sslh/README

172 lines
5.8 KiB
Plaintext

===== sslh -- A ssl/ssh multiplexer. =====
sslh accepts connections in HTTP, HTTPS, SSH, OpenVPN,
tinc, XMPP, or any other protocol that can be tested using a
regular expression, on the same port. This makes it possible
to connect to any of these servers on port 443 (e.g. from
inside a corporate firewall, which almost never block port
443) while still serving HTTPS on that port.
==== Compile and install ====
If you're lucky, the Makefile will work for you:
make install
There are a couple of configuration options at the beginning
of the Makefile:
USELIBWRAP compiles support for host access control (see
hosts_access(3)), you will need libwrap headers and
library to compile (libwrap0-dev in Debian).
USELIBCONFIG compiles support for the configuration
file. You will need libconfig headers to compile
(libconfig8-dev in Debian).
The Makefile produces two different executables: sslh-fork
and sslh-select.
sslh-fork forks a new process for each incoming connection.
It is well-tested and very reliable, but incurs the overhead
of many processes. sslh-select uses only one thread, which
monitors all connections at once. It is more recent and less
tested, but only incurs a 16 byte overhead per connection.
Also, if it stops, you'll lose all connections, which means
you can't upgrade it remotely.
If you are going to use sslh for a "small" setup (less than
a dozen ssh connections and a low-traffic https server) then
sslh-fork is probably more suited for you. If you are going
to use sslh on a "medium" setup (a few thousand ssh
connections, and another few thousand sslh connections),
sslh-select will be better. If you have a very large site
(tens of thousands of connections), you'll need a vapourware
version that would use libevent or something like that.
To install:
make
cp sslh-fork /usr/local/sbin/sslh
cp scripts/etc.default.sslh /etc/default/sslh
For Debian:
cp scripts/etc.init.d.sslh /etc/init.d/sslh
For CentOS:
cp scripts/etc.rc.d.init.d.sslh /etc/rc.d/init.d/sslh
and probably create links in /etc/rc<x>.d so that the server
start automatically at boot-up, e.g. under Debian:
update-rc.d sslh defaults
==== Configuration ====
You can edit settings in /etc/default/sslh:
LISTEN=ifname:443
SSH=localhost:22
SSL=localhost:443
A good scheme is to use the external name of the machine in
$LISTEN, and bind httpd to localhost:443 (instead of all
binding to all interfaces): that way, https connections
coming from inside your network don't need to go through
sslh, and sslh is only there as a frontal for connections
coming from the internet.
Note that 'external name' in this context refers to the
actual IP address of the machine as seen from your network,
i.e. that that is not 127.0.0.1 in the output of
ifconfig(8).
==== Libwrap support ====
Sslh can optionnaly perform libwrap checks for the sshd
service: because the connection to sshd will be coming
locally from sslh, sshd cannot determine the IP of the
client.
==== OpenVPN support ====
OpenVPN clients connecting to OpenVPN running with
-port-share reportedly take more than one second between
the time the TCP connexion is established and the time they
send the first data packet. This results in sslh with
default settings timing out and assuming an SSH connexion.
To support OpenVPN connexions reliably, it is necessary to
increase sslh's timeout to 5 seconds.
Instead of using OpenVPN's port sharing, it is more reliable
to use sslh's -o option to get sslh to do the port sharing.
==== Using proxytunnel with sslh ====
If you are connecting through a proxy that checks that the
outgoing connection really is SSL and rejects SSH, you can
encapsulate all your traffic in SSL using proxytunnel (this
should work with corkscrew as well). On the server side you
receive the traffic with stunnel to decapsulate SSL, then
pipe through sslh to switch HTTP on one side and SSL on the
other.
In that case, you end up with something like this:
ssh -> proxytunnel -e --------ssh/ssl------> stunnel ---ssh---> sslh --> sshd
Web browser --------http/ssl------> stunnel ---http---> sslh --> http:80
Configuration goes like this:
On the server side, using stunnel3:
stunnel -f -p mycert.pem -d thelonious:443 -l /usr/local/sbin/sslh -- sslh -i --ssl localhost:80 --ssh localhost:22
stunnel options: -f for foreground/debugging, -p specifies
the key + certificate, -d specifies which interface and port
we're listening to for incoming connexions, -l summons sslh
in inetd mode.
sslh options: -i for inetd mode, --ssl to forward SSL
connexions (in fact normal HTTP at that stage) to port 80,
and SSH connexions to port 22. This works because sslh
considers that any protocol it doesn't recognise is SSL.
==== IP_TPROXY support ====
There is a netfilter patch that adds an option to the Linux
TCP/IP stack to allow a program to set the source address
of an IP packet that it sends. This could let sslh set the
address of packets to that of the actual client, so that
sshd would see and log the IP address of the client, making
sslh transparent.
This is not, and won't be, implemented in sslh for the
following reasons (in increasing order of importance):
* It's not vital: the real connecting IP address can be
found in logs. Little gain.
* It's Linux only: it means increased complexity for no
gain to some users.
* It's a patch: it means it'd only be useful to Linux
users who compile their own kernel.
* Only root can use the feature: that's a definite no-no.
Sslh should not, must not, will never run as root.
This isn't to mean that it won't eventually get implemented,
when/if the feature finds its way into the main kernel and
it becomes usuable by non-root processes.
==== Comments? Questions? ====
You can subscribe to the sslh mailing list here:
http://rutschle.net/cgi-bin/mailman/listinfo/sslh
This mailing list should be used for discussion, feature
requests, and will be the prefered channel for
announcements.