sslh/sslh-select.c

356 lines
11 KiB
C

/*
sslh-select: mono-processus server
# Copyright (C) 2007-2010 Yves Rutschle
#
# This program is free software; you can redistribute it
# and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be
# useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
# PURPOSE. See the GNU General Public License for more
# details.
#
# The full text for the General Public License is here:
# http://www.gnu.org/licenses/gpl.html
*/
#define __LINUX__
#include "common.h"
#include "probe.h"
const char* server_type = "sslh-select";
/* cnx_num_alloc is the number of connection to allocate at once (at start-up,
* and then every time we get too many simultaneous connections: e.g. start
* with 100 slots, then if we get more than 100 connections allocate another
* 100 slots, and so on). We never free up connection structures. We try to
* allocate as many structures at once as will fit in one page (which is 102
* in sslh 1.9 on Linux on x86)
*/
static long cnx_num_alloc;
/* Make the file descriptor non-block */
int set_nonblock(int fd)
{
int flags;
flags = fcntl(fd, F_GETFL);
CHECK_RES_RETURN(flags, "fcntl");
flags |= O_NONBLOCK;
flags = fcntl(fd, F_SETFL, flags);
CHECK_RES_RETURN(flags, "fcntl");
return flags;
}
int tidy_connection(struct connection *cnx, fd_set *fds, fd_set *fds2)
{
int i;
for (i = 0; i < 2; i++) {
if (cnx->q[i].fd != -1) {
if (verbose)
fprintf(stderr, "closing fd %d\n", cnx->q[i].fd);
close(cnx->q[i].fd);
FD_CLR(cnx->q[i].fd, fds);
FD_CLR(cnx->q[i].fd, fds2);
if (cnx->q[i].deferred_data)
free(cnx->q[i].deferred_data);
}
}
init_cnx(cnx);
return 0;
}
/* if fd becomes higher than FD_SETSIZE, things won't work so well with FD_SET
* and FD_CLR. Need to drop connections if we go above that limit */
int fd_is_in_range(int fd) {
if (fd >= FD_SETSIZE) {
log_message(LOG_ERR, "too many open file descriptor to monitor them all -- dropping connection\n");
return 0;
}
return 1;
}
/* Accepts a connection from the main socket and assigns it to an empty slot.
* If no slots are available, allocate another few. If that fails, drop the
* connexion */
int accept_new_connection(int listen_socket, struct connection *cnx[], int* cnx_size)
{
int in_socket, free, i, res;
struct connection *new;
in_socket = accept(listen_socket, 0, 0);
CHECK_RES_RETURN(in_socket, "accept");
if (!fd_is_in_range(in_socket))
return -1;
res = set_nonblock(in_socket);
if (res == -1) return -1;
/* Find an empty slot */
for (free = 0; (free < *cnx_size) && ((*cnx)[free].q[0].fd != -1); free++) {
/* nothing */
}
if (free >= *cnx_size) {
if (verbose)
fprintf(stderr, "buying more slots from the slot machine.\n");
new = realloc(*cnx, (*cnx_size + cnx_num_alloc) * sizeof((*cnx)[0]));
if (!new) {
log_message(LOG_ERR, "unable to realloc -- dropping connection\n");
return -1;
}
*cnx = new;
*cnx_size += cnx_num_alloc;
for (i = free; i < *cnx_size; i++) {
init_cnx(&(*cnx)[i]);
}
}
(*cnx)[free].q[0].fd = in_socket;
(*cnx)[free].state = ST_PROBING;
(*cnx)[free].probe_timeout = time(NULL) + probing_timeout;
if (verbose)
fprintf(stderr, "accepted fd %d on slot %d\n", in_socket, free);
return in_socket;
}
/* Connect queue 1 of connection to SSL; returns new file descriptor */
int connect_queue(struct connection *cnx, fd_set *fds_r, fd_set *fds_w)
{
struct queue *q = &cnx->q[1];
q->fd = connect_addr(cnx, cnx->q[0].fd);
if ((q->fd != -1) && fd_is_in_range(q->fd)) {
log_connection(cnx);
set_nonblock(q->fd);
flush_deferred(q);
if (q->deferred_data) {
FD_SET(q->fd, fds_w);
} else {
FD_SET(q->fd, fds_r);
}
return q->fd;
} else {
tidy_connection(cnx, fds_r, fds_w);
return -1;
}
}
/* shovels data from active fd to the other
returns after one socket closed or operation would block
*/
void shovel(struct connection *cnx, int active_fd,
fd_set *fds_r, fd_set *fds_w)
{
struct queue *read_q, *write_q;
read_q = &cnx->q[active_fd];
write_q = &cnx->q[1-active_fd];
if (verbose)
fprintf(stderr, "activity on fd%d\n", read_q->fd);
switch(fd2fd(write_q, read_q)) {
case -1:
case FD_CNXCLOSED:
tidy_connection(cnx, fds_r, fds_w);
break;
case FD_STALLED:
FD_SET(write_q->fd, fds_w);
FD_CLR(read_q->fd, fds_r);
break;
default: /* Nothing */
break;
}
}
/* returns true if specified fd is initialised and present in fd_set */
int is_fd_active(int fd, fd_set* set)
{
if (fd == -1) return 0;
return FD_ISSET(fd, set);
}
/* Main loop: the idea is as follow:
* - fds_r and fds_w contain the file descriptors to monitor in read and write
* - When a file descriptor goes off, process it: read from it, write the data
* to its corresponding pair.
* - When a file descriptor blocks when writing, remove the read fd from fds_r,
* move the data to a deferred buffer, and add the write fd to fds_w. Defered
* buffer is allocated dynamically.
* - When we can write to a file descriptor that has deferred data, we try to
* write as much as we can. Once all data is written, remove the fd from fds_w
* and add its corresponding pair to fds_r, free the buffer.
*
* That way, each pair of file descriptor (read from one, write to the other)
* is monitored either for read or for write, but never for both.
*/
void main_loop(int listen_sockets[], int num_addr_listen)
{
fd_set fds_r, fds_w; /* reference fd sets (used to init the next 2) */
fd_set readfds, writefds; /* working read and write fd sets */
struct timeval tv;
int max_fd, in_socket, i, j, res;
struct connection *cnx;
int num_cnx; /* Number of connections in *cnx */
int num_probing = 0; /* Number of connections currently probing
* We use this to know if we need to time out of
* select() */
FD_ZERO(&fds_r);
FD_ZERO(&fds_w);
for (i = 0; i < num_addr_listen; i++) {
FD_SET(listen_sockets[i], &fds_r);
set_nonblock(listen_sockets[i]);
}
max_fd = listen_sockets[num_addr_listen-1] + 1;
cnx_num_alloc = getpagesize() / sizeof(struct connection);
num_cnx = cnx_num_alloc; /* Start with a set pool of slots */
cnx = malloc(num_cnx * sizeof(struct connection));
for (i = 0; i < num_cnx; i++)
init_cnx(&cnx[i]);
while (1)
{
memset(&tv, 0, sizeof(tv));
tv.tv_sec = probing_timeout;
memcpy(&readfds, &fds_r, sizeof(readfds));
memcpy(&writefds, &fds_w, sizeof(writefds));
if (verbose)
fprintf(stderr, "selecting... max_fd=%d num_probing=%d\n", max_fd, num_probing);
res = select(max_fd, &readfds, &writefds, NULL, num_probing ? &tv : NULL);
if (res < 0)
perror("select");
/* Check main socket for new connections */
for (i = 0; i < num_addr_listen; i++) {
if (FD_ISSET(listen_sockets[i], &readfds)) {
in_socket = accept_new_connection(listen_sockets[i], &cnx, &num_cnx);
if (in_socket != -1)
num_probing++;
if (in_socket > 0) {
FD_SET(in_socket, &fds_r);
if (in_socket >= max_fd)
max_fd = in_socket + 1;;
}
FD_CLR(listen_sockets[i], &readfds);
}
}
/* Check all sockets for write activity */
for (i = 0; i < num_cnx; i++) {
if (cnx[i].q[0].fd != -1) {
for (j = 0; j < 2; j++) {
if (is_fd_active(cnx[i].q[j].fd, &writefds)) {
res = flush_deferred(&cnx[i].q[j]);
if ((res == -1) && ((errno == EPIPE) || (errno == ECONNRESET))) {
if (cnx[i].state == ST_PROBING) num_probing--;
tidy_connection(&cnx[i], &fds_r, &fds_w);
if (verbose)
fprintf(stderr, "closed slot %d\n", i);
} else {
/* If no deferred data is left, stop monitoring the fd
* for write, and restart monitoring the other one for reads*/
if (!cnx[i].q[j].deferred_data_size) {
FD_CLR(cnx[i].q[j].fd, &fds_w);
FD_SET(cnx[i].q[1-j].fd, &fds_r);
}
}
}
}
}
}
/* Check all sockets for read activity */
for (i = 0; i < num_cnx; i++) {
for (j = 0; j < 2; j++) {
if (is_fd_active(cnx[i].q[j].fd, &readfds) ||
((cnx[i].state == ST_PROBING) && (cnx[i].probe_timeout < time(NULL)))) {
if (verbose)
fprintf(stderr, "processing fd%d slot %d\n", j, i);
switch (cnx[i].state) {
case ST_PROBING:
if (j == 1) {
fprintf(stderr, "Activity on fd2 while probing, impossible\n");
dump_connection(&cnx[i]);
exit(1);
}
/* If timed out it's SSH, otherwise the client sent
* data so probe the protocol */
if ((cnx[i].probe_timeout < time(NULL))) {
cnx[i].proto = timeout_protocol();
} else {
res = probe_client_protocol(&cnx[i]);
if (res == PROBE_AGAIN)
continue;
}
num_probing--;
cnx[i].state = ST_SHOVELING;
/* libwrap check if required for this protocol */
if (cnx[i].proto->service &&
check_access_rights(in_socket, cnx[i].proto->service)) {
tidy_connection(&cnx[i], &fds_r, &fds_w);
res = -1;
} else {
res = connect_queue(&cnx[i], &fds_r, &fds_w);
}
if (res >= max_fd)
max_fd = res + 1;;
break;
case ST_SHOVELING:
shovel(&cnx[i], j, &fds_r, &fds_w);
break;
default: /* illegal */
log_message(LOG_ERR, "Illegal connection state %d\n", cnx[i].state);
exit(1);
}
}
}
}
}
}
void start_shoveler(int listen_socket) {
fprintf(stderr, "inetd mode is not supported in select mode\n");
exit(1);
}
/* The actual main is in common.c: it's the same for both version of
* the server
*/