mirror of
https://github.com/moparisthebest/wget
synced 2024-07-03 16:38:41 -04:00
2082 lines
55 KiB
C
2082 lines
55 KiB
C
/* Various functions of utilitarian nature.
|
||
Copyright (C) 1995, 1996, 1997, 1998, 2000, 2001
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Wget.
|
||
|
||
GNU Wget is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Wget is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Wget; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
||
In addition, as a special exception, the Free Software Foundation
|
||
gives permission to link the code of its release of Wget with the
|
||
OpenSSL project's "OpenSSL" library (or with modified versions of it
|
||
that use the same license as the "OpenSSL" library), and distribute
|
||
the linked executables. You must obey the GNU General Public License
|
||
in all respects for all of the code used other than "OpenSSL". If you
|
||
modify this file, you may extend this exception to your version of the
|
||
file, but you are not obligated to do so. If you do not wish to do
|
||
so, delete this exception statement from your version. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#ifdef HAVE_STRING_H
|
||
# include <string.h>
|
||
#else /* not HAVE_STRING_H */
|
||
# include <strings.h>
|
||
#endif /* not HAVE_STRING_H */
|
||
#include <sys/types.h>
|
||
#ifdef HAVE_UNISTD_H
|
||
# include <unistd.h>
|
||
#endif
|
||
#ifdef HAVE_MMAP
|
||
# include <sys/mman.h>
|
||
#endif
|
||
#ifdef HAVE_PWD_H
|
||
# include <pwd.h>
|
||
#endif
|
||
#include <limits.h>
|
||
#ifdef HAVE_UTIME_H
|
||
# include <utime.h>
|
||
#endif
|
||
#ifdef HAVE_SYS_UTIME_H
|
||
# include <sys/utime.h>
|
||
#endif
|
||
#include <errno.h>
|
||
#ifdef NeXT
|
||
# include <libc.h> /* for access() */
|
||
#endif
|
||
#include <fcntl.h>
|
||
#include <assert.h>
|
||
|
||
/* For TIOCGWINSZ and friends: */
|
||
#ifdef HAVE_SYS_IOCTL_H
|
||
# include <sys/ioctl.h>
|
||
#endif
|
||
#ifdef HAVE_TERMIOS_H
|
||
# include <termios.h>
|
||
#endif
|
||
|
||
/* Needed for run_with_timeout. */
|
||
#undef USE_SIGNAL_TIMEOUT
|
||
#ifdef HAVE_SIGNAL_H
|
||
# include <signal.h>
|
||
#endif
|
||
#ifdef HAVE_SETJMP_H
|
||
# include <setjmp.h>
|
||
#endif
|
||
/* If sigsetjmp is a macro, configure won't pick it up. */
|
||
#ifdef sigsetjmp
|
||
# define HAVE_SIGSETJMP
|
||
#endif
|
||
#ifdef HAVE_SIGNAL
|
||
# ifdef HAVE_SIGSETJMP
|
||
# define USE_SIGNAL_TIMEOUT
|
||
# endif
|
||
# ifdef HAVE_SIGBLOCK
|
||
# define USE_SIGNAL_TIMEOUT
|
||
# endif
|
||
#endif
|
||
|
||
#include "wget.h"
|
||
#include "utils.h"
|
||
#include "fnmatch.h"
|
||
#include "hash.h"
|
||
|
||
#ifndef errno
|
||
extern int errno;
|
||
#endif
|
||
|
||
/* This section implements several wrappers around the basic
|
||
allocation routines. This is done for two reasons: first, so that
|
||
the callers of these functions need not consistently check for
|
||
errors. If there is not enough virtual memory for running Wget,
|
||
something is seriously wrong, and Wget exits with an appropriate
|
||
error message.
|
||
|
||
The second reason why these are useful is that, if DEBUG_MALLOC is
|
||
defined, they also provide a handy (if crude) malloc debugging
|
||
interface that checks memory leaks. */
|
||
|
||
/* Croak the fatal memory error and bail out with non-zero exit
|
||
status. */
|
||
static void
|
||
memfatal (const char *what)
|
||
{
|
||
/* Make sure we don't try to store part of the log line, and thus
|
||
call malloc. */
|
||
log_set_save_context (0);
|
||
logprintf (LOG_ALWAYS, _("%s: %s: Not enough memory.\n"), exec_name, what);
|
||
exit (1);
|
||
}
|
||
|
||
/* These functions end with _real because they need to be
|
||
distinguished from the debugging functions, and from the macros.
|
||
Explanation follows:
|
||
|
||
If memory debugging is not turned on, wget.h defines these:
|
||
|
||
#define xmalloc xmalloc_real
|
||
#define xrealloc xrealloc_real
|
||
#define xstrdup xstrdup_real
|
||
#define xfree free
|
||
|
||
In case of memory debugging, the definitions are a bit more
|
||
complex, because we want to provide more information, *and* we want
|
||
to call the debugging code. (The former is the reason why xmalloc
|
||
and friends need to be macros in the first place.) Then it looks
|
||
like this:
|
||
|
||
#define xmalloc(a) xmalloc_debug (a, __FILE__, __LINE__)
|
||
#define xfree(a) xfree_debug (a, __FILE__, __LINE__)
|
||
#define xrealloc(a, b) xrealloc_debug (a, b, __FILE__, __LINE__)
|
||
#define xstrdup(a) xstrdup_debug (a, __FILE__, __LINE__)
|
||
|
||
Each of the *_debug function does its magic and calls the real one. */
|
||
|
||
#ifdef DEBUG_MALLOC
|
||
# define STATIC_IF_DEBUG static
|
||
#else
|
||
# define STATIC_IF_DEBUG
|
||
#endif
|
||
|
||
STATIC_IF_DEBUG void *
|
||
xmalloc_real (size_t size)
|
||
{
|
||
void *ptr = malloc (size);
|
||
if (!ptr)
|
||
memfatal ("malloc");
|
||
return ptr;
|
||
}
|
||
|
||
STATIC_IF_DEBUG void *
|
||
xrealloc_real (void *ptr, size_t newsize)
|
||
{
|
||
void *newptr;
|
||
|
||
/* Not all Un*xes have the feature of realloc() that calling it with
|
||
a NULL-pointer is the same as malloc(), but it is easy to
|
||
simulate. */
|
||
if (ptr)
|
||
newptr = realloc (ptr, newsize);
|
||
else
|
||
newptr = malloc (newsize);
|
||
if (!newptr)
|
||
memfatal ("realloc");
|
||
return newptr;
|
||
}
|
||
|
||
STATIC_IF_DEBUG char *
|
||
xstrdup_real (const char *s)
|
||
{
|
||
char *copy;
|
||
|
||
#ifndef HAVE_STRDUP
|
||
int l = strlen (s);
|
||
copy = malloc (l + 1);
|
||
if (!copy)
|
||
memfatal ("strdup");
|
||
memcpy (copy, s, l + 1);
|
||
#else /* HAVE_STRDUP */
|
||
copy = strdup (s);
|
||
if (!copy)
|
||
memfatal ("strdup");
|
||
#endif /* HAVE_STRDUP */
|
||
|
||
return copy;
|
||
}
|
||
|
||
#ifdef DEBUG_MALLOC
|
||
|
||
/* Crude home-grown routines for debugging some malloc-related
|
||
problems. Featured:
|
||
|
||
* Counting the number of malloc and free invocations, and reporting
|
||
the "balance", i.e. how many times more malloc was called than it
|
||
was the case with free.
|
||
|
||
* Making malloc store its entry into a simple array and free remove
|
||
stuff from that array. At the end, print the pointers which have
|
||
not been freed, along with the source file and the line number.
|
||
This also has the side-effect of detecting freeing memory that
|
||
was never allocated.
|
||
|
||
Note that this kind of memory leak checking strongly depends on
|
||
every malloc() being followed by a free(), even if the program is
|
||
about to finish. Wget is careful to free the data structure it
|
||
allocated in init.c. */
|
||
|
||
static int malloc_count, free_count;
|
||
|
||
static struct {
|
||
char *ptr;
|
||
const char *file;
|
||
int line;
|
||
} malloc_debug[100000];
|
||
|
||
/* Both register_ptr and unregister_ptr take O(n) operations to run,
|
||
which can be a real problem. It would be nice to use a hash table
|
||
for malloc_debug, but the functions in hash.c are not suitable
|
||
because they can call malloc() themselves. Maybe it would work if
|
||
the hash table were preallocated to a huge size, and if we set the
|
||
rehash threshold to 1.0. */
|
||
|
||
/* Register PTR in malloc_debug. Abort if this is not possible
|
||
(presumably due to the number of current allocations exceeding the
|
||
size of malloc_debug.) */
|
||
|
||
static void
|
||
register_ptr (void *ptr, const char *file, int line)
|
||
{
|
||
int i;
|
||
for (i = 0; i < countof (malloc_debug); i++)
|
||
if (malloc_debug[i].ptr == NULL)
|
||
{
|
||
malloc_debug[i].ptr = ptr;
|
||
malloc_debug[i].file = file;
|
||
malloc_debug[i].line = line;
|
||
return;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Unregister PTR from malloc_debug. Abort if PTR is not present in
|
||
malloc_debug. (This catches calling free() with a bogus pointer.) */
|
||
|
||
static void
|
||
unregister_ptr (void *ptr)
|
||
{
|
||
int i;
|
||
for (i = 0; i < countof (malloc_debug); i++)
|
||
if (malloc_debug[i].ptr == ptr)
|
||
{
|
||
malloc_debug[i].ptr = NULL;
|
||
return;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Print the malloc debug stats that can be gathered from the above
|
||
information. Currently this is the count of mallocs, frees, the
|
||
difference between the two, and the dump of the contents of
|
||
malloc_debug. The last part are the memory leaks. */
|
||
|
||
void
|
||
print_malloc_debug_stats (void)
|
||
{
|
||
int i;
|
||
printf ("\nMalloc: %d\nFree: %d\nBalance: %d\n\n",
|
||
malloc_count, free_count, malloc_count - free_count);
|
||
for (i = 0; i < countof (malloc_debug); i++)
|
||
if (malloc_debug[i].ptr != NULL)
|
||
printf ("0x%08ld: %s:%d\n", (long)malloc_debug[i].ptr,
|
||
malloc_debug[i].file, malloc_debug[i].line);
|
||
}
|
||
|
||
void *
|
||
xmalloc_debug (size_t size, const char *source_file, int source_line)
|
||
{
|
||
void *ptr = xmalloc_real (size);
|
||
++malloc_count;
|
||
register_ptr (ptr, source_file, source_line);
|
||
return ptr;
|
||
}
|
||
|
||
void
|
||
xfree_debug (void *ptr, const char *source_file, int source_line)
|
||
{
|
||
assert (ptr != NULL);
|
||
++free_count;
|
||
unregister_ptr (ptr);
|
||
free (ptr);
|
||
}
|
||
|
||
void *
|
||
xrealloc_debug (void *ptr, size_t newsize, const char *source_file, int source_line)
|
||
{
|
||
void *newptr = xrealloc_real (ptr, newsize);
|
||
if (!ptr)
|
||
{
|
||
++malloc_count;
|
||
register_ptr (newptr, source_file, source_line);
|
||
}
|
||
else if (newptr != ptr)
|
||
{
|
||
unregister_ptr (ptr);
|
||
register_ptr (newptr, source_file, source_line);
|
||
}
|
||
return newptr;
|
||
}
|
||
|
||
char *
|
||
xstrdup_debug (const char *s, const char *source_file, int source_line)
|
||
{
|
||
char *copy = xstrdup_real (s);
|
||
++malloc_count;
|
||
register_ptr (copy, source_file, source_line);
|
||
return copy;
|
||
}
|
||
|
||
#endif /* DEBUG_MALLOC */
|
||
|
||
/* Utility function: like xstrdup(), but also lowercases S. */
|
||
|
||
char *
|
||
xstrdup_lower (const char *s)
|
||
{
|
||
char *copy = xstrdup (s);
|
||
char *p = copy;
|
||
for (; *p; p++)
|
||
*p = TOLOWER (*p);
|
||
return copy;
|
||
}
|
||
|
||
/* Return a count of how many times CHR occurs in STRING. */
|
||
|
||
int
|
||
count_char (const char *string, char chr)
|
||
{
|
||
const char *p;
|
||
int count = 0;
|
||
for (p = string; *p; p++)
|
||
if (*p == chr)
|
||
++count;
|
||
return count;
|
||
}
|
||
|
||
/* Copy the string formed by two pointers (one on the beginning, other
|
||
on the char after the last char) to a new, malloc-ed location.
|
||
0-terminate it. */
|
||
char *
|
||
strdupdelim (const char *beg, const char *end)
|
||
{
|
||
char *res = (char *)xmalloc (end - beg + 1);
|
||
memcpy (res, beg, end - beg);
|
||
res[end - beg] = '\0';
|
||
return res;
|
||
}
|
||
|
||
/* Parse a string containing comma-separated elements, and return a
|
||
vector of char pointers with the elements. Spaces following the
|
||
commas are ignored. */
|
||
char **
|
||
sepstring (const char *s)
|
||
{
|
||
char **res;
|
||
const char *p;
|
||
int i = 0;
|
||
|
||
if (!s || !*s)
|
||
return NULL;
|
||
res = NULL;
|
||
p = s;
|
||
while (*s)
|
||
{
|
||
if (*s == ',')
|
||
{
|
||
res = (char **)xrealloc (res, (i + 2) * sizeof (char *));
|
||
res[i] = strdupdelim (p, s);
|
||
res[++i] = NULL;
|
||
++s;
|
||
/* Skip the blanks following the ','. */
|
||
while (ISSPACE (*s))
|
||
++s;
|
||
p = s;
|
||
}
|
||
else
|
||
++s;
|
||
}
|
||
res = (char **)xrealloc (res, (i + 2) * sizeof (char *));
|
||
res[i] = strdupdelim (p, s);
|
||
res[i + 1] = NULL;
|
||
return res;
|
||
}
|
||
|
||
/* Return pointer to a static char[] buffer in which zero-terminated
|
||
string-representation of TM (in form hh:mm:ss) is printed.
|
||
|
||
If TM is non-NULL, the current time-in-seconds will be stored
|
||
there.
|
||
|
||
(#### This is misleading: one would expect TM would be used instead
|
||
of the current time in that case. This design was probably
|
||
influenced by the design time(2), and should be changed at some
|
||
points. No callers use non-NULL TM anyway.) */
|
||
|
||
char *
|
||
time_str (time_t *tm)
|
||
{
|
||
static char output[15];
|
||
struct tm *ptm;
|
||
time_t secs = time (tm);
|
||
|
||
if (secs == -1)
|
||
{
|
||
/* In case of error, return the empty string. Maybe we should
|
||
just abort if this happens? */
|
||
*output = '\0';
|
||
return output;
|
||
}
|
||
ptm = localtime (&secs);
|
||
sprintf (output, "%02d:%02d:%02d", ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
|
||
return output;
|
||
}
|
||
|
||
/* Like the above, but include the date: YYYY-MM-DD hh:mm:ss. */
|
||
|
||
char *
|
||
datetime_str (time_t *tm)
|
||
{
|
||
static char output[20]; /* "YYYY-MM-DD hh:mm:ss" + \0 */
|
||
struct tm *ptm;
|
||
time_t secs = time (tm);
|
||
|
||
if (secs == -1)
|
||
{
|
||
/* In case of error, return the empty string. Maybe we should
|
||
just abort if this happens? */
|
||
*output = '\0';
|
||
return output;
|
||
}
|
||
ptm = localtime (&secs);
|
||
sprintf (output, "%04d-%02d-%02d %02d:%02d:%02d",
|
||
ptm->tm_year + 1900, ptm->tm_mon + 1, ptm->tm_mday,
|
||
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
|
||
return output;
|
||
}
|
||
|
||
/* The Windows versions of the following two functions are defined in
|
||
mswindows.c. */
|
||
|
||
#ifndef WINDOWS
|
||
void
|
||
fork_to_background (void)
|
||
{
|
||
pid_t pid;
|
||
/* Whether we arrange our own version of opt.lfilename here. */
|
||
int changedp = 0;
|
||
|
||
if (!opt.lfilename)
|
||
{
|
||
opt.lfilename = unique_name (DEFAULT_LOGFILE, 0);
|
||
changedp = 1;
|
||
}
|
||
pid = fork ();
|
||
if (pid < 0)
|
||
{
|
||
/* parent, error */
|
||
perror ("fork");
|
||
exit (1);
|
||
}
|
||
else if (pid != 0)
|
||
{
|
||
/* parent, no error */
|
||
printf (_("Continuing in background, pid %d.\n"), (int)pid);
|
||
if (changedp)
|
||
printf (_("Output will be written to `%s'.\n"), opt.lfilename);
|
||
exit (0); /* #### should we use _exit()? */
|
||
}
|
||
|
||
/* child: give up the privileges and keep running. */
|
||
setsid ();
|
||
freopen ("/dev/null", "r", stdin);
|
||
freopen ("/dev/null", "w", stdout);
|
||
freopen ("/dev/null", "w", stderr);
|
||
}
|
||
#endif /* not WINDOWS */
|
||
|
||
/* "Touch" FILE, i.e. make its atime and mtime equal to the time
|
||
specified with TM. */
|
||
void
|
||
touch (const char *file, time_t tm)
|
||
{
|
||
#ifdef HAVE_STRUCT_UTIMBUF
|
||
struct utimbuf times;
|
||
times.actime = times.modtime = tm;
|
||
#else
|
||
time_t times[2];
|
||
times[0] = times[1] = tm;
|
||
#endif
|
||
|
||
if (utime (file, ×) == -1)
|
||
logprintf (LOG_NOTQUIET, "utime(%s): %s\n", file, strerror (errno));
|
||
}
|
||
|
||
/* Checks if FILE is a symbolic link, and removes it if it is. Does
|
||
nothing under MS-Windows. */
|
||
int
|
||
remove_link (const char *file)
|
||
{
|
||
int err = 0;
|
||
struct stat st;
|
||
|
||
if (lstat (file, &st) == 0 && S_ISLNK (st.st_mode))
|
||
{
|
||
DEBUGP (("Unlinking %s (symlink).\n", file));
|
||
err = unlink (file);
|
||
if (err != 0)
|
||
logprintf (LOG_VERBOSE, _("Failed to unlink symlink `%s': %s\n"),
|
||
file, strerror (errno));
|
||
}
|
||
return err;
|
||
}
|
||
|
||
/* Does FILENAME exist? This is quite a lousy implementation, since
|
||
it supplies no error codes -- only a yes-or-no answer. Thus it
|
||
will return that a file does not exist if, e.g., the directory is
|
||
unreadable. I don't mind it too much currently, though. The
|
||
proper way should, of course, be to have a third, error state,
|
||
other than true/false, but that would introduce uncalled-for
|
||
additional complexity to the callers. */
|
||
int
|
||
file_exists_p (const char *filename)
|
||
{
|
||
#ifdef HAVE_ACCESS
|
||
return access (filename, F_OK) >= 0;
|
||
#else
|
||
struct stat buf;
|
||
return stat (filename, &buf) >= 0;
|
||
#endif
|
||
}
|
||
|
||
/* Returns 0 if PATH is a directory, 1 otherwise (any kind of file).
|
||
Returns 0 on error. */
|
||
int
|
||
file_non_directory_p (const char *path)
|
||
{
|
||
struct stat buf;
|
||
/* Use lstat() rather than stat() so that symbolic links pointing to
|
||
directories can be identified correctly. */
|
||
if (lstat (path, &buf) != 0)
|
||
return 0;
|
||
return S_ISDIR (buf.st_mode) ? 0 : 1;
|
||
}
|
||
|
||
/* Return the size of file named by FILENAME, or -1 if it cannot be
|
||
opened or seeked into. */
|
||
long
|
||
file_size (const char *filename)
|
||
{
|
||
long size;
|
||
/* We use fseek rather than stat to determine the file size because
|
||
that way we can also verify whether the file is readable.
|
||
Inspired by the POST patch by Arnaud Wylie. */
|
||
FILE *fp = fopen (filename, "rb");
|
||
fseek (fp, 0, SEEK_END);
|
||
size = ftell (fp);
|
||
fclose (fp);
|
||
return size;
|
||
}
|
||
|
||
/* stat file names named PREFIX.1, PREFIX.2, etc., until one that
|
||
doesn't exist is found. Return a freshly allocated copy of the
|
||
unused file name. */
|
||
|
||
static char *
|
||
unique_name_1 (const char *prefix)
|
||
{
|
||
int count = 1;
|
||
int plen = strlen (prefix);
|
||
char *template = (char *)alloca (plen + 1 + 24);
|
||
char *template_tail = template + plen;
|
||
|
||
memcpy (template, prefix, plen);
|
||
*template_tail++ = '.';
|
||
|
||
do
|
||
number_to_string (template_tail, count++);
|
||
while (file_exists_p (template));
|
||
|
||
return xstrdup (template);
|
||
}
|
||
|
||
/* Return a unique file name, based on FILE.
|
||
|
||
More precisely, if FILE doesn't exist, it is returned unmodified.
|
||
If not, FILE.1 is tried, then FILE.2, etc. The first FILE.<number>
|
||
file name that doesn't exist is returned.
|
||
|
||
The resulting file is not created, only verified that it didn't
|
||
exist at the point in time when the function was called.
|
||
Therefore, where security matters, don't rely that the file created
|
||
by this function exists until you open it with O_EXCL or
|
||
something.
|
||
|
||
If ALLOW_PASSTHROUGH is 0, it always returns a freshly allocated
|
||
string. Otherwise, it may return FILE if the file doesn't exist
|
||
(and therefore doesn't need changing). */
|
||
|
||
char *
|
||
unique_name (const char *file, int allow_passthrough)
|
||
{
|
||
/* If the FILE itself doesn't exist, return it without
|
||
modification. */
|
||
if (!file_exists_p (file))
|
||
return allow_passthrough ? (char *)file : xstrdup (file);
|
||
|
||
/* Otherwise, find a numeric suffix that results in unused file name
|
||
and return it. */
|
||
return unique_name_1 (file);
|
||
}
|
||
|
||
/* Create DIRECTORY. If some of the pathname components of DIRECTORY
|
||
are missing, create them first. In case any mkdir() call fails,
|
||
return its error status. Returns 0 on successful completion.
|
||
|
||
The behaviour of this function should be identical to the behaviour
|
||
of `mkdir -p' on systems where mkdir supports the `-p' option. */
|
||
int
|
||
make_directory (const char *directory)
|
||
{
|
||
int quit = 0;
|
||
int i;
|
||
int ret = 0;
|
||
char *dir;
|
||
|
||
/* Make a copy of dir, to be able to write to it. Otherwise, the
|
||
function is unsafe if called with a read-only char *argument. */
|
||
STRDUP_ALLOCA (dir, directory);
|
||
|
||
/* If the first character of dir is '/', skip it (and thus enable
|
||
creation of absolute-pathname directories. */
|
||
for (i = (*dir == '/'); 1; ++i)
|
||
{
|
||
for (; dir[i] && dir[i] != '/'; i++)
|
||
;
|
||
if (!dir[i])
|
||
quit = 1;
|
||
dir[i] = '\0';
|
||
/* Check whether the directory already exists. Allow creation of
|
||
of intermediate directories to fail, as the initial path components
|
||
are not necessarily directories! */
|
||
if (!file_exists_p (dir))
|
||
ret = mkdir (dir, 0777);
|
||
else
|
||
ret = 0;
|
||
if (quit)
|
||
break;
|
||
else
|
||
dir[i] = '/';
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Merge BASE with FILE. BASE can be a directory or a file name, FILE
|
||
should be a file name.
|
||
|
||
file_merge("/foo/bar", "baz") => "/foo/baz"
|
||
file_merge("/foo/bar/", "baz") => "/foo/bar/baz"
|
||
file_merge("foo", "bar") => "bar"
|
||
|
||
In other words, it's a simpler and gentler version of uri_merge_1. */
|
||
|
||
char *
|
||
file_merge (const char *base, const char *file)
|
||
{
|
||
char *result;
|
||
const char *cut = (const char *)strrchr (base, '/');
|
||
|
||
if (!cut)
|
||
return xstrdup (file);
|
||
|
||
result = (char *)xmalloc (cut - base + 1 + strlen (file) + 1);
|
||
memcpy (result, base, cut - base);
|
||
result[cut - base] = '/';
|
||
strcpy (result + (cut - base) + 1, file);
|
||
|
||
return result;
|
||
}
|
||
|
||
static int in_acclist PARAMS ((const char *const *, const char *, int));
|
||
|
||
/* Determine whether a file is acceptable to be followed, according to
|
||
lists of patterns to accept/reject. */
|
||
int
|
||
acceptable (const char *s)
|
||
{
|
||
int l = strlen (s);
|
||
|
||
while (l && s[l] != '/')
|
||
--l;
|
||
if (s[l] == '/')
|
||
s += (l + 1);
|
||
if (opt.accepts)
|
||
{
|
||
if (opt.rejects)
|
||
return (in_acclist ((const char *const *)opt.accepts, s, 1)
|
||
&& !in_acclist ((const char *const *)opt.rejects, s, 1));
|
||
else
|
||
return in_acclist ((const char *const *)opt.accepts, s, 1);
|
||
}
|
||
else if (opt.rejects)
|
||
return !in_acclist ((const char *const *)opt.rejects, s, 1);
|
||
return 1;
|
||
}
|
||
|
||
/* Compare S1 and S2 frontally; S2 must begin with S1. E.g. if S1 is
|
||
`/something', frontcmp() will return 1 only if S2 begins with
|
||
`/something'. Otherwise, 0 is returned. */
|
||
int
|
||
frontcmp (const char *s1, const char *s2)
|
||
{
|
||
for (; *s1 && *s2 && (*s1 == *s2); ++s1, ++s2);
|
||
return !*s1;
|
||
}
|
||
|
||
/* Iterate through STRLIST, and return the first element that matches
|
||
S, through wildcards or front comparison (as appropriate). */
|
||
static char *
|
||
proclist (char **strlist, const char *s, enum accd flags)
|
||
{
|
||
char **x;
|
||
|
||
for (x = strlist; *x; x++)
|
||
if (has_wildcards_p (*x))
|
||
{
|
||
if (fnmatch (*x, s, FNM_PATHNAME) == 0)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
char *p = *x + ((flags & ALLABS) && (**x == '/')); /* Remove '/' */
|
||
if (frontcmp (p, s))
|
||
break;
|
||
}
|
||
return *x;
|
||
}
|
||
|
||
/* Returns whether DIRECTORY is acceptable for download, wrt the
|
||
include/exclude lists.
|
||
|
||
If FLAGS is ALLABS, the leading `/' is ignored in paths; relative
|
||
and absolute paths may be freely intermixed. */
|
||
int
|
||
accdir (const char *directory, enum accd flags)
|
||
{
|
||
/* Remove starting '/'. */
|
||
if (flags & ALLABS && *directory == '/')
|
||
++directory;
|
||
if (opt.includes)
|
||
{
|
||
if (!proclist (opt.includes, directory, flags))
|
||
return 0;
|
||
}
|
||
if (opt.excludes)
|
||
{
|
||
if (proclist (opt.excludes, directory, flags))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Return non-zero if STRING ends with TAIL. For instance:
|
||
|
||
match_tail ("abc", "bc", 0) -> 1
|
||
match_tail ("abc", "ab", 0) -> 0
|
||
match_tail ("abc", "abc", 0) -> 1
|
||
|
||
If FOLD_CASE_P is non-zero, the comparison will be
|
||
case-insensitive. */
|
||
|
||
int
|
||
match_tail (const char *string, const char *tail, int fold_case_p)
|
||
{
|
||
int i, j;
|
||
|
||
/* We want this to be fast, so we code two loops, one with
|
||
case-folding, one without. */
|
||
|
||
if (!fold_case_p)
|
||
{
|
||
for (i = strlen (string), j = strlen (tail); i >= 0 && j >= 0; i--, j--)
|
||
if (string[i] != tail[j])
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
for (i = strlen (string), j = strlen (tail); i >= 0 && j >= 0; i--, j--)
|
||
if (TOLOWER (string[i]) != TOLOWER (tail[j]))
|
||
break;
|
||
}
|
||
|
||
/* If the tail was exhausted, the match was succesful. */
|
||
if (j == -1)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Checks whether string S matches each element of ACCEPTS. A list
|
||
element are matched either with fnmatch() or match_tail(),
|
||
according to whether the element contains wildcards or not.
|
||
|
||
If the BACKWARD is 0, don't do backward comparison -- just compare
|
||
them normally. */
|
||
static int
|
||
in_acclist (const char *const *accepts, const char *s, int backward)
|
||
{
|
||
for (; *accepts; accepts++)
|
||
{
|
||
if (has_wildcards_p (*accepts))
|
||
{
|
||
/* fnmatch returns 0 if the pattern *does* match the
|
||
string. */
|
||
if (fnmatch (*accepts, s, 0) == 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (backward)
|
||
{
|
||
if (match_tail (s, *accepts, 0))
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (!strcmp (s, *accepts))
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return the location of STR's suffix (file extension). Examples:
|
||
suffix ("foo.bar") -> "bar"
|
||
suffix ("foo.bar.baz") -> "baz"
|
||
suffix ("/foo/bar") -> NULL
|
||
suffix ("/foo.bar/baz") -> NULL */
|
||
char *
|
||
suffix (const char *str)
|
||
{
|
||
int i;
|
||
|
||
for (i = strlen (str); i && str[i] != '/' && str[i] != '.'; i--)
|
||
;
|
||
|
||
if (str[i++] == '.')
|
||
return (char *)str + i;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Return non-zero if FNAME ends with a typical HTML suffix. The
|
||
following (case-insensitive) suffixes are presumed to be HTML files:
|
||
|
||
html
|
||
htm
|
||
?html (`?' matches one character)
|
||
|
||
#### CAVEAT. This is not necessarily a good indication that FNAME
|
||
refers to a file that contains HTML! */
|
||
int
|
||
has_html_suffix_p (const char *fname)
|
||
{
|
||
char *suf;
|
||
|
||
if ((suf = suffix (fname)) == NULL)
|
||
return 0;
|
||
if (!strcasecmp (suf, "html"))
|
||
return 1;
|
||
if (!strcasecmp (suf, "htm"))
|
||
return 1;
|
||
if (suf[0] && !strcasecmp (suf + 1, "html"))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Read a line from FP and return the pointer to freshly allocated
|
||
storage. The stoarage space is obtained through malloc() and
|
||
should be freed with free() when it is no longer needed.
|
||
|
||
The length of the line is not limited, except by available memory.
|
||
The newline character at the end of line is retained. The line is
|
||
terminated with a zero character.
|
||
|
||
After end-of-file is encountered without anything being read, NULL
|
||
is returned. NULL is also returned on error. To distinguish
|
||
between these two cases, use the stdio function ferror(). */
|
||
|
||
char *
|
||
read_whole_line (FILE *fp)
|
||
{
|
||
int length = 0;
|
||
int bufsize = 82;
|
||
char *line = (char *)xmalloc (bufsize);
|
||
|
||
while (fgets (line + length, bufsize - length, fp))
|
||
{
|
||
length += strlen (line + length);
|
||
if (length == 0)
|
||
/* Possible for example when reading from a binary file where
|
||
a line begins with \0. */
|
||
continue;
|
||
|
||
if (line[length - 1] == '\n')
|
||
break;
|
||
|
||
/* fgets() guarantees to read the whole line, or to use up the
|
||
space we've given it. We can double the buffer
|
||
unconditionally. */
|
||
bufsize <<= 1;
|
||
line = xrealloc (line, bufsize);
|
||
}
|
||
if (length == 0 || ferror (fp))
|
||
{
|
||
xfree (line);
|
||
return NULL;
|
||
}
|
||
if (length + 1 < bufsize)
|
||
/* Relieve the memory from our exponential greediness. We say
|
||
`length + 1' because the terminating \0 is not included in
|
||
LENGTH. We don't need to zero-terminate the string ourselves,
|
||
though, because fgets() does that. */
|
||
line = xrealloc (line, length + 1);
|
||
return line;
|
||
}
|
||
|
||
/* Read FILE into memory. A pointer to `struct file_memory' are
|
||
returned; use struct element `content' to access file contents, and
|
||
the element `length' to know the file length. `content' is *not*
|
||
zero-terminated, and you should *not* read or write beyond the [0,
|
||
length) range of characters.
|
||
|
||
After you are done with the file contents, call read_file_free to
|
||
release the memory.
|
||
|
||
Depending on the operating system and the type of file that is
|
||
being read, read_file() either mmap's the file into memory, or
|
||
reads the file into the core using read().
|
||
|
||
If file is named "-", fileno(stdin) is used for reading instead.
|
||
If you want to read from a real file named "-", use "./-" instead. */
|
||
|
||
struct file_memory *
|
||
read_file (const char *file)
|
||
{
|
||
int fd;
|
||
struct file_memory *fm;
|
||
long size;
|
||
int inhibit_close = 0;
|
||
|
||
/* Some magic in the finest tradition of Perl and its kin: if FILE
|
||
is "-", just use stdin. */
|
||
if (HYPHENP (file))
|
||
{
|
||
fd = fileno (stdin);
|
||
inhibit_close = 1;
|
||
/* Note that we don't inhibit mmap() in this case. If stdin is
|
||
redirected from a regular file, mmap() will still work. */
|
||
}
|
||
else
|
||
fd = open (file, O_RDONLY);
|
||
if (fd < 0)
|
||
return NULL;
|
||
fm = xmalloc (sizeof (struct file_memory));
|
||
|
||
#ifdef HAVE_MMAP
|
||
{
|
||
struct stat buf;
|
||
if (fstat (fd, &buf) < 0)
|
||
goto mmap_lose;
|
||
fm->length = buf.st_size;
|
||
/* NOTE: As far as I know, the callers of this function never
|
||
modify the file text. Relying on this would enable us to
|
||
specify PROT_READ and MAP_SHARED for a marginal gain in
|
||
efficiency, but at some cost to generality. */
|
||
fm->content = mmap (NULL, fm->length, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE, fd, 0);
|
||
if (fm->content == (char *)MAP_FAILED)
|
||
goto mmap_lose;
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
|
||
fm->mmap_p = 1;
|
||
return fm;
|
||
}
|
||
|
||
mmap_lose:
|
||
/* The most common reason why mmap() fails is that FD does not point
|
||
to a plain file. However, it's also possible that mmap() doesn't
|
||
work for a particular type of file. Therefore, whenever mmap()
|
||
fails, we just fall back to the regular method. */
|
||
#endif /* HAVE_MMAP */
|
||
|
||
fm->length = 0;
|
||
size = 512; /* number of bytes fm->contents can
|
||
hold at any given time. */
|
||
fm->content = xmalloc (size);
|
||
while (1)
|
||
{
|
||
long nread;
|
||
if (fm->length > size / 2)
|
||
{
|
||
/* #### I'm not sure whether the whole exponential-growth
|
||
thing makes sense with kernel read. On Linux at least,
|
||
read() refuses to read more than 4K from a file at a
|
||
single chunk anyway. But other Unixes might optimize it
|
||
better, and it doesn't *hurt* anything, so I'm leaving
|
||
it. */
|
||
|
||
/* Normally, we grow SIZE exponentially to make the number
|
||
of calls to read() and realloc() logarithmic in relation
|
||
to file size. However, read() can read an amount of data
|
||
smaller than requested, and it would be unreasonably to
|
||
double SIZE every time *something* was read. Therefore,
|
||
we double SIZE only when the length exceeds half of the
|
||
entire allocated size. */
|
||
size <<= 1;
|
||
fm->content = xrealloc (fm->content, size);
|
||
}
|
||
nread = read (fd, fm->content + fm->length, size - fm->length);
|
||
if (nread > 0)
|
||
/* Successful read. */
|
||
fm->length += nread;
|
||
else if (nread < 0)
|
||
/* Error. */
|
||
goto lose;
|
||
else
|
||
/* EOF */
|
||
break;
|
||
}
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
if (size > fm->length && fm->length != 0)
|
||
/* Due to exponential growth of fm->content, the allocated region
|
||
might be much larger than what is actually needed. */
|
||
fm->content = xrealloc (fm->content, fm->length);
|
||
fm->mmap_p = 0;
|
||
return fm;
|
||
|
||
lose:
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
xfree (fm->content);
|
||
xfree (fm);
|
||
return NULL;
|
||
}
|
||
|
||
/* Release the resources held by FM. Specifically, this calls
|
||
munmap() or xfree() on fm->content, depending whether mmap or
|
||
malloc/read were used to read in the file. It also frees the
|
||
memory needed to hold the FM structure itself. */
|
||
|
||
void
|
||
read_file_free (struct file_memory *fm)
|
||
{
|
||
#ifdef HAVE_MMAP
|
||
if (fm->mmap_p)
|
||
{
|
||
munmap (fm->content, fm->length);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
xfree (fm->content);
|
||
}
|
||
xfree (fm);
|
||
}
|
||
|
||
/* Free the pointers in a NULL-terminated vector of pointers, then
|
||
free the pointer itself. */
|
||
void
|
||
free_vec (char **vec)
|
||
{
|
||
if (vec)
|
||
{
|
||
char **p = vec;
|
||
while (*p)
|
||
xfree (*p++);
|
||
xfree (vec);
|
||
}
|
||
}
|
||
|
||
/* Append vector V2 to vector V1. The function frees V2 and
|
||
reallocates V1 (thus you may not use the contents of neither
|
||
pointer after the call). If V1 is NULL, V2 is returned. */
|
||
char **
|
||
merge_vecs (char **v1, char **v2)
|
||
{
|
||
int i, j;
|
||
|
||
if (!v1)
|
||
return v2;
|
||
if (!v2)
|
||
return v1;
|
||
if (!*v2)
|
||
{
|
||
/* To avoid j == 0 */
|
||
xfree (v2);
|
||
return v1;
|
||
}
|
||
/* Count v1. */
|
||
for (i = 0; v1[i]; i++);
|
||
/* Count v2. */
|
||
for (j = 0; v2[j]; j++);
|
||
/* Reallocate v1. */
|
||
v1 = (char **)xrealloc (v1, (i + j + 1) * sizeof (char **));
|
||
memcpy (v1 + i, v2, (j + 1) * sizeof (char *));
|
||
xfree (v2);
|
||
return v1;
|
||
}
|
||
|
||
/* A set of simple-minded routines to store strings in a linked list.
|
||
This used to also be used for searching, but now we have hash
|
||
tables for that. */
|
||
|
||
/* It's a shame that these simple things like linked lists and hash
|
||
tables (see hash.c) need to be implemented over and over again. It
|
||
would be nice to be able to use the routines from glib -- see
|
||
www.gtk.org for details. However, that would make Wget depend on
|
||
glib, and I want to avoid dependencies to external libraries for
|
||
reasons of convenience and portability (I suspect Wget is more
|
||
portable than anything ever written for Gnome). */
|
||
|
||
/* Append an element to the list. If the list has a huge number of
|
||
elements, this can get slow because it has to find the list's
|
||
ending. If you think you have to call slist_append in a loop,
|
||
think about calling slist_prepend() followed by slist_nreverse(). */
|
||
|
||
slist *
|
||
slist_append (slist *l, const char *s)
|
||
{
|
||
slist *newel = (slist *)xmalloc (sizeof (slist));
|
||
slist *beg = l;
|
||
|
||
newel->string = xstrdup (s);
|
||
newel->next = NULL;
|
||
|
||
if (!l)
|
||
return newel;
|
||
/* Find the last element. */
|
||
while (l->next)
|
||
l = l->next;
|
||
l->next = newel;
|
||
return beg;
|
||
}
|
||
|
||
/* Prepend S to the list. Unlike slist_append(), this is O(1). */
|
||
|
||
slist *
|
||
slist_prepend (slist *l, const char *s)
|
||
{
|
||
slist *newel = (slist *)xmalloc (sizeof (slist));
|
||
newel->string = xstrdup (s);
|
||
newel->next = l;
|
||
return newel;
|
||
}
|
||
|
||
/* Destructively reverse L. */
|
||
|
||
slist *
|
||
slist_nreverse (slist *l)
|
||
{
|
||
slist *prev = NULL;
|
||
while (l)
|
||
{
|
||
slist *next = l->next;
|
||
l->next = prev;
|
||
prev = l;
|
||
l = next;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Is there a specific entry in the list? */
|
||
int
|
||
slist_contains (slist *l, const char *s)
|
||
{
|
||
for (; l; l = l->next)
|
||
if (!strcmp (l->string, s))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Free the whole slist. */
|
||
void
|
||
slist_free (slist *l)
|
||
{
|
||
while (l)
|
||
{
|
||
slist *n = l->next;
|
||
xfree (l->string);
|
||
xfree (l);
|
||
l = n;
|
||
}
|
||
}
|
||
|
||
/* Sometimes it's useful to create "sets" of strings, i.e. special
|
||
hash tables where you want to store strings as keys and merely
|
||
query for their existence. Here is a set of utility routines that
|
||
makes that transparent. */
|
||
|
||
void
|
||
string_set_add (struct hash_table *ht, const char *s)
|
||
{
|
||
/* First check whether the set element already exists. If it does,
|
||
do nothing so that we don't have to free() the old element and
|
||
then strdup() a new one. */
|
||
if (hash_table_contains (ht, s))
|
||
return;
|
||
|
||
/* We use "1" as value. It provides us a useful and clear arbitrary
|
||
value, and it consumes no memory -- the pointers to the same
|
||
string "1" will be shared by all the key-value pairs in all `set'
|
||
hash tables. */
|
||
hash_table_put (ht, xstrdup (s), "1");
|
||
}
|
||
|
||
/* Synonym for hash_table_contains... */
|
||
|
||
int
|
||
string_set_contains (struct hash_table *ht, const char *s)
|
||
{
|
||
return hash_table_contains (ht, s);
|
||
}
|
||
|
||
static int
|
||
string_set_free_mapper (void *key, void *value_ignored, void *arg_ignored)
|
||
{
|
||
xfree (key);
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
string_set_free (struct hash_table *ht)
|
||
{
|
||
hash_table_map (ht, string_set_free_mapper, NULL);
|
||
hash_table_destroy (ht);
|
||
}
|
||
|
||
static int
|
||
free_keys_and_values_mapper (void *key, void *value, void *arg_ignored)
|
||
{
|
||
xfree (key);
|
||
xfree (value);
|
||
return 0;
|
||
}
|
||
|
||
/* Another utility function: call free() on all keys and values of HT. */
|
||
|
||
void
|
||
free_keys_and_values (struct hash_table *ht)
|
||
{
|
||
hash_table_map (ht, free_keys_and_values_mapper, NULL);
|
||
}
|
||
|
||
|
||
/* Engine for legible and legible_very_long; this function works on
|
||
strings. */
|
||
|
||
static char *
|
||
legible_1 (const char *repr)
|
||
{
|
||
static char outbuf[128];
|
||
int i, i1, mod;
|
||
char *outptr;
|
||
const char *inptr;
|
||
|
||
/* Reset the pointers. */
|
||
outptr = outbuf;
|
||
inptr = repr;
|
||
/* If the number is negative, shift the pointers. */
|
||
if (*inptr == '-')
|
||
{
|
||
*outptr++ = '-';
|
||
++inptr;
|
||
}
|
||
/* How many digits before the first separator? */
|
||
mod = strlen (inptr) % 3;
|
||
/* Insert them. */
|
||
for (i = 0; i < mod; i++)
|
||
*outptr++ = inptr[i];
|
||
/* Now insert the rest of them, putting separator before every
|
||
third digit. */
|
||
for (i1 = i, i = 0; inptr[i1]; i++, i1++)
|
||
{
|
||
if (i % 3 == 0 && i1 != 0)
|
||
*outptr++ = ',';
|
||
*outptr++ = inptr[i1];
|
||
}
|
||
/* Zero-terminate the string. */
|
||
*outptr = '\0';
|
||
return outbuf;
|
||
}
|
||
|
||
/* Legible -- return a static pointer to the legibly printed long. */
|
||
char *
|
||
legible (long l)
|
||
{
|
||
char inbuf[24];
|
||
/* Print the number into the buffer. */
|
||
number_to_string (inbuf, l);
|
||
return legible_1 (inbuf);
|
||
}
|
||
|
||
/* Write a string representation of NUMBER into the provided buffer.
|
||
We cannot use sprintf() because we cannot be sure whether the
|
||
platform supports printing of what we chose for VERY_LONG_TYPE.
|
||
|
||
Example: Gcc supports `long long' under many platforms, but on many
|
||
of those the native libc knows nothing of it and therefore cannot
|
||
print it.
|
||
|
||
How long BUFFER needs to be depends on the platform and the content
|
||
of NUMBER. For 64-bit VERY_LONG_TYPE (the most common case), 24
|
||
bytes are sufficient. Using more might be a good idea.
|
||
|
||
This function does not go through the hoops that long_to_string
|
||
goes to because it doesn't aspire to be fast. (It's called perhaps
|
||
once in a Wget run.) */
|
||
|
||
static void
|
||
very_long_to_string (char *buffer, VERY_LONG_TYPE number)
|
||
{
|
||
int i = 0;
|
||
int j;
|
||
|
||
/* Print the number backwards... */
|
||
do
|
||
{
|
||
buffer[i++] = '0' + number % 10;
|
||
number /= 10;
|
||
}
|
||
while (number);
|
||
|
||
/* ...and reverse the order of the digits. */
|
||
for (j = 0; j < i / 2; j++)
|
||
{
|
||
char c = buffer[j];
|
||
buffer[j] = buffer[i - 1 - j];
|
||
buffer[i - 1 - j] = c;
|
||
}
|
||
buffer[i] = '\0';
|
||
}
|
||
|
||
/* The same as legible(), but works on VERY_LONG_TYPE. See sysdep.h. */
|
||
char *
|
||
legible_very_long (VERY_LONG_TYPE l)
|
||
{
|
||
char inbuf[128];
|
||
/* Print the number into the buffer. */
|
||
very_long_to_string (inbuf, l);
|
||
return legible_1 (inbuf);
|
||
}
|
||
|
||
/* Count the digits in a (long) integer. */
|
||
int
|
||
numdigit (long number)
|
||
{
|
||
int cnt = 1;
|
||
if (number < 0)
|
||
{
|
||
number = -number;
|
||
++cnt;
|
||
}
|
||
while ((number /= 10) > 0)
|
||
++cnt;
|
||
return cnt;
|
||
}
|
||
|
||
/* A half-assed implementation of INT_MAX on machines that don't
|
||
bother to define one. */
|
||
#ifndef INT_MAX
|
||
# define INT_MAX ((int) ~((unsigned)1 << 8 * sizeof (int) - 1))
|
||
#endif
|
||
|
||
#define ONE_DIGIT(figure) *p++ = n / (figure) + '0'
|
||
#define ONE_DIGIT_ADVANCE(figure) (ONE_DIGIT (figure), n %= (figure))
|
||
|
||
#define DIGITS_1(figure) ONE_DIGIT (figure)
|
||
#define DIGITS_2(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_1 ((figure) / 10)
|
||
#define DIGITS_3(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_2 ((figure) / 10)
|
||
#define DIGITS_4(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_3 ((figure) / 10)
|
||
#define DIGITS_5(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_4 ((figure) / 10)
|
||
#define DIGITS_6(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_5 ((figure) / 10)
|
||
#define DIGITS_7(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_6 ((figure) / 10)
|
||
#define DIGITS_8(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_7 ((figure) / 10)
|
||
#define DIGITS_9(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_8 ((figure) / 10)
|
||
#define DIGITS_10(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_9 ((figure) / 10)
|
||
|
||
/* DIGITS_<11-20> are only used on machines with 64-bit longs. */
|
||
|
||
#define DIGITS_11(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_10 ((figure) / 10)
|
||
#define DIGITS_12(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_11 ((figure) / 10)
|
||
#define DIGITS_13(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_12 ((figure) / 10)
|
||
#define DIGITS_14(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_13 ((figure) / 10)
|
||
#define DIGITS_15(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_14 ((figure) / 10)
|
||
#define DIGITS_16(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_15 ((figure) / 10)
|
||
#define DIGITS_17(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_16 ((figure) / 10)
|
||
#define DIGITS_18(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_17 ((figure) / 10)
|
||
#define DIGITS_19(figure) ONE_DIGIT_ADVANCE (figure); DIGITS_18 ((figure) / 10)
|
||
|
||
/* Print NUMBER to BUFFER in base 10. This should be completely
|
||
equivalent to `sprintf(buffer, "%ld", number)', only much faster.
|
||
|
||
The speedup may make a difference in programs that frequently
|
||
convert numbers to strings. Some implementations of sprintf,
|
||
particularly the one in GNU libc, have been known to be extremely
|
||
slow compared to this function.
|
||
|
||
Return the pointer to the location where the terminating zero was
|
||
printed. (Equivalent to calling buffer+strlen(buffer) after the
|
||
function is done.)
|
||
|
||
BUFFER should be big enough to accept as many bytes as you expect
|
||
the number to take up. On machines with 64-bit longs the maximum
|
||
needed size is 24 bytes. That includes the digits needed for the
|
||
largest 64-bit number, the `-' sign in case it's negative, and the
|
||
terminating '\0'. */
|
||
|
||
char *
|
||
number_to_string (char *buffer, long number)
|
||
{
|
||
char *p = buffer;
|
||
long n = number;
|
||
|
||
#if (SIZEOF_LONG != 4) && (SIZEOF_LONG != 8)
|
||
/* We are running in a strange or misconfigured environment. Let
|
||
sprintf cope with it. */
|
||
sprintf (buffer, "%ld", n);
|
||
p += strlen (buffer);
|
||
#else /* (SIZEOF_LONG == 4) || (SIZEOF_LONG == 8) */
|
||
|
||
if (n < 0)
|
||
{
|
||
if (n < -INT_MAX)
|
||
{
|
||
/* We cannot print a '-' and assign -n to n because -n would
|
||
overflow. Let sprintf deal with this border case. */
|
||
sprintf (buffer, "%ld", n);
|
||
p += strlen (buffer);
|
||
return p;
|
||
}
|
||
|
||
*p++ = '-';
|
||
n = -n;
|
||
}
|
||
|
||
if (n < 10) { DIGITS_1 (1); }
|
||
else if (n < 100) { DIGITS_2 (10); }
|
||
else if (n < 1000) { DIGITS_3 (100); }
|
||
else if (n < 10000) { DIGITS_4 (1000); }
|
||
else if (n < 100000) { DIGITS_5 (10000); }
|
||
else if (n < 1000000) { DIGITS_6 (100000); }
|
||
else if (n < 10000000) { DIGITS_7 (1000000); }
|
||
else if (n < 100000000) { DIGITS_8 (10000000); }
|
||
else if (n < 1000000000) { DIGITS_9 (100000000); }
|
||
#if SIZEOF_LONG == 4
|
||
/* ``if (1)'' serves only to preserve editor indentation. */
|
||
else if (1) { DIGITS_10 (1000000000); }
|
||
#else /* SIZEOF_LONG != 4 */
|
||
else if (n < 10000000000L) { DIGITS_10 (1000000000L); }
|
||
else if (n < 100000000000L) { DIGITS_11 (10000000000L); }
|
||
else if (n < 1000000000000L) { DIGITS_12 (100000000000L); }
|
||
else if (n < 10000000000000L) { DIGITS_13 (1000000000000L); }
|
||
else if (n < 100000000000000L) { DIGITS_14 (10000000000000L); }
|
||
else if (n < 1000000000000000L) { DIGITS_15 (100000000000000L); }
|
||
else if (n < 10000000000000000L) { DIGITS_16 (1000000000000000L); }
|
||
else if (n < 100000000000000000L) { DIGITS_17 (10000000000000000L); }
|
||
else if (n < 1000000000000000000L) { DIGITS_18 (100000000000000000L); }
|
||
else { DIGITS_19 (1000000000000000000L); }
|
||
#endif /* SIZEOF_LONG != 4 */
|
||
|
||
*p = '\0';
|
||
#endif /* (SIZEOF_LONG == 4) || (SIZEOF_LONG == 8) */
|
||
|
||
return p;
|
||
}
|
||
|
||
#undef ONE_DIGIT
|
||
#undef ONE_DIGIT_ADVANCE
|
||
|
||
#undef DIGITS_1
|
||
#undef DIGITS_2
|
||
#undef DIGITS_3
|
||
#undef DIGITS_4
|
||
#undef DIGITS_5
|
||
#undef DIGITS_6
|
||
#undef DIGITS_7
|
||
#undef DIGITS_8
|
||
#undef DIGITS_9
|
||
#undef DIGITS_10
|
||
#undef DIGITS_11
|
||
#undef DIGITS_12
|
||
#undef DIGITS_13
|
||
#undef DIGITS_14
|
||
#undef DIGITS_15
|
||
#undef DIGITS_16
|
||
#undef DIGITS_17
|
||
#undef DIGITS_18
|
||
#undef DIGITS_19
|
||
|
||
/* Support for timers. */
|
||
|
||
#undef TIMER_WINDOWS
|
||
#undef TIMER_GETTIMEOFDAY
|
||
#undef TIMER_TIME
|
||
|
||
/* Depending on the OS and availability of gettimeofday(), one and
|
||
only one of the above constants will be defined. Virtually all
|
||
modern Unix systems will define TIMER_GETTIMEOFDAY; Windows will
|
||
use TIMER_WINDOWS. TIMER_TIME is a catch-all method for
|
||
non-Windows systems without gettimeofday.
|
||
|
||
#### Perhaps we should also support ftime(), which exists on old
|
||
BSD 4.2-influenced systems? (It also existed under MS DOS Borland
|
||
C, if memory serves me.) */
|
||
|
||
#ifdef WINDOWS
|
||
# define TIMER_WINDOWS
|
||
#else /* not WINDOWS */
|
||
# ifdef HAVE_GETTIMEOFDAY
|
||
# define TIMER_GETTIMEOFDAY
|
||
# else
|
||
# define TIMER_TIME
|
||
# endif
|
||
#endif /* not WINDOWS */
|
||
|
||
#ifdef TIMER_GETTIMEOFDAY
|
||
typedef struct timeval wget_sys_time;
|
||
#endif
|
||
|
||
#ifdef TIMER_TIME
|
||
typedef time_t wget_sys_time;
|
||
#endif
|
||
|
||
#ifdef TIMER_WINDOWS
|
||
typedef ULARGE_INTEGER wget_sys_time;
|
||
#endif
|
||
|
||
struct wget_timer {
|
||
/* The starting point in time which, subtracted from the current
|
||
time, yields elapsed time. */
|
||
wget_sys_time start;
|
||
|
||
/* The most recent elapsed time, calculated by wtimer_elapsed().
|
||
Measured in milliseconds. */
|
||
double elapsed_last;
|
||
|
||
/* Approximately, the time elapsed between the true start of the
|
||
measurement and the time represented by START. */
|
||
double elapsed_pre_start;
|
||
};
|
||
|
||
/* Allocate a timer. It is not legal to do anything with a freshly
|
||
allocated timer, except call wtimer_reset() or wtimer_delete(). */
|
||
|
||
struct wget_timer *
|
||
wtimer_allocate (void)
|
||
{
|
||
struct wget_timer *wt =
|
||
(struct wget_timer *)xmalloc (sizeof (struct wget_timer));
|
||
return wt;
|
||
}
|
||
|
||
/* Allocate a new timer and reset it. Return the new timer. */
|
||
|
||
struct wget_timer *
|
||
wtimer_new (void)
|
||
{
|
||
struct wget_timer *wt = wtimer_allocate ();
|
||
wtimer_reset (wt);
|
||
return wt;
|
||
}
|
||
|
||
/* Free the resources associated with the timer. Its further use is
|
||
prohibited. */
|
||
|
||
void
|
||
wtimer_delete (struct wget_timer *wt)
|
||
{
|
||
xfree (wt);
|
||
}
|
||
|
||
/* Store system time to WST. */
|
||
|
||
static void
|
||
wtimer_sys_set (wget_sys_time *wst)
|
||
{
|
||
#ifdef TIMER_GETTIMEOFDAY
|
||
gettimeofday (wst, NULL);
|
||
#endif
|
||
|
||
#ifdef TIMER_TIME
|
||
time (wst);
|
||
#endif
|
||
|
||
#ifdef TIMER_WINDOWS
|
||
/* We use GetSystemTime to get the elapsed time. MSDN warns that
|
||
system clock adjustments can skew the output of GetSystemTime
|
||
when used as a timer and gives preference to GetTickCount and
|
||
high-resolution timers. But GetTickCount can overflow, and hires
|
||
timers are typically used for profiling, not for regular time
|
||
measurement. Since we handle clock skew anyway, we just use
|
||
GetSystemTime. */
|
||
FILETIME ft;
|
||
SYSTEMTIME st;
|
||
GetSystemTime (&st);
|
||
|
||
/* As recommended by MSDN, we convert SYSTEMTIME to FILETIME, copy
|
||
FILETIME to ULARGE_INTEGER, and use regular 64-bit integer
|
||
arithmetic on that. */
|
||
SystemTimeToFileTime (&st, &ft);
|
||
wst->HighPart = ft.dwHighDateTime;
|
||
wst->LowPart = ft.dwLowDateTime;
|
||
#endif
|
||
}
|
||
|
||
/* Reset timer WT. This establishes the starting point from which
|
||
wtimer_elapsed() will return the number of elapsed
|
||
milliseconds. It is allowed to reset a previously used timer. */
|
||
|
||
void
|
||
wtimer_reset (struct wget_timer *wt)
|
||
{
|
||
/* Set the start time to the current time. */
|
||
wtimer_sys_set (&wt->start);
|
||
wt->elapsed_last = 0;
|
||
wt->elapsed_pre_start = 0;
|
||
}
|
||
|
||
static double
|
||
wtimer_sys_diff (wget_sys_time *wst1, wget_sys_time *wst2)
|
||
{
|
||
#ifdef TIMER_GETTIMEOFDAY
|
||
return ((double)(wst1->tv_sec - wst2->tv_sec) * 1000
|
||
+ (double)(wst1->tv_usec - wst2->tv_usec) / 1000);
|
||
#endif
|
||
|
||
#ifdef TIMER_TIME
|
||
return 1000 * (*wst1 - *wst2);
|
||
#endif
|
||
|
||
#ifdef WINDOWS
|
||
/* VC++ 6 doesn't support direct cast of uint64 to double. To work
|
||
around this, we subtract, then convert to signed, then finally to
|
||
double. */
|
||
return (double)(signed __int64)(wst1->QuadPart - wst2->QuadPart) / 10000;
|
||
#endif
|
||
}
|
||
|
||
/* Return the number of milliseconds elapsed since the timer was last
|
||
reset. It is allowed to call this function more than once to get
|
||
increasingly higher elapsed values. These timers handle clock
|
||
skew. */
|
||
|
||
double
|
||
wtimer_elapsed (struct wget_timer *wt)
|
||
{
|
||
wget_sys_time now;
|
||
double elapsed;
|
||
|
||
wtimer_sys_set (&now);
|
||
elapsed = wt->elapsed_pre_start + wtimer_sys_diff (&now, &wt->start);
|
||
|
||
/* Ideally we'd just return the difference between NOW and
|
||
wt->start. However, the system timer can be set back, and we
|
||
could return a value smaller than when we were last called, even
|
||
a negative value. Both of these would confuse the callers, which
|
||
expect us to return monotonically nondecreasing values.
|
||
|
||
Therefore: if ELAPSED is smaller than its previous known value,
|
||
we reset wt->start to the current time and effectively start
|
||
measuring from this point. But since we don't want the elapsed
|
||
value to start from zero, we set elapsed_pre_start to the last
|
||
elapsed time and increment all future calculations by that
|
||
amount. */
|
||
|
||
if (elapsed < wt->elapsed_last)
|
||
{
|
||
wt->start = now;
|
||
wt->elapsed_pre_start = wt->elapsed_last;
|
||
elapsed = wt->elapsed_last;
|
||
}
|
||
|
||
wt->elapsed_last = elapsed;
|
||
return elapsed;
|
||
}
|
||
|
||
/* Return the assessed granularity of the timer implementation, in
|
||
milliseconds. This is used by code that tries to substitute a
|
||
better value for timers that have returned zero. */
|
||
|
||
double
|
||
wtimer_granularity (void)
|
||
{
|
||
#ifdef TIMER_GETTIMEOFDAY
|
||
/* Granularity of gettimeofday varies wildly between architectures.
|
||
However, it appears that on modern machines it tends to be better
|
||
than 1ms. Assume 100 usecs. (Perhaps the configure process
|
||
could actually measure this?) */
|
||
return 0.1;
|
||
#endif
|
||
|
||
#ifdef TIMER_TIME
|
||
return 1000;
|
||
#endif
|
||
|
||
#ifdef TIMER_WINDOWS
|
||
/* According to MSDN, GetSystemTime returns a broken-down time
|
||
structure the smallest member of which are milliseconds. */
|
||
return 1;
|
||
#endif
|
||
}
|
||
|
||
/* This should probably be at a better place, but it doesn't really
|
||
fit into html-parse.c. */
|
||
|
||
/* The function returns the pointer to the malloc-ed quoted version of
|
||
string s. It will recognize and quote numeric and special graphic
|
||
entities, as per RFC1866:
|
||
|
||
`&' -> `&'
|
||
`<' -> `<'
|
||
`>' -> `>'
|
||
`"' -> `"'
|
||
SP -> ` '
|
||
|
||
No other entities are recognized or replaced. */
|
||
char *
|
||
html_quote_string (const char *s)
|
||
{
|
||
const char *b = s;
|
||
char *p, *res;
|
||
int i;
|
||
|
||
/* Pass through the string, and count the new size. */
|
||
for (i = 0; *s; s++, i++)
|
||
{
|
||
if (*s == '&')
|
||
i += 4; /* `amp;' */
|
||
else if (*s == '<' || *s == '>')
|
||
i += 3; /* `lt;' and `gt;' */
|
||
else if (*s == '\"')
|
||
i += 5; /* `quot;' */
|
||
else if (*s == ' ')
|
||
i += 4; /* #32; */
|
||
}
|
||
res = (char *)xmalloc (i + 1);
|
||
s = b;
|
||
for (p = res; *s; s++)
|
||
{
|
||
switch (*s)
|
||
{
|
||
case '&':
|
||
*p++ = '&';
|
||
*p++ = 'a';
|
||
*p++ = 'm';
|
||
*p++ = 'p';
|
||
*p++ = ';';
|
||
break;
|
||
case '<': case '>':
|
||
*p++ = '&';
|
||
*p++ = (*s == '<' ? 'l' : 'g');
|
||
*p++ = 't';
|
||
*p++ = ';';
|
||
break;
|
||
case '\"':
|
||
*p++ = '&';
|
||
*p++ = 'q';
|
||
*p++ = 'u';
|
||
*p++ = 'o';
|
||
*p++ = 't';
|
||
*p++ = ';';
|
||
break;
|
||
case ' ':
|
||
*p++ = '&';
|
||
*p++ = '#';
|
||
*p++ = '3';
|
||
*p++ = '2';
|
||
*p++ = ';';
|
||
break;
|
||
default:
|
||
*p++ = *s;
|
||
}
|
||
}
|
||
*p = '\0';
|
||
return res;
|
||
}
|
||
|
||
/* Determine the width of the terminal we're running on. If that's
|
||
not possible, return 0. */
|
||
|
||
int
|
||
determine_screen_width (void)
|
||
{
|
||
/* If there's a way to get the terminal size using POSIX
|
||
tcgetattr(), somebody please tell me. */
|
||
#ifndef TIOCGWINSZ
|
||
return 0;
|
||
#else /* TIOCGWINSZ */
|
||
int fd;
|
||
struct winsize wsz;
|
||
|
||
if (opt.lfilename != NULL)
|
||
return 0;
|
||
|
||
fd = fileno (stderr);
|
||
if (ioctl (fd, TIOCGWINSZ, &wsz) < 0)
|
||
return 0; /* most likely ENOTTY */
|
||
|
||
return wsz.ws_col;
|
||
#endif /* TIOCGWINSZ */
|
||
}
|
||
|
||
/* Return a random number between 0 and MAX-1, inclusive.
|
||
|
||
If MAX is greater than the value of RAND_MAX+1 on the system, the
|
||
returned value will be in the range [0, RAND_MAX]. This may be
|
||
fixed in a future release.
|
||
|
||
The random number generator is seeded automatically the first time
|
||
it is called.
|
||
|
||
This uses rand() for portability. It has been suggested that
|
||
random() offers better randomness, but this is not required for
|
||
Wget, so I chose to go for simplicity and use rand
|
||
unconditionally.
|
||
|
||
DO NOT use this for cryptographic purposes. It is only meant to be
|
||
used in situations where quality of the random numbers returned
|
||
doesn't really matter. */
|
||
|
||
int
|
||
random_number (int max)
|
||
{
|
||
static int seeded;
|
||
double bounded;
|
||
int rnd;
|
||
|
||
if (!seeded)
|
||
{
|
||
srand (time (NULL));
|
||
seeded = 1;
|
||
}
|
||
rnd = rand ();
|
||
|
||
/* On systems that don't define RAND_MAX, assume it to be 2**15 - 1,
|
||
and enforce that assumption by masking other bits. */
|
||
#ifndef RAND_MAX
|
||
# define RAND_MAX 32767
|
||
rnd &= RAND_MAX;
|
||
#endif
|
||
|
||
/* This is equivalent to rand() % max, but uses the high-order bits
|
||
for better randomness on architecture where rand() is implemented
|
||
using a simple congruential generator. */
|
||
|
||
bounded = (double)max * rnd / (RAND_MAX + 1.0);
|
||
return (int)bounded;
|
||
}
|
||
|
||
/* Return a random uniformly distributed floating point number in the
|
||
[0, 1) range. The precision of returned numbers is 9 digits.
|
||
|
||
Modify this to use erand48() where available! */
|
||
|
||
double
|
||
random_float (void)
|
||
{
|
||
/* We can't rely on any specific value of RAND_MAX, but I'm pretty
|
||
sure it's greater than 1000. */
|
||
int rnd1 = random_number (1000);
|
||
int rnd2 = random_number (1000);
|
||
int rnd3 = random_number (1000);
|
||
return rnd1 / 1000.0 + rnd2 / 1000000.0 + rnd3 / 1000000000.0;
|
||
}
|
||
|
||
#if 0
|
||
/* A debugging function for checking whether an MD5 library works. */
|
||
|
||
#include "gen-md5.h"
|
||
|
||
char *
|
||
debug_test_md5 (char *buf)
|
||
{
|
||
unsigned char raw[16];
|
||
static char res[33];
|
||
unsigned char *p1;
|
||
char *p2;
|
||
int cnt;
|
||
ALLOCA_MD5_CONTEXT (ctx);
|
||
|
||
gen_md5_init (ctx);
|
||
gen_md5_update ((unsigned char *)buf, strlen (buf), ctx);
|
||
gen_md5_finish (ctx, raw);
|
||
|
||
p1 = raw;
|
||
p2 = res;
|
||
cnt = 16;
|
||
while (cnt--)
|
||
{
|
||
*p2++ = XNUM_TO_digit (*p1 >> 4);
|
||
*p2++ = XNUM_TO_digit (*p1 & 0xf);
|
||
++p1;
|
||
}
|
||
*p2 = '\0';
|
||
|
||
return res;
|
||
}
|
||
#endif
|
||
|
||
/* Implementation of run_with_timeout, a generic timeout-forcing
|
||
routine for systems with Unix-like signal handling. */
|
||
|
||
#ifdef USE_SIGNAL_TIMEOUT
|
||
# ifdef HAVE_SIGSETJMP
|
||
# define SETJMP(env) sigsetjmp (env, 1)
|
||
|
||
static sigjmp_buf run_with_timeout_env;
|
||
|
||
static RETSIGTYPE
|
||
abort_run_with_timeout (int sig)
|
||
{
|
||
assert (sig == SIGALRM);
|
||
siglongjmp (run_with_timeout_env, -1);
|
||
}
|
||
# else /* not HAVE_SIGSETJMP */
|
||
# define SETJMP(env) setjmp (env)
|
||
|
||
static jmp_buf run_with_timeout_env;
|
||
|
||
static RETSIGTYPE
|
||
abort_run_with_timeout (int sig)
|
||
{
|
||
assert (sig == SIGALRM);
|
||
/* We don't have siglongjmp to preserve the set of blocked signals;
|
||
if we longjumped out of the handler at this point, SIGALRM would
|
||
remain blocked. We must unblock it manually. */
|
||
int mask = siggetmask ();
|
||
mask &= ~sigmask(SIGALRM);
|
||
sigsetmask (mask);
|
||
|
||
/* Now it's safe to longjump. */
|
||
longjmp (run_with_timeout_env, -1);
|
||
}
|
||
# endif /* not HAVE_SIGSETJMP */
|
||
|
||
/* Arrange for SIGALRM to be delivered in TIMEOUT seconds. This uses
|
||
setitimer where available, alarm otherwise.
|
||
|
||
TIMEOUT should be non-zero. If the timeout value is so small that
|
||
it would be rounded to zero, it is rounded to the least legal value
|
||
instead (1us for setitimer, 1s for alarm). That ensures that
|
||
SIGALRM will be delivered in all cases. */
|
||
|
||
static void
|
||
alarm_set (double timeout)
|
||
{
|
||
#ifdef ITIMER_REAL
|
||
/* Use the modern itimer interface. */
|
||
struct itimerval itv;
|
||
memset (&itv, 0, sizeof (itv));
|
||
itv.it_value.tv_sec = (long) timeout;
|
||
itv.it_value.tv_usec = 1000000L * (timeout - (long)timeout);
|
||
if (itv.it_value.tv_sec == 0 && itv.it_value.tv_usec == 0)
|
||
/* Ensure that we wait for at least the minimum interval.
|
||
Specifying zero would mean "wait forever". */
|
||
itv.it_value.tv_usec = 1;
|
||
setitimer (ITIMER_REAL, &itv, NULL);
|
||
#else /* not ITIMER_REAL */
|
||
/* Use the old alarm() interface. */
|
||
int secs = (int) timeout;
|
||
if (secs == 0)
|
||
/* Round TIMEOUTs smaller than 1 to 1, not to zero. This is
|
||
because alarm(0) means "never deliver the alarm", i.e. "wait
|
||
forever", which is not what someone who specifies a 0.5s
|
||
timeout would expect. */
|
||
secs = 1;
|
||
alarm (secs);
|
||
#endif /* not ITIMER_REAL */
|
||
}
|
||
|
||
/* Cancel the alarm set with alarm_set. */
|
||
|
||
static void
|
||
alarm_cancel (void)
|
||
{
|
||
#ifdef ITIMER_REAL
|
||
struct itimerval disable;
|
||
memset (&disable, 0, sizeof (disable));
|
||
setitimer (ITIMER_REAL, &disable, NULL);
|
||
#else /* not ITIMER_REAL */
|
||
alarm (0);
|
||
#endif /* not ITIMER_REAL */
|
||
}
|
||
|
||
#endif /* USE_SIGNAL_TIMEOUT */
|
||
|
||
/* Run FUN(ARG) for not more than TIMEOUT seconds. Returns non-zero
|
||
if the function was interrupted with a timeout, zero otherwise.
|
||
|
||
This works by setting up SIGALRM to be delivered in TIMEOUT seconds
|
||
using setitimer() or alarm(). The timeout is enforced by
|
||
longjumping out of the SIGALRM handler. This has several
|
||
advantages compared to the traditional approach of relying on
|
||
signals causing system calls to exit with EINTR:
|
||
|
||
* The callback function is *forcibly* interrupted after the
|
||
timeout expires, (almost) regardless of what it was doing and
|
||
whether it was in a syscall. For example, a calculation that
|
||
takes a long time is interrupted as reliably as an IO
|
||
operation.
|
||
|
||
* It works with both SYSV and BSD signals because it doesn't
|
||
depend on the default setting of SA_RESTART.
|
||
|
||
* It doesn't special handler setup beyond a simple call to
|
||
signal(). (It does use sigsetjmp/siglongjmp, but they're
|
||
optional.)
|
||
|
||
The only downside is that, if FUN allocates internal resources that
|
||
are normally freed prior to exit from the functions, they will be
|
||
lost in case of timeout. */
|
||
|
||
int
|
||
run_with_timeout (double timeout, void (*fun) (void *), void *arg)
|
||
{
|
||
#ifndef USE_SIGNAL_TIMEOUT
|
||
fun (arg);
|
||
return 0;
|
||
#else
|
||
int saved_errno;
|
||
|
||
if (timeout == 0)
|
||
{
|
||
fun (arg);
|
||
return 0;
|
||
}
|
||
|
||
signal (SIGALRM, abort_run_with_timeout);
|
||
if (SETJMP (run_with_timeout_env) != 0)
|
||
{
|
||
/* Longjumped out of FUN with a timeout. */
|
||
signal (SIGALRM, SIG_DFL);
|
||
return 1;
|
||
}
|
||
alarm_set (timeout);
|
||
fun (arg);
|
||
|
||
/* Preserve errno in case alarm() or signal() modifies it. */
|
||
saved_errno = errno;
|
||
alarm_cancel ();
|
||
signal (SIGALRM, SIG_DFL);
|
||
errno = saved_errno;
|
||
|
||
return 0;
|
||
#endif
|
||
}
|