/* * Spdylay - SPDY Library * * Copyright (c) 2012 Tatsuhiro Tsujikawa * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "shrpx_ssl.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "shrpx_log.h" #include "shrpx_client_handler.h" #include "shrpx_config.h" #include "shrpx_accesslog.h" #include "util.h" using namespace spdylay; namespace shrpx { namespace ssl { namespace { std::pair next_proto; unsigned char proto_list[23]; } // namespace namespace { int next_proto_cb(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { std::pair *next_proto = reinterpret_cast* >(arg); *data = next_proto->first; *len = next_proto->second; return SSL_TLSEXT_ERR_OK; } } // namespace namespace { int verify_callback(int preverify_ok, X509_STORE_CTX *ctx) { // We don't verify the client certificate. Just request it for the // testing purpose. return 1; } } // namespace namespace { void set_npn_prefs(unsigned char *out, const char **protos, size_t len) { unsigned char *ptr = out; for(size_t i = 0; i < len; ++i) { *ptr = strlen(protos[i]); memcpy(ptr+1, protos[i], *ptr); ptr += *ptr+1; } } } // namespace namespace { int ssl_pem_passwd_cb(char *buf, int size, int rwflag, void *user_data) { Config *config = (Config *)user_data; int len = (int)strlen(config->private_key_passwd); if (size < len + 1) { LOG(ERROR) << "ssl_pem_passwd_cb: buf is too small " << size; return 0; } // Copy string including last '\0'. memcpy(buf, config->private_key_passwd, len+1); return len; } } // namespace namespace { int servername_callback(SSL *ssl, int *al, void *arg) { if(get_config()->cert_tree) { const char *hostname = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if(hostname) { SSL_CTX *ssl_ctx = cert_lookup_tree_lookup(get_config()->cert_tree, hostname, strlen(hostname)); if(ssl_ctx) { SSL_set_SSL_CTX(ssl, ssl_ctx); } } } return SSL_TLSEXT_ERR_NOACK; } } // namespace SSL_CTX* create_ssl_context(const char *private_key_file, const char *cert_file) { SSL_CTX *ssl_ctx; ssl_ctx = SSL_CTX_new(SSLv23_server_method()); if(!ssl_ctx) { LOG(FATAL) << ERR_error_string(ERR_get_error(), 0); DIE(); } SSL_CTX_set_options(ssl_ctx, SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); const unsigned char sid_ctx[] = "shrpx"; SSL_CTX_set_session_id_context(ssl_ctx, sid_ctx, sizeof(sid_ctx)-1); SSL_CTX_set_session_cache_mode(ssl_ctx, SSL_SESS_CACHE_SERVER); if(get_config()->ciphers) { if(SSL_CTX_set_cipher_list(ssl_ctx, get_config()->ciphers) == 0) { LOG(FATAL) << "SSL_CTX_set_cipher_list failed: " << ERR_error_string(ERR_get_error(), NULL); DIE(); } } SSL_CTX_set_mode(ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE); SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY); SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS); if (get_config()->private_key_passwd) { SSL_CTX_set_default_passwd_cb(ssl_ctx, ssl_pem_passwd_cb); SSL_CTX_set_default_passwd_cb_userdata(ssl_ctx, (void *)get_config()); } if(SSL_CTX_use_PrivateKey_file(ssl_ctx, private_key_file, SSL_FILETYPE_PEM) != 1) { LOG(FATAL) << "SSL_CTX_use_PrivateKey_file failed: " << ERR_error_string(ERR_get_error(), NULL); DIE(); } if(SSL_CTX_use_certificate_chain_file(ssl_ctx, cert_file) != 1) { LOG(FATAL) << "SSL_CTX_use_certificate_file failed: " << ERR_error_string(ERR_get_error(), NULL); DIE(); } if(SSL_CTX_check_private_key(ssl_ctx) != 1) { LOG(FATAL) << "SSL_CTX_check_private_key failed: " << ERR_error_string(ERR_get_error(), NULL); DIE(); } if(get_config()->verify_client) { SSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER | SSL_VERIFY_CLIENT_ONCE | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, verify_callback); } SSL_CTX_set_tlsext_servername_callback(ssl_ctx, servername_callback); // We speak "http/1.1", "spdy/2" and "spdy/3". const char *protos[] = { "spdy/3", "spdy/2", "http/1.1" }; set_npn_prefs(proto_list, protos, 3); next_proto.first = proto_list; next_proto.second = sizeof(proto_list); SSL_CTX_set_next_protos_advertised_cb(ssl_ctx, next_proto_cb, &next_proto); return ssl_ctx; } namespace { int select_next_proto_cb(SSL* ssl, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { if(spdylay_select_next_protocol(out, outlen, in, inlen) <= 0) { *out = (unsigned char*)"spdy/3"; *outlen = 6; } return SSL_TLSEXT_ERR_OK; } } // namespace SSL_CTX* create_ssl_client_context() { SSL_CTX *ssl_ctx; ssl_ctx = SSL_CTX_new(SSLv23_client_method()); if(!ssl_ctx) { LOG(FATAL) << ERR_error_string(ERR_get_error(), 0); DIE(); } SSL_CTX_set_options(ssl_ctx, SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); if(get_config()->ciphers) { if(SSL_CTX_set_cipher_list(ssl_ctx, get_config()->ciphers) == 0) { LOG(FATAL) << "SSL_CTX_set_cipher_list failed: " << ERR_error_string(ERR_get_error(), NULL); DIE(); } } SSL_CTX_set_mode(ssl_ctx, SSL_MODE_ENABLE_PARTIAL_WRITE); SSL_CTX_set_mode(ssl_ctx, SSL_MODE_AUTO_RETRY); SSL_CTX_set_mode(ssl_ctx, SSL_MODE_RELEASE_BUFFERS); if(SSL_CTX_set_default_verify_paths(ssl_ctx) != 1) { LOG(WARNING) << "Could not load system trusted ca certificates: " << ERR_error_string(ERR_get_error(), NULL); } if(get_config()->cacert) { if(SSL_CTX_load_verify_locations(ssl_ctx, get_config()->cacert, 0) != 1) { LOG(FATAL) << "Could not load trusted ca certificates from " << get_config()->cacert << ": " << ERR_error_string(ERR_get_error(), NULL); DIE(); } } SSL_CTX_set_next_proto_select_cb(ssl_ctx, select_next_proto_cb, 0); return ssl_ctx; } ClientHandler* accept_connection(event_base *evbase, SSL_CTX *ssl_ctx, evutil_socket_t fd, sockaddr *addr, int addrlen) { char host[NI_MAXHOST]; int rv; rv = getnameinfo(addr, addrlen, host, sizeof(host), 0, 0, NI_NUMERICHOST); if(rv == 0) { if(get_config()->accesslog) { upstream_connect(host); } int val = 1; rv = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&val), sizeof(val)); if(rv == -1) { LOG(WARNING) << "Setting option TCP_NODELAY failed: errno=" << errno; } SSL *ssl = 0; bufferevent *bev; if(ssl_ctx) { ssl = SSL_new(ssl_ctx); if(!ssl) { LOG(ERROR) << "SSL_new() failed: " << ERR_error_string(ERR_get_error(), NULL); return 0; } bev = bufferevent_openssl_socket_new (evbase, fd, ssl, BUFFEREVENT_SSL_ACCEPTING, BEV_OPT_DEFER_CALLBACKS); } else { bev = bufferevent_socket_new(evbase, fd, BEV_OPT_DEFER_CALLBACKS); } ClientHandler *client_handler = new ClientHandler(bev, fd, ssl, host); return client_handler; } else { LOG(ERROR) << "getnameinfo() failed: " << gai_strerror(rv); return 0; } } bool numeric_host(const char *hostname) { struct addrinfo hints; struct addrinfo* res; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_flags = AI_NUMERICHOST; if(getaddrinfo(hostname, 0, &hints, &res)) { return false; } freeaddrinfo(res); return true; } namespace { bool tls_hostname_match(const char *pattern, const char *hostname) { const char *ptWildcard = strchr(pattern, '*'); if(ptWildcard == 0) { return util::strieq(pattern, hostname); } const char *ptLeftLabelEnd = strchr(pattern, '.'); bool wildcardEnabled = true; // Do case-insensitive match. At least 2 dots are required to enable // wildcard match. Also wildcard must be in the left-most label. // Don't attempt to match a presented identifier where the wildcard // character is embedded within an A-label. if(ptLeftLabelEnd == 0 || strchr(ptLeftLabelEnd+1, '.') == 0 || ptLeftLabelEnd < ptWildcard || util::istartsWith(pattern, "xn--")) { wildcardEnabled = false; } if(!wildcardEnabled) { return util::strieq(pattern, hostname); } const char *hnLeftLabelEnd = strchr(hostname, '.'); if(hnLeftLabelEnd == 0 || !util::strieq(ptLeftLabelEnd, hnLeftLabelEnd)) { return false; } // Perform wildcard match. Here '*' must match at least one // character. if(hnLeftLabelEnd - hostname < ptLeftLabelEnd - pattern) { return false; } return util::istartsWith(hostname, hnLeftLabelEnd, pattern, ptWildcard) && util::iendsWith(hostname, hnLeftLabelEnd, ptWildcard+1, ptLeftLabelEnd); } } // namespace namespace { int verify_hostname(const char *hostname, const sockaddr_union *su, size_t salen, const std::vector& dns_names, const std::vector& ip_addrs, const std::string& common_name) { if(numeric_host(hostname)) { if(ip_addrs.empty()) { return util::strieq(common_name.c_str(), hostname) ? 0 : -1; } const void *saddr; switch(su->storage.ss_family) { case AF_INET: saddr = &su->in.sin_addr; break; case AF_INET6: saddr = &su->in6.sin6_addr; break; default: return -1; } for(size_t i = 0; i < ip_addrs.size(); ++i) { if(salen == ip_addrs[i].size() && memcmp(saddr, ip_addrs[i].c_str(), salen) == 0) { return 0; } } } else { if(dns_names.empty()) { return tls_hostname_match(common_name.c_str(), hostname) ? 0 : -1; } for(size_t i = 0; i < dns_names.size(); ++i) { if(tls_hostname_match(dns_names[i].c_str(), hostname)) { return 0; } } } return -1; } } // namespace void get_altnames(X509 *cert, std::vector& dns_names, std::vector& ip_addrs, std::string& common_name) { GENERAL_NAMES* altnames; altnames = reinterpret_cast (X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0)); if(altnames) { util::auto_delete altnames_deleter(altnames, GENERAL_NAMES_free); size_t n = sk_GENERAL_NAME_num(altnames); for(size_t i = 0; i < n; ++i) { const GENERAL_NAME *altname = sk_GENERAL_NAME_value(altnames, i); if(altname->type == GEN_DNS) { const char *name; name = reinterpret_cast(ASN1_STRING_data(altname->d.ia5)); if(!name) { continue; } size_t len = ASN1_STRING_length(altname->d.ia5); if(std::find(name, name+len, '\0') != name+len) { // Embedded NULL is not permitted. continue; } dns_names.push_back(std::string(name, len)); } else if(altname->type == GEN_IPADD) { const unsigned char *ip_addr = altname->d.iPAddress->data; if(!ip_addr) { continue; } size_t len = altname->d.iPAddress->length; ip_addrs.push_back(std::string(reinterpret_cast(ip_addr), len)); } } } X509_NAME *subjectname = X509_get_subject_name(cert); if(!subjectname) { LOG(WARNING) << "Could not get X509 name object from the certificate."; return; } int lastpos = -1; while(1) { lastpos = X509_NAME_get_index_by_NID(subjectname, NID_commonName, lastpos); if(lastpos == -1) { break; } X509_NAME_ENTRY *entry = X509_NAME_get_entry(subjectname, lastpos); unsigned char *out; int outlen = ASN1_STRING_to_UTF8(&out, X509_NAME_ENTRY_get_data(entry)); if(outlen < 0) { continue; } if(std::find(out, out+outlen, '\0') != out+outlen) { // Embedded NULL is not permitted. continue; } common_name.assign(&out[0], &out[outlen]); OPENSSL_free(out); break; } } int check_cert(SSL *ssl) { X509 *cert = SSL_get_peer_certificate(ssl); if(!cert) { LOG(ERROR) << "No certificate found"; return -1; } util::auto_delete cert_deleter(cert, X509_free); long verify_res = SSL_get_verify_result(ssl); if(verify_res != X509_V_OK) { LOG(ERROR) << "Certificate verification failed: " << X509_verify_cert_error_string(verify_res); return -1; } std::string common_name; std::vector dns_names; std::vector ip_addrs; get_altnames(cert, dns_names, ip_addrs, common_name); if(verify_hostname(get_config()->downstream_host, &get_config()->downstream_addr, get_config()->downstream_addrlen, dns_names, ip_addrs, common_name) != 0) { LOG(ERROR) << "Certificate verification failed: hostname does not match"; return -1; } return 0; } namespace { pthread_mutex_t *ssl_locks; } // namespace namespace { void ssl_locking_cb(int mode, int type, const char *file, int line) { if(mode & CRYPTO_LOCK) { pthread_mutex_lock(&(ssl_locks[type])); } else { pthread_mutex_unlock(&(ssl_locks[type])); } } } // namespace void setup_ssl_lock() { ssl_locks = new pthread_mutex_t[CRYPTO_num_locks()]; for(int i = 0; i < CRYPTO_num_locks(); ++i) { // Always returns 0 pthread_mutex_init(&(ssl_locks[i]), 0); } //CRYPTO_set_id_callback(ssl_thread_id); OpenSSL manual says that if // threadid_func is not specified using // CRYPTO_THREADID_set_callback(), then default implementation is // used. We use this default one. CRYPTO_set_locking_callback(ssl_locking_cb); } void teardown_ssl_lock() { for(int i = 0; i < CRYPTO_num_locks(); ++i) { pthread_mutex_destroy(&(ssl_locks[i])); } delete [] ssl_locks; } CertLookupTree* cert_lookup_tree_new() { CertLookupTree *tree = new CertLookupTree(); CertNode *root = new CertNode(); root->ssl_ctx = 0; root->str = 0; root->first = root->last = 0; tree->root = root; return tree; } namespace { void cert_node_del(CertNode *node) { for(std::vector::iterator i = node->next.begin(), eoi = node->next.end(); i != eoi; ++i) { cert_node_del(*i); } delete node; } } // namespace void cert_lookup_tree_del(CertLookupTree *lt) { cert_node_del(lt->root); for(std::vector::iterator i = lt->hosts.begin(), eoi = lt->hosts.end(); i != eoi; ++i) { delete [] *i; } delete lt; } namespace { // The |offset| is the index in the hostname we are examining. We are // going to scan from |offset| in backwards. void cert_lookup_tree_add_cert(CertLookupTree *lt, CertNode *node, SSL_CTX *ssl_ctx, char *hostname, size_t len, int offset) { int i, next_len = node->next.size(); char c = hostname[offset]; CertNode *cn = 0; for(i = 0; i < next_len; ++i) { cn = node->next[i]; if(cn->str[cn->first] == c) { break; } } if(i == next_len) { if(c == '*') { // We assume hostname as wildcard hostname when first '*' is // encountered. Note that as per RFC 6125 (6.4.3), there are // some restrictions for wildcard hostname. We just ignore // these rules here but do the proper check when we do the // match. node->wildcard_certs.push_back(std::make_pair(hostname, ssl_ctx)); } else { int j; CertNode *new_node = new CertNode(); new_node->str = hostname; new_node->first = offset; // If wildcard is found, set the region before it because we // don't include it in [first, last). for(j = offset; j >= 0 && hostname[j] != '*'; --j); new_node->last = j; if(j == -1) { new_node->ssl_ctx = ssl_ctx; } else { new_node->ssl_ctx = 0; new_node->wildcard_certs.push_back(std::make_pair(hostname, ssl_ctx)); } node->next.push_back(new_node); } } else { int j; for(i = cn->first, j = offset; i > cn->last && j >= 0 && cn->str[i] == hostname[j]; --i, --j); if(i == cn->last) { if(j == -1) { if(cn->ssl_ctx) { // same hostname, we don't overwrite exiting ssl_ctx } else { cn->ssl_ctx = ssl_ctx; } } else { // The existing hostname is a suffix of this hostname. // Continue matching at potion j. cert_lookup_tree_add_cert(lt, cn, ssl_ctx, hostname, len, j); } } else { CertNode *new_node = new CertNode(); new_node->ssl_ctx = cn->ssl_ctx; new_node->str = cn->str; new_node->first = i; new_node->last = cn->last; new_node->wildcard_certs.swap(cn->wildcard_certs); new_node->next.swap(cn->next); cn->next.push_back(new_node); cn->last = i; if(j == -1) { // This hostname is a suffix of the existing hostname. cn->ssl_ctx = ssl_ctx; } else { // This hostname and existing one share suffix. cn->ssl_ctx = 0; cert_lookup_tree_add_cert(lt, cn, ssl_ctx, hostname, len, j); } } } } } // namespace void cert_lookup_tree_add_cert(CertLookupTree *lt, SSL_CTX *ssl_ctx, const char *hostname, size_t len) { if(len == 0) { return; } // Copy hostname including terminal NULL char *host_copy = new char[len + 1]; for(size_t i = 0; i < len; ++i) { host_copy[i] = util::lowcase(hostname[i]); } host_copy[len] = '\0'; lt->hosts.push_back(host_copy); cert_lookup_tree_add_cert(lt, lt->root, ssl_ctx, host_copy, len, len-1); } namespace { SSL_CTX* cert_lookup_tree_lookup(CertLookupTree *lt, CertNode *node, const char *hostname, size_t len, int offset) { int i, j; for(i = node->first, j = offset; i > node->last && j >= 0 && node->str[i] == util::lowcase(hostname[j]); --i, --j); if(i == node->last) { if(j == -1) { if(node->ssl_ctx) { // exact match return node->ssl_ctx; } else { // Do not perform wildcard-match because '*' must match at least // one character. return 0; } } else { for(std::vector >::iterator i = node->wildcard_certs.begin(), eoi = node->wildcard_certs.end(); i != eoi; ++i) { if(tls_hostname_match((*i).first, hostname)) { return (*i).second; } } char c = util::lowcase(hostname[j]); for(std::vector::iterator i = node->next.begin(), eoi = node->next.end(); i != eoi; ++i) { if((*i)->str[(*i)->first] == c) { return cert_lookup_tree_lookup(lt, *i, hostname, len, j); } } return 0; } } else { return 0; } } } // namespace SSL_CTX* cert_lookup_tree_lookup(CertLookupTree *lt, const char *hostname, size_t len) { return cert_lookup_tree_lookup(lt, lt->root, hostname, len, len-1); } int cert_lookup_tree_add_cert_from_file(CertLookupTree *lt, SSL_CTX *ssl_ctx, const char *certfile) { BIO *bio = BIO_new(BIO_s_file()); if(!bio) { LOG(ERROR) << "BIO_new failed"; return -1; } util::auto_delete bio_deleter(bio, BIO_vfree); if(!BIO_read_filename(bio, certfile)) { LOG(ERROR) << "Could not read certificate file '" << certfile << "'"; return -1; } X509 *cert = PEM_read_bio_X509(bio, 0, 0, 0); if(!cert) { LOG(ERROR) << "Could not read X509 structure from file '" << certfile << "'"; return -1; } util::auto_delete cert_deleter(cert, X509_free); std::string common_name; std::vector dns_names; std::vector ip_addrs; get_altnames(cert, dns_names, ip_addrs, common_name); for(std::vector::iterator i = dns_names.begin(), eoi = dns_names.end(); i != eoi; ++i) { cert_lookup_tree_add_cert(lt, ssl_ctx, (*i).c_str(), (*i).size()); } cert_lookup_tree_add_cert(lt, ssl_ctx, common_name.c_str(), common_name.size()); return 0; } } // namespace ssl } // namespace shrpx