pinephone-keyboard/i2c-charger-ctl.c

543 lines
14 KiB
C

/*
* Pinephone keyboard power management daemon/tool.
*
* Copyright (C) 2021 Ondřej Jirman <megi@xff.cz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.c"
#include "firmware/registers.h"
/*
* - Independent control of
* - Boost (5V VOUT to power Pinephone)
* - Battery Charger
*
* - Optional automatic power on when load is inserted
* - Optional auto enable of VOUT when disconnecting VIN (reg 0x04)
*
* - Optiobal automatic shutdown when VOUT has light load (customizable via reg
* 0x0c, min. is 100mA, shutdown lastsa 8-64s (see reg 0x04))
*
* - Charger_CTL1 0x22
* - Control of charging current based on VOUT undervoltage (it tries
* to keep VOUT in a certain range by reducing load on VIN by
* decreasing charging current?)
*
* - Battery type selection 4.2/4.3/4.35V
* - + extra margin 0-42mV during constant voltage phase?
* - External (via VSET pin) or internal setting (via reg 0x24)
*
* - Charging current selection (100mA - 2.3A ?)
*
* - Charging status register
* - charging state - idle, trickle, constant voltage/current phase, full,
* timeout
* - LED heavey load indication
* - VIN overvoltage indication (> 5.6V)
*
* - Button press status
* - current state: UP/DOWN
* - long press
* - short press
*
* GPIO:
*
* - KEY input
* - Long press button time selection 1-4s
* - Enable/disable 2x short press shutdown function
* - L3/L4 function selection:
* - GPIO0/1
* - normal function
* - LIGHT pin function selection:
* - GPIO2
* - VREF
* - WLED
* - VSET
* - VSET (normal function to select battery voltage via PIN setting)
* - GPIO4
* - RSET
* - GPIO3
* - battery internal resistance selection via resistor on the RSET pin
*
* - separate input/output enable register for all 5 GPIOs
* - GPIO data register to read/write values to pins
*
* ADC:
*
* - 14 bit two register VBAT, IBAT, VBAT_OCV readings
*/
#define SYS_CTL0 0x01
#define SYS_CTL1 0x02
#define SYS_CTL2 0x0c
#define SYS_CTL3 0x03
#define SYS_CTL4 0x04
#define SYS_CTL5 0x07
#define Charger_CTL1 0x22
#define Charger_CTL2 0x24
#define CHG_DIG_CTL4 0x25
#define CHG_DIG_CTL4_2 0x26
#define READ0 0x71
#define READ1 0x72
#define READ2 0x77
// bits 4-0 are mapped to gpio4 - gpio0
#define MFP_CTL0 0x51
#define MFP_CTL1 0x52
#define GPIO_INEN 0x53
#define GPIO_OUTEN 0x54
#define GPIO_DATA 0x55
#define BATVADC_DAT_L 0xa2
#define BATVADC_DAT_H 0xa3
#define BATIADC_DAT_L 0xa4
#define BATIADC_DAT_H 0xa5
#define BATOCV_DAT_L 0xa8
#define BATOCV_DAT_H 0xa9
uint8_t read_power(int fd, uint8_t reg)
{
int ret;
uint8_t val;
// initiate read of data from the charger
uint8_t buf[4] = { REG_SYS_CHG_ADDR, reg, 0xAA, REG_SYS_COMMAND_CHG_READ };
struct i2c_msg msgs[] = {
{ KB_ADDR, 0, 4, buf },
};
struct i2c_rdwr_ioctl_data msg = {
.msgs = msgs,
.nmsgs = sizeof(msgs) / sizeof(msgs[0])
};
ret = ioctl(fd, I2C_RDWR, &msg);
syscall_error(ret < 0, "I2C_RDWR failed");
for (int i = 0; i < 5; i++) {
usleep(700);
// read the result
uint8_t buf2[1] = { REG_SYS_CHG_DATA, };
uint8_t buf3[2] = { };
struct i2c_msg msgs2[] = {
{ KB_ADDR, 0, 1, buf2 },
{ KB_ADDR, I2C_M_RD, sizeof(buf3), buf3 },
};
struct i2c_rdwr_ioctl_data msg2 = {
.msgs = msgs2,
.nmsgs = sizeof(msgs2) / sizeof(msgs2[0])
};
ret = ioctl(fd, I2C_RDWR, &msg2);
syscall_error(ret < 0, "I2C_RDWR failed");
// debug("rd %02x %02x\n", buf3[0], buf3[1]);
if (buf3[1] == REG_SYS_COMMAND_CHG_READ)
continue;
if (buf3[1] == 0)
return buf3[0];
if (buf3[1] == 0xff)
error("Proxy read failed with %x\n", buf3[1]);
}
error("Proxy read timed out\n");
return 0;
}
void write_power(int fd, uint8_t reg, uint8_t val)
{
int ret;
uint8_t buf[4] = { REG_SYS_CHG_ADDR, reg, val, REG_SYS_COMMAND_CHG_WRITE };
struct i2c_msg msgs[] = {
{ KB_ADDR, 0, 4, buf },
};
// debug("wr 0x%02hhx: %02hhx\n", reg, val);
struct i2c_rdwr_ioctl_data msg = {
.msgs = msgs,
.nmsgs = sizeof(msgs) / sizeof(msgs[0])
};
ret = ioctl(fd, I2C_RDWR, &msg);
syscall_error(ret < 0, "I2C_RDWR failed");
for (int i = 0; i < 5; i++) {
usleep(700);
// read the result
uint8_t buf2[1] = { REG_SYS_COMMAND, };
uint8_t buf3[1] = { };
struct i2c_msg msgs2[] = {
{ KB_ADDR, 0, 1, buf2 },
{ KB_ADDR, I2C_M_RD, sizeof(buf3), buf3 },
};
struct i2c_rdwr_ioctl_data msg2 = {
.msgs = msgs2,
.nmsgs = sizeof(msgs2) / sizeof(msgs2[0])
};
ret = ioctl(fd, I2C_RDWR, &msg2);
syscall_error(ret < 0, "I2C_RDWR failed");
if (buf3[0] == REG_SYS_COMMAND_CHG_WRITE)
continue;
if (buf3[0] == 0)
return;
if (buf3[0] == 0xff)
error("Proxy write failed with %x\n", buf3[0]);
}
}
void update_power(int fd, uint8_t reg, uint8_t mask, uint8_t val)
{
uint8_t tmp;
tmp = read_power(fd, reg);
tmp &= ~mask;
tmp |= val & mask;
write_power(fd, reg, tmp);
}
// in mV
unsigned get_bat_voltage(int fd)
{
unsigned l = read_power(fd, BATVADC_DAT_L);
unsigned h = read_power(fd, BATVADC_DAT_H);
if (h & 0x20)
return 2600 - ((~l & 0xff) + ((~h & 0x1f) << 8) + 1) * 1000 / 3724;
return 2600 + (l + (h << 8)) * 1000 / 3724;
}
int get_bat_current(int fd)
{
unsigned l = read_power(fd, BATIADC_DAT_L);
unsigned h = read_power(fd, BATIADC_DAT_H);
if (h & 0x20)
return - (int)((~l & 0xff) + ((~h & 0x1f) << 8) + 1) * 1000 / 1341;
return (l + (h << 8)) * 1000 / 1341;
}
unsigned get_bat_oc_voltage(int fd)
{
unsigned l = read_power(fd, BATOCV_DAT_L);
unsigned h = read_power(fd, BATOCV_DAT_H);
if (h & 0x20)
return 2600 - ((~l & 0xff) + ((~h & 0x1f) << 8) + 1) * 1000 / 3724;
return 2600 + (l + (h << 8)) * 1000 / 3724;
}
const char* get_chg_status_text(uint8_t s)
{
switch (s) {
case 0: return "Idle";
case 1: return "Trickle charge";
case 2: return "Constant current phase";
case 3: return "Constant voltage phase";
case 4: return "Constant voltage stop";
case 5: return "Full";
case 6: return "Timeout";
default: return "Unknown";
}
}
void power_status(int fd)
{
uint8_t r0 = read_power(fd, READ0);
uint8_t r1 = read_power(fd, READ1);
uint8_t r2 = read_power(fd, READ2);
uint8_t s0 = read_power(fd, SYS_CTL0);
printf("Charger: %s (%s%s%s%s%s%s%s)\n", get_chg_status_text((r0 >> 5) & 0x7),
r0 & BIT(4) ? " chg_op" : "",
r0 & BIT(3) ? " chg_end" : "",
r0 & BIT(2) ? " cv_timeout" : "",
r0 & BIT(1) ? " chg_timeout" : "",
r0 & BIT(0) ? " trickle_timeout" : "",
r1 & BIT(5) ? " VIN overvoltage (> 5.6V)" : "",
r1 & BIT(6) ? " <= 75mA load" : ""
);
printf("Button: %02hhx (%s%s%s%s)\n", r2,
r2 & BIT(3) ? " btn_press" : " btn_not_press",
r2 & BIT(2) ? " double_press" : "",
r2 & BIT(1) ? " long_press" : "",
r2 & BIT(0) ? " short_press" : ""
);
// this has some nice undocummneted status bits
printf("0x70: %02hhx\n", read_power(fd, 0x70));
update_power(fd, READ2, 0x7, 0x7);
}
// dump registers
struct bitinfo {
const char* name;
uint8_t shift;
uint8_t len;
void (*fmt)(char* out, size_t out_size, uint8_t val);
};
struct reginfo {
uint8_t reg;
const char* name;
struct bitinfo* bits;
};
#define REG_START(addr, name) [addr] = { addr, name, (struct bitinfo[]){
#define REG_END {} }},
#define REG_BITS(name, s, l) { #name, s, l },
#define REG(addr, name) REG_START(addr, name) { name, 0, 8 }, REG_END
#define REG_SIMPLE(n) REG(n, #n)
struct reginfo regs[256] = {
REG_START(SYS_CTL0, "SYS_CTL0")
REG_BITS(CHARGER_EN, 1, 1)
REG_BITS(BOOST_EN, 2, 1)
REG_BITS(LIGHT_EN, 3, 1)
REG_BITS(FLASHLIGHT_DET_EN, 4, 1)
REG_END
REG_START(SYS_CTL1, "SYS_CTL1")
REG_BITS(AUTO_POWERON_ON_VIN_INSERT_EN, 0, 1)
REG_BITS(LIGHT_LOAD_AUTO_SHUTDOWN_EN, 1, 1)
REG_END
REG_START(SYS_CTL2, "SYS_CTL2")
REG_BITS(LIGHT_SHUTDOWN_CURRENT, 3, 5)
REG_END
REG_START(SYS_CTL3, "SYS_CTL3")
REG_BITS(DOUBLE_PRESS_SHUTDOWN_EN, 5, 1)
REG_BITS(LONG_PRESS_TIME, 6, 2)
REG_END
REG_START(SYS_CTL4, "SYS_CTL4")
REG_BITS(SHUTDOWN_TIME, 6, 2)
REG_BITS(VIN_PULLOUT_BOOST_ON, 5, 1)
REG_END
REG_START(SYS_CTL5, "SYS_CTL5")
REG_BITS(NTC_EN, 6, 1)
REG_BITS(FLASH_LED_EN_0_LONG_PRESS_1_DOUBLE_PRESS, 1, 1)
REG_BITS(SHUTDOWN_1_LONG_PRESS_0_DOUBLE_PRESS, 0, 1)
REG_END
REG_START(Charger_CTL1, "Charger_CTL1")
REG_BITS(UV_LOOP, 2, 2)
REG_END
REG_START(Charger_CTL2, "Charger_CTL2")
REG_BITS(BAT_TYPE, 5, 2)
REG_BITS(CV_PRESSURE, 1, 2)
REG_END
REG_START(CHG_DIG_CTL4_2, "CHG_DIG_CTL4_2")
REG_BITS(BAT_TYPE_SEL_1_VSET_PIN_0_REGISTER, 6, 1)
REG_END
REG_START(CHG_DIG_CTL4, "CHG_DIG_CTL4")
REG_BITS(CHG_CURRENT, 0, 5)
REG_END
REG_SIMPLE(MFP_CTL0)
REG_SIMPLE(MFP_CTL1)
REG_SIMPLE(GPIO_INEN)
REG_SIMPLE(GPIO_OUTEN)
REG_SIMPLE(GPIO_DATA)
REG_SIMPLE(BATVADC_DAT_L)
REG_SIMPLE(BATVADC_DAT_H)
REG_SIMPLE(BATOCV_DAT_L)
REG_SIMPLE(BATOCV_DAT_H)
REG_SIMPLE(BATIADC_DAT_L)
REG_SIMPLE(BATIADC_DAT_H)
REG_START(0x70, "READ_70")
// REG_BITS(DISCHARGING, 2, 1)
REG_BITS(VOUT_BOOST, 2, 1)
REG_BITS(CHARGING, 3, 1)
REG_BITS(VIN_INSERTED, 4, 1)
REG_BITS(VIN_NOT_INSERTED, 5, 1)
REG_END
REG_SIMPLE(READ0)
REG_START(READ1, "READ1")
REG_BITS(WLED_PRESENT, 7, 1)
REG_BITS(LIGHT_LOAD, 6, 1)
REG_BITS(VIN_OVERVOLT, 5, 1)
REG_END
REG_SIMPLE(READ2)
};
static void dump_regs(int fd)
{
for (int addr = 0; addr <= 0xff; addr++) {
struct reginfo* ri = &regs[addr];
uint8_t val = read_power(fd, addr);
if (val == 0 && !ri->name)
continue;
printf("%02x: %02hhx", addr, val);
if (ri->name) {
printf(" (%s)", ri->name);
for (int i = 0; ri->bits[i].name; i++) {
struct bitinfo* bi = &ri->bits[i];
uint8_t bval = (val >> bi->shift) & (((1u) << (bi->len)) - 1);
printf(" %s=0x%02hhx", bi->name, bval);
}
}
printf("\n");
}
}
static void usage(void)
{
printf(
"Usage: ppkb-charger-ctl [--verbose] [--help]\n"
" [<info|power-on|power-off|charger-on|charger-off|auto>...]\n"
"\n"
"Options:\n"
" -c, --current Change the charging current (mA).\n"
" -v, --verbose Show details of what's going on.\n"
" -h, --help This help.\n"
"\n"
"Commands:\n"
" info Display information about the current state of the charger chip.\n"
" power-on Power on VOUT (boost output to the phone and keyboard).\n"
" power-off Power off VOUT.\n"
" charger-on Start charging the battery.\n"
" charger-off Stop charging the battery.\n"
" auto Switch to automatic control of VOUT/Charging (default configuration).\n"
" dump Dump charger chip registers.\n"
"\n"
"Pinephone keyboard charger control tool " VERSION "\n"
"Written by Ondrej Jirman <megi@xff.cz>, 2021\n"
"Licensed under GPLv3, see https://xff.cz/git/pinephone-keyboard/ for\n"
"more information.\n"
);
exit(2);
}
int main(int ac, char* av[])
{
int fd, ret;
int current = -1;
while (1) {
int option_index = 0;
struct option long_options[] = {
{ "current", required_argument, 0, 'c' },
{ "verbose", no_argument, 0, 'v' },
{ "help", no_argument, 0, 'h' },
{ 0, 0, 0, 0 }
};
int c = getopt_long(ac, av, "c:vh", long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'c':
errno = 0;
char* next = NULL;
current = strtol(optarg, &next, 10);
if (errno || next == optarg) {
printf("ERROR: Can't parse --current %s\n\n", optarg);
usage();
}
break;
case 'v':
verbose = 1;
break;
case 'h':
case '?':
default:
usage();
break;
}
}
if (optind == ac)
usage();
if (current > 2000) {
printf("ERROR: --current %d too big\n\n", current);
usage();
}
if (current != -1 && current < 100) {
printf("ERROR: --current %d too small\n\n", current);
usage();
}
fd = pogo_i2c_open();
if (current != -1) {
//update_power(fd, SYS_CTL0, BIT(2), BIT(2));
}
// update_power(fd, SYS_CTL1, 0x03, 0x00); // disable automatic control based on load detection
// update_power(fd, SYS_CTL0, 0x1e, BIT(1) | BIT(2)); // 2=boost 1=charger enable
// update_power(fd, SYS_CTL3, BIT(5), 0); // disable "2x key press = shutdown" function
// update_power(fd, SYS_CTL4, BIT(5), 0); // disable "VIN pull out -> VOUT auto-enable" function
// update_power(fd, CHG_DIG_CTL4, 0x1f, 15); // set charging current (in 100mA steps)
for (int i = optind; i < ac; i++) {
if (!strcmp(av[i], "power-on")) {
update_power(fd, SYS_CTL0, BIT(2), BIT(2));
} else if (!strcmp(av[i], "power-off")) {
update_power(fd, SYS_CTL0, BIT(2), 0);
update_power(fd, SYS_CTL1, 0x03, 0x00); // disable automatic control based on load detection
update_power(fd, SYS_CTL4, BIT(5), 0); // disable "VIN pull out -> VOUT auto-enable" function
} else if (!strcmp(av[i], "charger-on")) {
update_power(fd, SYS_CTL0, BIT(1), BIT(1));
} else if (!strcmp(av[i], "charger-off")) {
update_power(fd, SYS_CTL0, BIT(1), 0);
} else if (!strcmp(av[i], "info")) {
power_status(fd);
printf("V=%u mV (OCV %u mV) I=%d mA\n",
get_bat_voltage(fd),
get_bat_oc_voltage(fd),
get_bat_current(fd));
} else if (!strcmp(av[i], "dump")) {
dump_regs(fd);
} else if (!strcmp(av[i], "auto")) {
// enable automatic control based on load detection
update_power(fd, SYS_CTL1, 0x03, 0x03);
// disable "2x key press = shutdown" function
update_power(fd, SYS_CTL3, BIT(5), BIT(5));
// disable "VIN pull out -> VOUT auto-enable" function
update_power(fd, SYS_CTL4, BIT(5), BIT(5));
} else {
printf("ERROR: Unknown command: %s\n\n", av[i]);
usage();
}
}
return 0;
}