
else if (endpoint == ENDPOINT_PEER)
|
|
ret = getpeername (sock, sockaddr, &addrlen);
|
|
else
|
|
abort ();
|
|
if (ret < 0)
|
|
return false;
|
|
|
|
memset(ip, 0, sizeof(ip_address));
|
|
ip->family = sockaddr->sa_family;
|
|
switch (sockaddr->sa_family)
|
|
{
|
|
#ifdef ENABLE_IPV6
|
|
case AF_INET6:
|
|
{
|
|
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&storage;
|
|
ip->data.d6 = sa6->sin6_addr;
|
|
#ifdef HAVE_SOCKADDR_IN6_SCOPE_ID
|
|
ip->ipv6_scope = sa6->sin6_scope_id;
|
|
#endif
|
|
DEBUGP (("conaddr is: %s\n", print_address (ip)));
|
|
return true;
|
|
}
|
|
#endif
|
|
case AF_INET:
|
|
{
|
|
struct sockaddr_in *sa = (struct sockaddr_in *)&storage;
|
|
ip->data.d4 = sa->sin_addr;
|
|
DEBUGP (("conaddr is: %s\n", print_address (ip)));
|
|
return true;
|
|
}
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Get the socket family of connection on FD and store
|
|
Return family type on success, -1 otherwise.
|
|
|
|
If ENDPOINT is ENDPOINT_LOCAL, it returns the sock family of the local
|
|
(client) side of the socket. Else if ENDPOINT is ENDPOINT_PEER, it
|
|
returns the sock family of the remote (peer's) side of the socket. */
|
|
|
|
int
|
|
socket_family (int sock, int endpoint)
|
|
{
|
|
struct sockaddr_storage storage;
|
|
struct sockaddr *sockaddr = (struct sockaddr *) &storage;
|
|
socklen_t addrlen = sizeof (storage);
|
|
int ret;
|
|
|
|
memset (sockaddr, 0, addrlen);
|
|
|
|
if (endpoint == ENDPOINT_LOCAL)
|
|
ret = getsockname (sock, sockaddr, &addrlen);
|
|
else if (endpoint == ENDPOINT_PEER)
|
|
ret = getpeername (sock, sockaddr, &addrlen);
|
|
else
|
|
abort ();
|
|
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
return sockaddr->sa_family;
|
|
}
|
|
|
|
/* Return true if the error from the connect code can be considered
|
|
retryable. Wget normally retries after errors, but the exception
|
|
are the "unsupported protocol" type errors (possible on IPv4/IPv6
|
|
dual family systems) and "connection refused". */
|
|
|
|
bool
|
|
retryable_socket_connect_error (int err)
|
|
{
|
|
/* Have to guard against some of these values not being defined.
|
|
Cannot use a switch statement because some of the values might be
|
|
equal. */
|
|
if (false
|
|
#ifdef EAFNOSUPPORT
|
|
|| err == EAFNOSUPPORT
|
|
#endif
|
|
#ifdef EPFNOSUPPORT
|
|
|| err == EPFNOSUPPORT
|
|
#endif
|
|
#ifdef ESOCKTNOSUPPORT /* no, "sockt" is not a typo! */
|
|
|| err == ESOCKTNOSUPPORT
|
|
#endif
|
|
#ifdef EPROTONOSUPPORT
|
|
|| err == EPROTONOSUPPORT
|
|
#endif
|
|
#ifdef ENOPROTOOPT
|
|
|| err == ENOPROTOOPT
|
|
#endif
|
|
/* Apparently, older versions of Linux and BSD used EINVAL
|
|
instead of EAFNOSUPPORT and such. */
|
|
|| err == EINVAL
|
|
)
|
|
return false;
|
|
|
|
if (!opt.retry_connrefused)
|
|
if (err == ECONNREFUSED
|
|
#ifdef ENETUNREACH
|
|
|| err == ENETUNREACH /* network is unreachable */
|
|
#endif
|
|
#ifdef EHOSTUNREACH
|
|
|| err == EHOSTUNREACH /* host is unreachable */
|
|
#endif
|
|
)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Wait for a single descriptor to become available, timing out after
|
|
MAXTIME seconds. Returns 1 if FD is available, 0 for timeout and
|
|
-1 for error. The argument WAIT_FOR can be a combination of
|
|
WAIT_FOR_READ and WAIT_FOR_WRITE.
|
|
|
|
This is a mere convenience wrapper around the select call, and
|
|
should be taken as such (for example, it doesn't implement Wget's
|
|
0-timeout-means-no-timeout semantics.) */
|
|
|
|
int
|
|
select_fd (int fd, double maxtime, int wait_for)
|
|
{
|
|
fd_set fdset;
|
|
fd_set *rd = NULL, *wr = NULL;
|
|
struct timeval tmout;
|
|
int result;
|
|
|
|
FD_ZERO (&fdset);
|
|
FD_SET (fd, &fdset);
|
|
if (wait_for & WAIT_FOR_READ)
|
|
rd = &fdset;
|
|
if (wait_for & WAIT_FOR_WRITE)
|
|
wr = &fdset;
|
|
|
|
tmout.tv_sec = (long) maxtime;
|
|
tmout.tv_usec = 1000000 * (maxtime - (long) maxtime);
|
|
|
|
do
|
|
{
|
|
result = select (fd + 1, rd, wr, NULL, &tmout);
|
|
#ifdef WINDOWS
|
|
/* gnulib select() converts blocking sockets to nonblocking in windows.
|
|
wget uses blocking sockets so we must convert them back to blocking. */
|
|
set_windows_fd_as_blocking_socket (fd);
|
|
#endif
|
|
}
|
|
while (result < 0 && errno == EINTR);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Return true iff the connection to the remote site established
|
|
through SOCK is still open.
|
|
|
|
Specifically, this function returns true if SOCK is not ready for
|
|
reading. This is because, when the connection closes, the socket
|
|
is ready for reading because EOF is about to be delivered. A side
|
|
effect of this method is that sockets that have pending data are
|
|
considered non-open. This is actually a good thing for callers of
|
|
this function, where such pending data can only be unwanted
|
|
leftover from a previous request. */
|
|
|
|
bool
|
|
test_socket_open (int sock)
|
|
{
|
|
fd_set check_set;
|
|
struct timeval to;
|
|
int ret = 0;
|
|
|
|
/* Check if we still have a valid (non-EOF) connection. From Andrew
|
|
* Maholski's code in the Unix Socket FAQ. */
|
|
|
|
FD_ZERO (&check_set);
|
|
FD_SET (sock, &check_set);
|
|
|
|
/* Wait one microsecond */
|
|
to.tv_sec = 0;
|
|
to.tv_usec = 1;
|
|
|
|
ret = select (sock + 1, &check_set, NULL, NULL, &to);
|
|
#ifdef WINDOWS
|
|
/* gnulib select() converts blocking sockets to nonblocking in windows.
|
|
wget uses blocking sockets so we must convert them back to blocking
|
|
*/
|
|
set_windows_fd_as_blocking_socket ( sock );
|
|
#endif
|
|
|
|
if ( !ret )
|
|
/* We got a timeout, it means we're still connected. */
|
|
return true;
|
|
else
|
|
/* Read now would not wait, it means we have either pending data
|
|
or EOF/error. */
|
|
return false;
|
|
}
|
|
|
|
/* Basic socket operations, mostly EINTR wrappers. */
|
|
|
|
static int
|
|
sock_read (int fd, char *buf, int bufsize)
|
|
{
|
|
int res;
|
|
do
|
|
res = read (fd, buf, bufsize);
|
|
while (res == -1 && errno == EINTR);
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
sock_write (int fd, char *buf, int bufsize)
|
|
{
|
|
int res;
|
|
do
|
|
res = write (fd, buf, bufsize);
|
|
while (res == -1 && errno == EINTR);
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
sock_poll (int fd, double timeout, int wait_for)
|
|
{
|
|
return select_fd (fd, timeout, wait_for);
|
|
}
|
|
|
|
static int
|
|
sock_peek (int fd, char *buf, int bufsize)
|
|
{
|
|
int res;
|
|
do
|
|
res = recv (fd, buf, bufsize, MSG_PEEK);
|
|
while (res == -1 && errno == EINTR);
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
sock_close (int fd)
|
|
{
|
|
close (fd);
|
|
DEBUGP (("Closed fd %d\n", fd));
|
|
}
|
|
#undef read
|
|
#undef write
|
|
#undef close
|
|
|
|
/* Reading and writing from the network. We build around the socket
|
|
(file descriptor) API, but support "extended" operations for things
|
|
that are not mere file descriptors under the hood, such as SSL
|
|
sockets.
|
|
|
|
That way the user code can call fd_read(fd, ...) and we'll run read
|
|
or SSL_read or whatever is necessary. */
|
|
|
|
static struct hash_table *transport_map;
|
|
static unsigned int transport_map_modified_tick;
|
|
|
|
struct transport_info {
|
|
struct transport_implementation *imp;
|
|
void *ctx;
|
|
};
|
|
|
|
/* Register the transport layer operations that will be used when
|
|
reading, writing, and polling FD.
|
|
|
|
This should be used for transport layers like SSL that piggyback on
|
|
sockets. FD should otherwise be a real socket, on which you can
|
|
call getpeername, etc. */
|
|
|
|
void
|
|
fd_register_transport (int fd, struct transport_implementation *imp, void *ctx)
|
|
{
|
|
struct transport_info *info;
|
|
|
|
/* The file descriptor must be non-negative to be registered.
|
|
Negative values are ignored by fd_close(), and -1 cannot be used as
|
|
hash key. */
|
|
assert (fd >= 0);
|
|
|
|
info = xnew (struct transport_info);
|
|
info->imp = imp;
|
|
info->ctx = ctx;
|
|
if (!transport_map)
|
|
transport_map = hash_table_new (0, NULL, NULL);
|
|
hash_table_put (transport_map, (void *)(intptr_t) fd, info);
|
|
++transport_map_modified_tick;
|
|
}
|
|
|
|
/* Return context of the transport registered with
|
|
fd_register_transport. This assumes fd_register_transport was
|
|
previously called on FD. */
|
|
|
|
void *
|
|
fd_transport_context (int fd)
|
|
{
|
|
struct transport_info *info = hash_table_get (transport_map, (void *)(intptr_t) fd);
|
|
return info->ctx;
|
|
}
|
|
|
|
/* When fd_read/fd_write are called multiple times in a loop, they should
|
|
remember the INFO pointer instead of fetching it every time. It is
|
|
not enough to compare FD to LAST_FD because FD might have been
|
|
closed and reopened. modified_tick ensures that changes to
|
|
transport_map will not be unnoticed.
|
|
|
|
This is a macro because we want the static storage variables to be
|
|
per-function. */
|
|
|
|
#define LAZY_RETRIEVE_INFO(info) do { \
|
|
static struct transport_info *last_info; \
|
|
static int last_fd = -1; \
|
|
static unsigned int last_tick; \
|
|
if (!transport_map) \
|
|
info = NULL; \
|
|
else if (last_fd == fd && last_tick == transport_map_modified_tick) \
|
|
info = last_info; \
|
|
else \
|
|
{ \
|
|
info = hash_table_get (transport_map, (void *)(intptr_t) fd); \
|
|
last_fd = fd; \
|
|
last_info = info; \
|
|
last_tick = transport_map_modified_tick; \
|
|
} \
|
|
} while (0)
|
|
|
|
static bool
|
|
poll_internal (int fd, struct transport_info *info, int wf, double timeout)
|
|
{
|
|
if (timeout == -1)
|
|
timeout = opt.read_timeout;
|
|
if (timeout)
|
|
{
|
|
int test;
|
|
if (info && info->imp->poller)
|
|
test = info->imp->poller (fd, timeout, wf, info->ctx);
|
|
else
|
|
test = sock_poll (fd, timeout, wf);
|
|
if (test == 0)
|
|
errno = ETIMEDOUT;
|
|
if (test <= 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Read no more than BUFSIZE bytes of data from FD, storing them to
|
|
BUF. If TIMEOUT is non-zero, the operation aborts if no data is
|
|
received after that many seconds. If TIMEOUT is -1, the value of
|
|
opt.timeout is used for TIMEOUT. */
|
|
|
|
int
|
|
fd_read (int fd, char *buf, int bufsize, double timeout)
|
|
{
|
|
struct transport_info *info;
|
|
LAZY_RETRIEVE_INFO (info);
|
|
if (!poll_internal (fd, info, WAIT_FOR_READ, timeout))
|
|
return -1;
|
|
if (info && info->imp->reader)
|
|
return info->imp->reader (fd, buf, bufsize, info->ctx);
|
|
else
|
|
return sock_read (fd, buf, bufsize);
|
|
}
|
|
|
|
/* Like fd_read, except it provides a "preview" of the data that will
|
|
be read by subsequent calls to fd_read. Specifically, it copies no
|
|
more than BUFSIZE bytes of the currently available data to BUF and
|
|
returns the number of bytes copied. Return values and timeout
|
|
semantics are the same as those of fd_read.
|
|
|
|
CAVEAT: Do not assume that the first subsequent call to fd_read
|
|
will retrieve the same amount of data. Reading can return more or
|
|
less data, depending on the TCP implementation and other
|
|
circumstances. However, barring an error, it can be expected that
|
|
all the peeked data will eventually be read by fd_read. */
|
|
|
|
int
|
|
fd_peek (int fd, char *buf, int bufsize, double timeout)
|
|
{
|
|
struct transport_info *info;
|
|
LAZY_RETRIEVE_INFO (info);
|
|
if (!poll_internal (fd, info, WAIT_FOR_READ, timeout))
|
|
return -1;
|
|
if (info && info->imp->peeker)
|
|
return info->imp->peeker (fd, buf, bufsize, info->ctx);
|
|
else
|
|
return sock_peek (fd, buf, bufsize);
|
|
}
|
|
|
|
/* Write the entire contents of BUF to FD. If TIMEOUT is non-zero,
|
|
the operation aborts if no data is received after that many
|
|
seconds. If TIMEOUT is -1, the value of opt.timeout is used for
|
|
TIMEOUT. */
|
|
|
|
int
|
|
fd_write (int fd, char *buf, int bufsize, double timeout)
|
|
{
|
|
int res;
|
|
struct transport_info *info;
|
|
LAZY_RETRIEVE_INFO (info);
|
|
|
|
/* `write' may write less than LEN bytes, thus the loop keeps trying
|
|
it until all was written, or an error occurred. */
|
|
res = 0;
|
|
while (bufsize > 0)
|
|
{
|
|
if (!poll_internal (fd, info, WAIT_FOR_WRITE, timeout))
|
|
return -1;
|
|
if (info && info->imp->writer)
|
|
res = info->imp->writer (fd, buf, bufsize, info->ctx);
|
|
else
|
|
res = sock_write (fd, buf, bufsize);
|
|
if (res <= 0)
|
|
break;
|
|
buf += res;
|
|
bufsize -= res;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Report the most recent error(s) on FD. This should only be called
|
|
after fd_* functions, such as fd_read and fd_write, and only if
|
|
they return a negative result. For errors coming from other calls
|
|
such as setsockopt or fopen, strerror should continue to be
|
|
used.
|
|
|
|
If the transport doesn't support error messages or doesn't supply
|
|
one, strerror(errno) is returned. The returned error message
|
|
should not be used after fd_close has been called. */
|
|
|
|
const char *
|
|
fd_errstr (int fd)
|
|
{
|
|
/* Don't bother with LAZY_RETRIEVE_INFO, as this will only be called
|
|
in case of error, never in a tight loop. */
|
|
struct transport_info *info = NULL;
|
|
if (transport_map)
|
|
info = hash_table_get (transport_map, (void *)(intptr_t) fd);
|
|
|
|
if (info && info->imp->errstr)
|
|
{
|
|
const char *err = info->imp->errstr (fd, info->ctx);
|
|
if (err)
|
|
return err;
|
|
/* else, fall through and print the system error. */
|
|
}
|
|
return strerror (errno);
|
|
}
|
|
|
|
/* Close the file descriptor FD. */
|
|
|
|
void
|
|
fd_close (int fd)
|
|
{
|
|
struct transport_info *info;
|
|
if (fd < 0)
|
|
return;
|
|
|
|
/* Don't use LAZY_RETRIEVE_INFO because fd_close() is only called once
|
|
per socket, so that particular optimization wouldn't work. */
|
|
info = NULL;
|
|
if (transport_map)
|
|
info = hash_table_get (transport_map, (void *)(intptr_t) fd);
|
|
|
|
if (info && info->imp->closer)
|
|
info->imp->closer (fd, info->ctx);
|
|
else
|
|
sock_close (fd);
|
|
|
|
if (info)
|
|
{
|
|
hash_table_remove (transport_map, (void *)(intptr_t) fd);
|
|
xfree (info);
|
|
++transport_map_modified_tick;
|
|
}
|
|
}
|