pinephone-keyboard/firmware/main.c
Ondrej Jirman 3b723583e7 firmware: Make interrupt signal shorter (10us)
This is long enough, comparable to 100kHz I2C speeds.
2021-08-02 10:12:48 +02:00

1961 lines
42 KiB
C

/**
* Pinephone Keyboard Firmware
*
* Copyright (C) 2021 Ondřej Jirman <megi@xff.cz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <string.h>
#include <em85f684a.h>
#ifndef CONFIG_FLASH_ENABLE
#define CONFIG_FLASH_ENABLE 1
#endif
#ifndef CONFIG_DEBUG_LOG
#define CONFIG_DEBUG_LOG 1
#endif
#ifndef CONFIG_USB_STACK
#define CONFIG_USB_STACK 1
#endif
#ifndef CONFIG_SELFTEST
#define CONFIG_SELFTEST 1
#endif
#ifndef CONFIG_STOCK_FW
#define CONFIG_STOCK_FW 1
#endif
#define USB_DEBUG 0
#define BIT(n) (1u << (n))
// {{{ Debug logging
#if CONFIG_DEBUG_LOG
// debug logging needs to have all variables volatile, since they
// can be accessed from interrupts
//
// any access to these variables has to happen with interrupts disabled
static volatile uint8_t __xdata log_buffer[1024];
// end = start => empty buffer
// end can never equal start on a filled buffer
// end points to the last char if end != start
static volatile uint16_t log_start = 0;
static volatile uint16_t log_end = 0;
// putc needs to disable interrupts (thus it's marked __critical)
// it's possible to call putc in any context
static void putc(char c) __critical
{
log_end = (log_end + 1) % 1024;
if (log_end == log_start) {
// overflow, just push the start in front of us
log_start = (log_start + 1) % 1024;
}
log_buffer[log_end] = c;
}
static void puts(const char* s)
{
while (*s)
putc(*s++);
}
static void put_uint(uint16_t value)
{
char buf[6];
char *p = &buf[6 - 1];
*p = '\0';
if (!value)
*--p = '0';
while (value) {
*--p = '0' + value % 10;
value /= 10;
}
puts(p);
}
static void put_hex_n(uint8_t nibble)
{
char c;
nibble &= 0xf;
if (nibble < 10)
c = '0' + nibble;
else
c = 'a' + (nibble - 10);
putc(c);
}
static void put_hex_b(uint8_t hex)
{
put_hex_n(hex >> 4);
put_hex_n(hex);
}
static void put_hex_w(uint16_t hex)
{
put_hex_b(hex >> 8);
put_hex_b(hex);
}
#else
#define putc(a)
#define puts(a)
#define put_hex_b(a)
#define put_hex_w(a)
#define put_hex_n(a)
#define put_uint(a)
#endif
// }}}
// {{{ Global flags
static __bit jump_to_usb_bootloader = 0;
// }}}
// {{{ Interrupt forwarding
#if CONFIG_STOCK_FW
// Stock firmware translates all interrupts to inerrupt vectors at 0x4000
// if IRAM location 0xff contains 0. Otherwise, it call interrupt handlers
// in stock FW.
#pragma noiv
uint8_t __idata __at(0xff) stock_flag = 1;
static void usb_disable(void);
// cleanup after stock firmware and jump to user firmware
static void jmp_to_user_fw(void) __naked
{
PAGESW = 0;
// disable all interrupts
IE = 0;
P0_EIE1 = 0;
P0_EIE2 = 0;
P0_EIE3 = 0;
// disable timers
TCON = 0;
TMOD = 0;
PSW1 = 0;
// disable I2C B
P0_I2CBCR1 = 0x00;
P0_I2CBCR2 = 0x20;
P0_I2CBINT = 0;
// disable watchdog
P0_WDTCR = 0x07; // disable watchdog ~1s
P0_WDTKEY = 0xb1; // disable watchdog
// reset powerdown/reset registers
P0_DEVPD1 = 0;
P0_DEVPD2 = 0;
P0_DEVPD3 = 0;
P0_PRST = 0;
// disable USB and clear irq flags
usb_disable();
// disable pullups, set all pins to input
PAGESW = 1;
P1_PHCON2 = 0;
P1_P9M0 = 0xffu;
PAGESW = 0;
P0_PHCON0 = 0;
P0_PHCON1 = 0;
P0_P6M0 = 0xffu;
P0_P8M0 = 0xffu;
P0_ICEN = 0;
stock_flag = 0;
__asm__ ("ljmp 0x4000");
}
#endif
// }}}
// {{{ Original USB bootloader integration
static void usb_bootloader_jump(void) __naked
{
PAGESW = 0;
// disable all interrupts
IE = 0;
P0_EIE1 = 0;
P0_EIE2 = 0;
P0_EIE3 = 0;
// disable timers
TCON = 0;
TMOD = 0;
PSW1 = 0;
// disable I2C B
P0_I2CBCR1 = 0x00;
P0_I2CBCR2 = 0x20;
P0_I2CBINT = 0;
// disable watchdog
P0_WDTCR = 0x07; // disable watchdog ~1s
P0_WDTKEY = 0xb1; // disable watchdog
// reset powerdown/reset registers
P0_DEVPD1 = 0;
P0_DEVPD2 = 0;
P0_DEVPD3 = 0;
P0_PRST = 0;
// disable USB and clear irq flags
PAGESW = 1;
P1_PHYTEST0 &= ~BIT(6); // phy disable
P1_UDCCTRL &= ~BIT(6); // udc disable
P1_UDCINT0STA = 0;
P1_UDCINT1STA = 0;
P1_UDCINT2STA = 0;
P1_UDCINT0EN = 0;
P1_UDCINT1EN = 0;
P1_UDCINT2EN = 0;
// Bootloader would not enable these resources, so we need to make
// sure we enable them before jumping to it:
// USB on USB pins
P1_USBCTRL |= BIT(7);
// turn on PLL48
P1_UDCCTRL &= ~BIT(0);
// turn on USB resources (phy power up, PLL48 powerup)
P1_USBCTRL &= ~(BIT(0) | BIT(1));
// enable auto-tuning internal RC oscillator based on USB SOF packets
P1_IRCCTRL &= ~BIT(1); // disable manual trim
// wait for pll to stabilize
delay_us(5000);
// disable pullups, set all pins to input
P1_PHCON2 = 0;
P1_P9M0 = 0xffu;
PAGESW = 0;
P0_PHCON0 = 0;
P0_PHCON1 = 0;
P0_P6M0 = 0xffu;
P0_P8M0 = 0xffu;
P0_ICEN = 0;
__asm__("mov r6,#0x5a");
__asm__("mov r7,#0xe7");
__asm__("ljmp 0x0118");
}
// }}}
// {{{ Timers/delays
// timers clock is 2 MHz so we need to wait for 2000 ticks to get delay of 1ms
#define T0_SET_TIMEOUT(n) { \
TL0 = 0x00; \
TH0 = (0x10000u - n) >> 8; \
TL0 = (0x10000u - n) & 0xff; \
}
#define T1_SET_TIMEOUT(n) { \
TL1 = 0x00; \
TH1 = (0x10000u - n) >> 8; \
TL1 = (0x10000u - n) & 0xff; \
}
#define delay_us(n) { \
TL0 = 0x00; \
TF0 = 0; \
TH0 = (0x10000u - 2 * n) >> 8; \
TL0 = (0x10000u - 2 * n) & 0xff; \
while (!TF0); \
}
static volatile __bit run_timed_tasks = 0;
// we use this interrupt as a scheduling tick (wakeup from sleep)
void timer1_interrupt(void) __interrupt(IRQ_TIMER1) __using(1)
{
run_timed_tasks = 1;
// 20 ms
T1_SET_TIMEOUT(40000);
TF1 = 0;
}
// }}}
// {{{ GPIO change interrupt
// we use this interrupt for wakeup from sleep on input change on port 6
static volatile __bit p6_changed = 0;
void pinchange_interrupt(void) __interrupt(IRQ_PINCHANGE) __using(1)
{
uint8_t saved_page = PAGESW;
PAGESW = 0;
// change flag
if (P0_ICEN & BIT(1)) {
p6_changed = 1;
}
// disable port 6 change detection
P0_ICEN = 0;
ICIE = 0;
PAGESW = saved_page;
}
// }}}
// {{{ Key scanning
static __bit scan_active = 0;
// Keyboard has 12 columns and 6 rows directly connected to GPIOs.
//
// C1 P95
// C2 P96
// C3 P97
// C4 P50
// C5 P51
// C6 P52
// C7 P53
// C8 P54
// C9 P55
// C10 P56
// C11 P57
// C12 P80 (also USB IAP trigger when pulled low)
//
// R1 P60
// R2 P61
// R3 P62
// R4 P63
// R5 P64
// R6 P65
//
// INT P90
// SCL P92
// SDA P93
//
// We will want to keep keyboard controller asleep unless some key is
// pressed. If a key is pressed, the controller will continuously scan
// for further pressed keys. When all keys are released, the controller
// can go back to sleep.
//
// For this to work, we'll use port 6 ability to wake up the controller
// on change.
//
// During sleep:
// - all columns will be set to low state
// - all rows will have pull-up enabled
// - when user presses any key, row state will change to low and
// the controller will wake up
//
// During active state:
// - all columns will be put to hi-Z state, except for the currently
// scanned one, which will be in low state
// - state of rows will be read, and will indicate state of keys
// in the selected column (0 = pressed, 1 = not pressed)
//
// De-bouncing:
// - scanning will happen in 5ms intervals and only if the two
// consecutive scans match, will the result be considered valid
//
// Configure GPIO for keyboard key scanning
//
// Switch to idle state
//
// In this state we can use keyscan_idle_is_pressed() to detect whether
// any key is pressed, and switch to active mode via keyscan_active().
//
static void keyscan_idle(void)
{
// enable output low on all columns (P9[7:5] P5[7:0] P8[0])
PAGESW = 0;
P5 = 0;
P8 &= 0xfe;
P9 &= 0x1f;
P0_P5M0 = 0x00;
P0_P8M0 &= 0xfeu;
PAGESW = 1;
P1_P9M0 &= 0x1fu;
// delay a bit for things to stabilize
delay_us(10);
p6_changed = 0;
scan_active = 0;
}
static uint8_t keyscan_idle_is_pressed(void)
{
return ~P6 & 0x3f;
}
//
// Switch to active mode.
//
// In this state, we can call keyscan_scan() to perform a scan.
//
static void keyscan_active(void)
{
// put all columns to hi-Z (P9[7:5] P5[7:0] P8[0])
PAGESW = 0;
P5 = 0;
P8 &= 0xfe;
P9 &= 0x1f;
// make all columns an input (hi-Z) in preparation for individual
// column scanning
P0_P5M0 = ~0x00u;
P0_P8M0 |= ~0xfeu;
PAGESW = 1;
P1_P9M0 |= ~0x1fu;
scan_active = 1;
}
// 12 byte storage required
static uint8_t keyscan_scan(uint8_t* res)
{
uint8_t pin, mask = 0, row;
// for each column:
// - output low on column
// - wait (for voltage to stabilize)
// - read rows
// - turn column back to hi-Z
PAGESW = 1;
for (pin = 5; pin <= 7; pin++) {
P1_P9M0 &= ~BIT(pin);
delay_us(3);
row = ~P6 & 0x3f;
mask |= row;
*res++ = row;
P1_P9M0 |= BIT(pin);
}
PAGESW = 0;
for (pin = 0; pin <= 7; pin++) {
P0_P5M0 &= ~BIT(pin);
delay_us(3);
row = ~P6 & 0x3f;
mask |= row;
*res++ = row;
P0_P5M0 |= BIT(pin);
}
P0_P8M0 &= ~BIT(0);
delay_us(3);
row = ~P6 & 0x3f;
mask |= row;
*res++ = row;
P0_P8M0 |= BIT(0);
return mask;
}
// }}}
// {{{ Enternal interrupt control
static void ext_int_assert(void)
{
P90 = 0;
PAGESW = 1;
P1_P9M0 &= ~BIT(0);
}
static void ext_int_deassert(void)
{
P90 = 0;
PAGESW = 1;
P1_P9M0 |= BIT(0);
}
// }}}
// {{{ CRC-8
static const uint8_t crc8_0x7_table[] = {
0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15,
0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d,
0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d,
0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5,
0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85,
0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd,
0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea,
0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2,
0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32,
0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a,
0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a,
0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c,
0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec,
0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4,
0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44,
0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c,
0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b,
0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63,
0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13,
0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb,
0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb,
0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3
};
static uint8_t crc8(const uint8_t *pdata, size_t nbytes)
{
unsigned int idx;
uint8_t crc = 0;
while (nbytes--) {
idx = (crc ^ *pdata);
crc = (crc8_0x7_table[idx]) & 0xff;
pdata++;
}
return crc;
}
// }}}
// {{{ Public I2C register interface
#include "registers.h"
// all the variables are volatile because they can be accessed
// from interrupt context of I2C interrupt handler
static volatile uint8_t __idata ro_regs[REG_KEYMATRIX_STATE_END + 1] = {
[REG_DEVID_K] = 'K',
[REG_DEVID_B] = 'B',
[REG_FW_REVISION] = FW_REVISION,
[REG_FW_FEATURES] =
#if CONFIG_USB_STACK && CONFIG_DEBUG_LOG
REG_FW_FEATURES_USB_DEBUGGER |
#endif
#if CONFIG_FLASH_ENABLE
REG_FW_FEATURES_FLASHING_MODE |
#endif
#if CONFIG_SELFTEST
REG_FW_FEATURES_SELF_TEST |
#endif
#if CONFIG_STOCK_FW
REG_FW_FEATURES_STOCK_FW |
#endif
0,
[REG_KEYMATRIX_SIZE] = 0xc6, // 12 x 6
};
static volatile uint8_t ctl_regs[3] = {0, 0, 0};
static volatile __bit sys_cmd_run = 0;
static volatile uint8_t reg_addr = 0;
// }}}
// {{{ Flashing
static volatile uint8_t __code __at(0x3fff) app_flag;
#if CONFIG_FLASH_ENABLE
// all the variables are volatile because they can be accessed
// from interrupt context of I2C interrupt handler
static volatile uint8_t flash_regs[5] = {0, 0, 0, 0, 0};
// this is where the HW expects the data for a code ROM page
static volatile uint8_t __xdata __at(0x780) flash_content[128];
static volatile uint8_t __xdata __at(0x700) flash_content2[128];
// used to signal that flashing command should be executed and
// to block further writes to flashing registers via I2C
static volatile __bit flash_cmd_run = 0;
#define REG_FLASH(n) flash_regs[REG_FLASH_##n - REG_FLASH_ADDR_L]
static void user_app_flag_set(uint8_t flag) __critical
{
if (app_flag == flag)
return;
for (uint8_t i = 0; i < 128; i++)
flash_content2[i] = 0xff;
flash_content2[0x7fu] = flag;
PAGESW = 0;
uint8_t ckcon_saved = CKCON1;
CKCON1 = (CKCON1 & ~0x06u) | (1 << 1); // set HS pre-divider to /4
// unlock
P0_FLCR &= ~BIT(2);
P0_FLKEY = 0xA9;
P0_FLKEY = 0x7F;
__asm__ (
// dptr0 = source ptr, dptr1 = dest ptr
"push psw\n"
"push _DPL\n"
"push _DPH\n"
"push ar7\n"
"push A\n"
"mov _DPL1,#0x80\n"
"mov _DPH1,#0x3f\n"
"mov A,#_flash_content2\n"
"mov _DPL,A\n"
"mov A,#(_flash_content2 >> 8)\n"
"mov _DPH,A\n"
"mov r7,#0\n" // counter
"00002$: movx a,@dptr\n"
"inc dptr\n"
"orl _PCON,#0x08\n" // select dptr1
"movx @dptr,a\n"
"inc dptr\n"
"anl _PCON,#0xf7\n" // select dptr0
"inc r7\n"
"cjne r7,#0x80,00002$\n"
"pop A\n"
"pop ar7\n"
"pop _DPH\n"
"pop _DPL\n"
"pop psw\n"
);
P0_FLCR |= BIT(0) | BIT(1);
__asm__("nop");
while (P0_FLCR & (BIT(0) | BIT(1))); // wait until programming is done
CKCON1 = ckcon_saved;
}
static void exec_flashing_command(void)
{
if (!flash_cmd_run)
return;
// skip normal result codes
if (REG_FLASH(CMD) == 0 || REG_FLASH(CMD) == 0xff)
goto out;
// return error if the unlock magic is incorrect
if (REG_FLASH(UNLOCK) != REG_FLASH_UNLOCK_MAGIC)
goto err;
if (REG_FLASH(CMD) == REG_FLASH_CMD_READ_ROM) {
// does not need to be in critical section, because I2C access
// is prevented via flash_cmd_run
__asm__ (
// dptr0 = CODE ptr, dptr1 = XRAM ptr
"push psw\n"
"push _DPL\n"
"push _DPH\n"
"push ar7\n"
"push A\n"
"mov _DPL,_flash_regs\n"
"mov _DPH,(_flash_regs + 1)\n"
"mov A,#_flash_content\n"
"mov _DPL1,A\n"
"mov A,#(_flash_content >> 8)\n"
"mov _DPH1,A\n"
"mov r7,#0\n" // counter
"00001$: mov A,r7\n"
"movc a,@a+dptr\n"
"orl _PCON,#0x08\n" // select dptr1
"movx @dptr,a\n"
"inc dptr\n"
"anl _PCON,#0xf7\n" // select dptr0
"inc r7\n"
"cjne r7,#0x80,00001$\n"
"pop A\n"
"pop ar7\n"
"pop _DPH\n"
"pop _DPL\n"
"pop psw\n"
);
REG_FLASH(CRC8) = crc8(flash_content, 128);
} else if (REG_FLASH(CMD) == REG_FLASH_CMD_WRITE_ROM) {
// does not need to be in critical section, because I2C access
// is prevented via flash_cmd_run
if (REG_FLASH(CRC8) != crc8(flash_content, 128))
goto err;
if (REG_FLASH(ADDR_H) < 0x40 || REG_FLASH(ADDR_H) >= 0x80)
goto err;
if ((REG_FLASH(ADDR_L) % 128) != 0)
goto err;
user_app_flag_set(0xff);
// Burn the code, we need to disable interrupts during write
//
// 1) unlock by writing 0xa9 0x7f to FLKEY
// 2) set HS pre-divider to /4
// 3) FLCR |= BIT(2) (if writing options)
// 4) MOVX data to area starting from the ROM address we want to
// write
// 5) FLCR |= BIT(0) | BIT(1);
// 6) nop and wait for FLCR bits to clear
// 7) FLCR &= ~BIT(2), restore pre-divider (cleanup)
//
// FLCR:
// bit 0 = WE
// bit 1 = EE
// bit 2 = MEMSP
// bit 7 = EPEN (protection)
//
__critical {
PAGESW = 0;
uint8_t ckcon_saved = CKCON1;
CKCON1 = (CKCON1 & ~0x06u) | (1 << 1); // set HS pre-divider to /4
// unlock
P0_FLCR &= ~BIT(2);
P0_FLKEY = 0xA9;
P0_FLKEY = 0x7F;
__asm__ (
// dptr0 = source ptr, dptr1 = dest ptr
"push psw\n"
"push _DPL\n"
"push _DPH\n"
"push ar7\n"
"push A\n"
"mov _DPL1,_flash_regs\n"
"mov _DPH1,(_flash_regs + 1)\n"
"mov A,#_flash_content\n"
"mov _DPL,A\n"
"mov A,#(_flash_content >> 8)\n"
"mov _DPH,A\n"
"mov r7,#0\n" // counter
"00002$: movx a,@dptr\n"
"inc dptr\n"
"orl _PCON,#0x08\n" // select dptr1
"movx @dptr,a\n"
"inc dptr\n"
"anl _PCON,#0xf7\n" // select dptr0
"inc r7\n"
"cjne r7,#0x80,00002$\n"
"pop A\n"
"pop ar7\n"
"pop _DPH\n"
"pop _DPL\n"
"pop psw\n"
);
P0_FLCR |= BIT(0) | BIT(1);
__asm__("nop");
while (P0_FLCR & (BIT(0) | BIT(1))); // wait until programming is done
CKCON1 = ckcon_saved;
}
} else if (REG_FLASH(CMD) == REG_FLASH_CMD_COMMIT) {
user_app_flag_set(1);
} else if (REG_FLASH(CMD) == REG_FLASH_CMD_ERASE_ROM) {
user_app_flag_set(0xff);
} else {
goto err;
}
REG_FLASH(CMD) = 0;
out:
REG_FLASH(UNLOCK) = 0;
flash_cmd_run = 0;
return;
err:
REG_FLASH(CMD) = 0xff;
goto out;
}
#endif
// }}}
// {{{ Self-tests
#if CONFIG_SELFTEST
static void set_column_input(uint8_t col)
{
if (col <= 2)
PAGESW = 1;
else
PAGESW = 0;
switch (col) {
case 0: P1_P9M0 |= BIT(5); break;
case 1: P1_P9M0 |= BIT(6); break;
case 2: P1_P9M0 |= BIT(7); break;
case 3: P0_P5M0 |= BIT(0); break;
case 4: P0_P5M0 |= BIT(1); break;
case 5: P0_P5M0 |= BIT(2); break;
case 6: P0_P5M0 |= BIT(3); break;
case 7: P0_P5M0 |= BIT(4); break;
case 8: P0_P5M0 |= BIT(5); break;
case 9: P0_P5M0 |= BIT(6); break;
case 10: P0_P5M0 |= BIT(7); break;
case 11: P0_P8M0 |= BIT(0); break;
}
}
static void set_column_output(uint8_t col)
{
if (col <= 2)
PAGESW = 1;
else
PAGESW = 0;
switch (col) {
case 0: P1_P9M0 &= ~BIT(5); break;
case 1: P1_P9M0 &= ~BIT(6); break;
case 2: P1_P9M0 &= ~BIT(7); break;
case 3: P0_P5M0 &= ~BIT(0); break;
case 4: P0_P5M0 &= ~BIT(1); break;
case 5: P0_P5M0 &= ~BIT(2); break;
case 6: P0_P5M0 &= ~BIT(3); break;
case 7: P0_P5M0 &= ~BIT(4); break;
case 8: P0_P5M0 &= ~BIT(5); break;
case 9: P0_P5M0 &= ~BIT(6); break;
case 10: P0_P5M0 &= ~BIT(7); break;
case 11: P0_P8M0 &= ~BIT(0); break;
}
}
static __bit get_column_value(uint8_t col)
{
switch (col) {
case 0: return P95;
case 1: return P96;
case 2: return P97;
case 3: return P50;
case 4: return P51;
case 5: return P52;
case 6: return P53;
case 7: return P54;
case 8: return P55;
case 9: return P56;
case 10: return P57;
case 11: return P80;
default: return 0;
}
}
static void set_column_value(uint8_t col, __bit val)
{
switch (col) {
case 0: P95 = val; break;
case 1: P96 = val; break;
case 2: P97 = val; break;
case 3: P50 = val; break;
case 4: P51 = val; break;
case 5: P52 = val; break;
case 6: P53 = val; break;
case 7: P54 = val; break;
case 8: P55 = val; break;
case 9: P56 = val; break;
case 10: P57 = val; break;
case 11: P80 = val; break;
}
}
static void self_test_run(void)
{
PAGESW = 0;
// all rows pull-up already as a defauklt config, so set all columns
// to hi-Z first
P0_P5M0 = ~0x00u;
P0_P8M0 |= ~0xfeu;
PAGESW = 1;
P1_P9M0 |= ~0x1fu;
// for each column:
// - output low
// - read other columns
// - turn column back to hi-Z
// data output:
// - list of columns shorted together in 2 byte sequences as a bitmask
// - first byte: cols 12-9 aligned to LSB
// - second byte: cols 8-1
// - terminated by two-byte 00 00 sequence
puts("column self-test:\n");
for (uint8_t c1 = 0; c1 < 12; c1++) {
set_column_output(c1);
for (uint8_t c2 = c1 + 1; c2 < 12; c2++) {
set_column_value(c1, 0);
__bit a = get_column_value(c2);
set_column_value(c1, 1);
__bit b = get_column_value(c2);
if (!a && b) {
// column-column short found
puts("c-c short: ");
put_uint(c1);
puts(" ");
put_uint(c2);
puts("\n");
}
}
set_column_input(c1);
}
puts("done\n");
}
#endif
// }}}
// {{{ System commands
#define REG_SYS(n) ctl_regs[REG_SYS_##n - REG_SYS_CONFIG]
static void exec_system_command(void)
{
if (!sys_cmd_run)
return;
if (REG_SYS(COMMAND) == 0 || REG_SYS(COMMAND) == 0xff)
goto out_done;
if (REG_SYS(COMMAND) == REG_SYS_COMMAND_MCU_RESET) {
RSTSC &= ~BIT(7);
RSTSC |= BIT(7);
#if CONFIG_SELFTEST
} else if (REG_SYS(COMMAND) == REG_SYS_COMMAND_SELFTEST) {
self_test_run();
#endif
} else if (REG_SYS(COMMAND) == REG_SYS_COMMAND_USB_IAP) {
jump_to_usb_bootloader = 1;
} else {
REG_SYS(COMMAND) = 0xff;
goto out_done;
}
REG_SYS(COMMAND) = 0x00;
out_done:
sys_cmd_run = 0;
}
// }}}
// {{{ I2C register access
// only call this in interrupt context from regbank 1!
static uint8_t reg_get_value(void) __using(1)
{
#if CONFIG_DEBUG_LOG
// read from this register reads the next byte of log buffer
// (register address is not advanced!)
if (reg_addr == 0xff) {
if (log_start != log_end) {
log_start = (log_start + 1) % 1024;
return log_buffer[log_start]; // push data to fifo
}
goto none;
}
#endif
if (reg_addr <= REG_KEYMATRIX_STATE_END) {
return ro_regs[reg_addr];
} else if (reg_addr < REG_SYS_CONFIG) {
goto none;
} else if (reg_addr <= REG_SYS_USER_APP_BLOCK) {
return ctl_regs[reg_addr - REG_SYS_CONFIG];
#if CONFIG_FLASH_ENABLE
} else if (reg_addr < REG_FLASH_DATA_START) {
goto none;
} else if (reg_addr <= REG_FLASH_DATA_END) {
return flash_content[reg_addr - REG_FLASH_DATA_START];
} else if (reg_addr <= REG_FLASH_CMD) {
return flash_regs[reg_addr - REG_FLASH_ADDR_L];
#endif
}
none:
return 0;
}
// only call this in interrupt context from regbank 1!
static void reg_set_value(uint8_t val) __using(1)
{
if (reg_addr < REG_SYS_CONFIG) {
return;
} else if (reg_addr <= REG_SYS_USER_APP_BLOCK) {
if (reg_addr == REG_SYS_COMMAND) {
if (sys_cmd_run)
return;
sys_cmd_run = 1;
}
ctl_regs[reg_addr - REG_SYS_CONFIG] = val;
#if CONFIG_FLASH_ENABLE
} else if (reg_addr < REG_FLASH_DATA_START) {
return;
} else if (reg_addr <= REG_FLASH_DATA_END) {
if (flash_cmd_run)
return;
flash_content[reg_addr - REG_FLASH_DATA_START] = val;
} else if (reg_addr <= REG_FLASH_CMD) {
if (flash_cmd_run)
return;
flash_regs[reg_addr - REG_FLASH_ADDR_L] = val;
if (reg_addr == REG_FLASH_CMD)
flash_cmd_run = 1;
#endif
}
}
/*
* Host write transaction: sending 01 02 03 04 to device at 0x15 (0x2a == 0x15 << 1)
*
* int=60 CR1=8c CR2=af DATA_PRE=2a rx
* int=60 CR1=8e CR2=af DATA_PRE=01 rx
* int=60 CR1=8e CR2=af DATA_PRE=02 rx
* int=60 CR1=8e CR2=af DATA_PRE=03 rx
* int=60 CR1=8e CR2=af DATA_PRE=04 rx
* int=70 CR1=0c CR2=2f DATA_PRE=04 stop
*
* Host read transaction: receiving 4 bytes
*
* int=a0 CR1=8d CR2=af tx
* int=a0 CR1=8d CR2=af tx
* int=a0 CR1=8d CR2=af tx
* int=a0 CR1=89 CR2=af tx NACK from host (last read byte)
* int=b0 CR1=08 CR2=2f stop STOP condition reported
*
* CR1:
* 7: STROBE/PEND (RX/TX: not set on stop IRQ, even though RXSF/TXSF is also set)
* 3: SAR_EMPTY (RX/TX: always set)
* 2: ACK (RX: always set)
* (TX: set on all except on the last TX byte)
* 1: FULL (RX: not set on first RX byte, which is a device address)
* (TX: always not set)
* 0: EMPTY (RX: always not set)
* (TX: alwyas set except after stop IRQ)
*
* CR2:
* 7: I2C busy flag (RX/TX: not set after stop IRQ)
* 6: ?
* 5: SW_RESET
* 4: BBF
*
* I2CBINT:
* 7: TXSF
* 6: RXSF
* 5: STP_IEN
* 4: STOPF
*
* Powerdown is only possible after the stop bit. Wakeup only happens
* on address match.
*/
#define I2C_ADDR 0x15
static volatile uint8_t i2c_n = 0;
// interrupt needs to be enabled for wakeup from powerdown to work
void i2c_b_interrupt(void) __interrupt(IRQ_I2CB) __using(1)
{
uint8_t saved_page = PAGESW;
PAGESW = 0;
uint8_t intf = P0_I2CBINT;
uint8_t cr1 = P0_I2CBCR1;
uint8_t cr2 = P0_I2CBCR2;
// handle stop condition
if (intf & BIT(4)) {
i2c_n = 0;
P0_I2CBINT &= ~(BIT(4) | BIT(6) | BIT(7));
goto out_restore_page;
}
// handle TX (byte to be sent to master - this is timing sensitive!)
if (intf & BIT(7)) {
// previous TX was the last byte
if (!(cr1 & BIT(2)))
goto tx_ack;
P0_I2CBDB = reg_get_value();
if (reg_addr != 0xff)
reg_addr++;
i2c_n++;
tx_ack:
P0_I2CBINT &= ~BIT(7);
goto out_restore_page;
}
// handle RX (byte received from master)
if (intf & BIT(6)) {
uint8_t tmp = P0_I2CBDB;
// first RX byte is device address, determined by !FULL flag
if (!(cr1 & BIT(1)))
goto rx_ack;
// set address
if (i2c_n++ == 0) {
reg_addr = tmp;
goto rx_ack;
}
// set reg data
reg_set_value(tmp);
reg_addr++;
rx_ack:
P0_I2CBINT &= ~BIT(6);
goto out_restore_page;
}
out_restore_page:
P0_I2CBCR1 &= ~BIT(7); // clear data pending
PAGESW = saved_page;
}
//
// Slave mode I2C for communication with the SoC
//
// - address is 0x15
// - 400kHz
// - interrupts are used to handle tx/rx/end of transaction (stop bit)
//
void i2c_slave_init(void)
{
PAGESW = 0;
// setup I2C B for slave mode
//P0_I2CBCR1 = 0x20;
//P0_I2CBCR2 = 0x07 << 1 | 0x01; // 400kHz mode, enable I2C B controller, enable
P0_I2CBCR1 = 0x00;
P0_I2CBCR2 = 0x07 << 1 | BIT(0); // 100kHz mode, enable I2C B controller, enable
// setup I2C address
P0_I2CBDAH = 0;
P0_I2CBDAL = I2C_ADDR;
P0_I2CBINT = BIT(5); // enable I2C B stop interrupt
P0_EIE3 |= BIT(5); // enable I2C B interrupt
}
// }}}
// {{{ USB debugging interface
#if CONFIG_USB_STACK
#if USB_DEBUG
#define usb_putc(a) putc(a)
#define usb_puts(a) puts(a)
#define usb_put_hex_b(a) put_hex_b(a)
#define usb_put_hex_w(a) put_hex_w(a)
#define usb_put_hex_n(a) put_hex_n(a)
#define usb_put_uint(a) put_uint(a)
#else
#define usb_putc(a)
#define usb_puts(a)
#define usb_put_hex_b(a)
#define usb_put_hex_w(a)
#define usb_put_hex_n(a)
#define usb_put_uint(a)
#endif
#define USB_ID(w) (uint16_t)w & 0xff, ((uint16_t)w >> 8)
#define USB_BCD(a, b) b, a
static const uint8_t usb_desc_device[] ={
18, // bLength
1, // bDescriptorType
USB_BCD(0x2, 0x0), // bcdUSB
0xff, // bDeviceClass
0, // bDeviceSubClass
0xff, // bDeviceProtocol
64, // bMaxPacketSize0
USB_ID(0x04f3), // idVendor
USB_ID(0xb001), // idProduct
USB_BCD(0x1, 0x0), // bcdDevice
1, // iManfacturer
2, // iProduct
0, // iSerialNumber
1, // bNumConfgurations
};
#define USB_EP_OUT(addr, attr, maxsize, interval) \
7, 5, addr, attr, USB_ID(maxsize), interval
#define USB_EP_IN(addr, attr, maxsize, interval) \
USB_EP_OUT((addr) | 0x80, attr, maxsize, interval)
static const uint8_t usb_desc_config[] = {
9, // bLength
2, // bDescriptorType
USB_ID(sizeof(usb_desc_config)),// bTotolLength
1, // bNumInterfaces
1, // bConfigurationValue
0, // iConfiguration string index
BIT(7) // must be set // bmAttributes
| BIT(6) // self power
| BIT(5) // remote wakeup
,
100, // bMaxPower
// Interface 0
9, // bLength
4, // bDescriptorType
0, // bInterfaceNumber
0, // bAlternateSetting
4, // bNumEndpoints
0xff, // bInterfaceClass
0, // bInterfaceSubClass
0xff, // bInterfaceProtocol
0, // iInterface
USB_EP_OUT(1, 3, 64, 1), // request
USB_EP_IN(2, 3, 64, 1), // response
USB_EP_IN(3, 3, 64, 1), // debug logging output
USB_EP_IN(4, 3, 64, 1), // key status changes
};
static const uint8_t usb_string_lang[] = {
4, 3,
USB_ID(0x0409),
};
static const uint8_t usb_string_manufacturer[] = {
4 * 2 + 2,
3,
'm', 0,
'e', 0,
'g', 0,
'i', 0,
};
static const uint8_t usb_string_product[] = {
5 * 2 + 2,
3,
'd', 0,
'e', 0,
'b', 0,
'u', 0,
'g', 0,
};
static const uint8_t * const usb_strings[] = {
usb_string_lang,
usb_string_manufacturer,
usb_string_product,
};
static uint16_t usb_ep0_in_remaining = 0;
static uint8_t const* usb_ep0_in_ptr;
static uint8_t usb_command_status = 0;
static uint8_t usb_command[8];
static uint8_t usb_response[8];
static volatile __bit usb_key_change = 0;
static void usb_tasks(void) __using(1)
{
uint8_t buf[8];
uint8_t saved_page = PAGESW;
PAGESW = 1;
// handle reset request
if (P1_UDCINT0STA & BIT(5)) {
P1_USBCTRL |= BIT(5);
P1_USBCTRL &= ~BIT(5);
// clear EP0-3 buffers
P1_UDCEPBUF0CTRL |= 0x55u;
P1_UDCEPBUF0CTRL &= ~0x55u;
// clear EP4
P1_UDCEPBUF1CTRL |= BIT(0);
P1_UDCEPBUF1CTRL &= ~BIT(0);
// clear EP0 / EP1 in buffers
P1_UDCBUFSTA &= ~(BIT(0) | BIT(1));
//XXX: what about others?
//XXX: reset software variables...
usb_puts("usb rst\n");
// ack reset request
P1_UDCINT0STA &= ~BIT(5);
}
// ep0 setup request received
if (P1_UDCINT0STA & BIT(1)) {
usb_puts("ep0 su: ");
// buf: bReqType bReq wVal(l/h) wIndex wLength
for (uint8_t i = 0; i < 8; i++) {
buf[i] = P1_UDCEP0BUFDATA;
usb_put_hex_b(buf[i]);
}
usb_puts("\n");
//P1_UDCEPBUF0CTRL |= BIT(0);
//P1_UDCEPBUF0CTRL &= ~BIT(0);
// how much data to send to ep0 in
usb_ep0_in_remaining = (((uint16_t)buf[7] << 8) | buf[6]);
uint16_t in0_len = 0;
// standard commands
if (buf[0] == 0x80) {
// GET_DESCRIPTOR
if (buf[1] == 0x06) {
if (buf[3] == 1) {
// device desc: 80 06 00 01 00 00
if (buf[2] == 0) {
usb_ep0_in_ptr = usb_desc_device;
in0_len = sizeof(usb_desc_device);
goto ack_ep0_setup;
}
} else if (buf[3] == 2) {
// cfg desc: 80 06 00 02 00 00
if (buf[2] == 0) {
usb_ep0_in_ptr = usb_desc_config;
in0_len = sizeof(usb_desc_config);
goto ack_ep0_setup;
}
} else if (buf[3] == 3) {
// string desc: 80 06 str_index 03 00 00
if (buf[2] < sizeof(usb_strings) / sizeof(usb_strings[0])) {
usb_ep0_in_ptr = usb_strings[buf[2]];
in0_len = usb_ep0_in_ptr[0];
goto ack_ep0_setup;
}
}
}
}
usb_ep0_in_remaining = 0;
P1_UDCCTRL |= BIT(4); // stall control endpoint req
ack_ep0_setup:
if (in0_len < usb_ep0_in_remaining)
usb_ep0_in_remaining = in0_len;
// ack
P1_UDCINT0STA &= ~BIT(1);
}
// USB host initiated EP0 IN transfer
if (P1_UDCINT1STA & BIT(0)) {
// ack interrupt
P1_UDCINT1STA &= ~BIT(0);
// check if we're ready to send to ep0
if (!(P1_UDCEPBUF0CTRL & BIT(1)) && (P1_UDCBUFSTA & BIT(0))) {
// if ep0 in buffer not empty, clear it first
//if (!(P1_UDCBUFSTA & BIT(0))) {
// clear ep0 buffer
//P1_UDCEPBUF0CTRL |= BIT(0);
//P1_UDCEPBUF0CTRL &= ~BIT(0);
//}
usb_puts("ep0 in: ptr=");
usb_put_hex_w((uint16_t)usb_ep0_in_ptr);
usb_puts(" rem=");
usb_put_hex_w(usb_ep0_in_remaining);
usb_puts(" ");
for (uint8_t n = 0; n < 64; n++) {
// push data to EP0 in (max 64 bytes)
if (usb_ep0_in_remaining > 0) {
usb_ep0_in_remaining--;
usb_put_hex_b(*usb_ep0_in_ptr);
P1_UDCEP0BUFDATA = *usb_ep0_in_ptr++;
} else {
break;
}
}
usb_puts("\n");
// confirm sending data
P1_UDCEPBUF0CTRL |= BIT(1);
}
}
// data received on ep0 out
if (P1_UDCINT1STA & BIT(1)) {
usb_puts("ep0 out\n");
// we don't handle any control transfers that send us data
// reset ep0 buf
P1_UDCEPBUF0CTRL |= BIT(0);
P1_UDCEPBUF0CTRL &= ~BIT(0);
// ack interrupt
P1_UDCINT1STA &= ~BIT(1);
}
// does not happen, EP1 IN is not configured on host
if (P1_UDCINT1STA & BIT(2)) {
P1_UDCINT1STA &= ~BIT(2);
}
// data received on ep1 out (command endpoint)
if (P1_UDCINT1STA & BIT(3)) {
// read data from ep1 fifo
uint8_t bytes = P1_UDCEP1DATAOUTCNT + 1;
for (uint8_t i = 0; i < 8; i++)
usb_command[i] = P1_UDCEP1BUFDATA;
usb_command_status = 1;
usb_puts("ep1 out\n");
P1_UDCINT1STA &= ~BIT(3);
// clear the rest
P1_UDCEPBUF0CTRL |= BIT(2);
P1_UDCEPBUF0CTRL &= ~BIT(2);
//do {
//P1_USBCTRL |= BIT(6);
//} while(!(P1_USBCTRL & BIT(6)));
}
// process USB commands
if (usb_command_status == 1) {
// what command the response is for
usb_response[0] = usb_command[0];
// success = 0, error code otherwise
usb_response[1] = 0x00;
if (usb_command[0] == 0x01) {
// bootloader mode
jump_to_usb_bootloader = 1;
} else {
// command unknown
usb_response[1] = 1;
}
usb_command_status = 2;
}
// USB host initiated EP2 IN transfer
if (P1_UDCINT1STA & BIT(4)) {
// send out response to last command on ep2 in
if (usb_command_status == 2 && !(P1_UDCEPBUF0CTRL & BIT(5))) {
P1_UDCEP2DATAINCNT = 8 - 1; // how much bytes to send
for (uint8_t i = 0; i < 8; i++)
P1_UDCEP2BUFDATA = usb_response[i];
P1_UDCEPBUF0CTRL |= BIT(5); // EP2 data ready
usb_command_status = 0;
}
// ack
P1_UDCINT1STA &= ~BIT(4);
}
// USB host initiated EP3 IN transfer
if (P1_UDCINT1STA & BIT(6)) {
#if CONFIG_DEBUG_LOG
// all log_* variables need to be accessed with interrupts
// disabled
__critical {
// push printf debug buffer to ep3 in
if (!(P1_UDCEPBUF0CTRL & BIT(7)) && log_start != log_end) {
uint8_t cnt = 0;
while (cnt < 64 && log_start != log_end) {
log_start = (log_start + 1) % 1024;
P1_UDCEP3BUFDATA = log_buffer[log_start]; // push data to fifo
cnt++;
}
P1_UDCEP3DATAINCNT = cnt - 1;
P1_UDCEPBUF0CTRL |= BIT(7); // EP3 data ready
}
}
#endif
// ack
P1_UDCINT1STA &= ~BIT(6);
}
// USB host initiated EP4 IN transfer
if (P1_UDCINT2STA & BIT(2)) {
// push key change events to ep4 in
if (!(P1_UDCEPBUF1CTRL & BIT(1)) && usb_key_change) {
for (uint8_t i = 0; i < 12; i++)
P1_UDCEP4BUFDATA = ro_regs[i + REG_KEYMATRIX_STATE];
P1_UDCEP4DATAINCNT = 12 - 1;
P1_UDCEPBUF1CTRL |= BIT(1); // EP4 data ready
usb_key_change = 0;
}
// ack
P1_UDCINT2STA &= ~BIT(2);
}
// suspend request
if (P1_UDCINT0STA & BIT(6)) {
usb_puts("usb suspend\n");
// host requests suspend, we satisfy it
// clear device resume request bit, we can set it later to wake
// the host / resume USB activity
P1_UDCCTRL &= ~BIT(5);
// ack
P1_UDCINT0STA &= ~BIT(6);
}
// resume request
if (P1_UDCINT0STA & BIT(3)) {
usb_puts("usb resume\n");
// ack
P1_UDCINT0STA &= ~BIT(3);
}
PAGESW = saved_page;
}
void usb_interrupt(void) __interrupt(IRQ_USB) __using(1)
{
usb_tasks();
}
enum {
UDC_EP_CONTROL = 0,
UDC_EP_ISO,
UDC_EP_BULK,
UDC_EP_INTERRUPT,
};
#define UDC_EP_CONF(conf, intf, alt, type) \
(conf << 6) | (intf << 4) | (alt << 2) | type
#define UDC_EP_OUT_CONF(ep1, ep2, ep3, ep4) \
ep4 | (ep3 << 2) | (ep2 << 4) | (ep1 << 6)
static const uint8_t udc_config[5] = {
UDC_EP_CONF(1, 0, 0, UDC_EP_INTERRUPT),
UDC_EP_CONF(1, 0, 0, UDC_EP_INTERRUPT),
UDC_EP_CONF(1, 0, 0, UDC_EP_INTERRUPT),
UDC_EP_CONF(1, 0, 0, UDC_EP_INTERRUPT),
UDC_EP_OUT_CONF(UDC_EP_INTERRUPT, UDC_EP_INTERRUPT, UDC_EP_INTERRUPT, UDC_EP_INTERRUPT),
};
static void usb_init(void)
{
PAGESW = 1;
// USB on USB pins
P1_USBCTRL |= BIT(7);
// turn on PLL48
P1_UDCCTRL &= ~BIT(0);
// turn on USB resources (phy power up, PLL48 powerup)
P1_USBCTRL &= ~(BIT(0) | BIT(1));
// enable auto-tuning internal RC oscillator based on USB SOF packets
P1_IRCCTRL &= ~BIT(1); // disable manual trim
// wait for pll to stabilize
delay_us(5000);
P1_UDCCTRL |= BIT(6); // udc enable
// wait for UDC to complete initialization
while (!(P1_UDCCTRL & BIT(1)));
__asm__("nop");
// setup USB EP depths
P1_UDCEP1BUFDEPTH = 64 - 1;
P1_UDCEP2BUFDEPTH = 64 - 1;
P1_UDCEP3BUFDEPTH = 64 - 1;
P1_UDCEP4BUFDEPTH = 64 - 1;
__asm__("nop");
__asm__("nop");
// configure UDC
for (uint8_t i = 0; i < 4; i++) {
P1_UDCCFDATA = udc_config[i];
while (!(P1_UDCCFSTA & BIT(7)));
while (P1_UDCCFSTA & BIT(7));
}
P1_UDCCFDATA = udc_config[4];
while (!(P1_UDCCFSTA & BIT(6)));
// enable USB EPRDY
P1_USBCTRL |= BIT(6);
P1_UDCEPCTRL = 0xf;
P1_UDCINT0STA = 0;
P1_UDCINT1STA = 0;
P1_UDCINT2STA = 0;
P1_UDCINT0EN = BIT(5) | BIT(1) | BIT(6) | BIT(3);
P1_UDCINT1EN = BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(6);
P1_UDCINT2EN = BIT(2);
// enable phy, wakeup enable
P1_PHYTEST0 |= BIT(5) | BIT(6);
__asm__("nop");
__asm__("nop");
PAGESW = 0;
// enable USB interrupts
P0_EIE2 |= BIT(2);
}
#endif
static void usb_disable(void)
{
// disable USB interrupts
PAGESW = 0;
P0_EIE2 &= ~BIT(2);
PAGESW = 1;
// disable interrupts
P1_UDCINT0EN = 0;
P1_UDCINT1EN = 0;
P1_UDCINT2EN = 0;
// reset phy/usb
P1_PHYTEST0 &= ~(BIT(6) | BIT(5)); // phy disable
P1_UDCCTRL &= ~BIT(6); // udc disable
// turn off PLL48
P1_UDCCTRL |= BIT(0);
// turn off unused USB resources (phy power down, PLL48 powerdown
P1_USBCTRL |= BIT(0) | BIT(1);
// disable auto-tuning internal RC oscillator based on USB SOF packets
P1_IRCCTRL |= BIT(1); // enable manual trim
// GPIO on USB pins
P1_USBCTRL &= ~BIT(7);
}
// }}}
void main(void)
{
PAGESW = 0;
// setup interrupts
EA = 0;
IE = 0;
P0_EIE1 = 0;
P0_EIE2 = 0;
P0_EIE3 = 0;
// set CPU clock to normal (high frequency) mode
// [7] = power down HS clock in low speed mode - 1: yes 0: no
// [2:1] = high speed clock pre-divider - 1: /4 2: /2 3: /1
// [0] = cpu clock mode 1: high speed mode 0: low speed mode
CKCON1 = (CKCON1 & ~0x87u) | 0x07; // 0x87
// set timer 1 and timer 0 clock source to sysclk/12 (2 MHz)
CKCON0 = 0x00;
// wait until high speed clock is stable
while (!(CKCON0 & BIT(1)));
// set both timers to 16-bit counter modes
TMOD = 0x11;
// enable both timers
TCON = 0x50;
// protect FLASH from 0x0000 to 0x4000 from being accessed by code at 0x4000+
P0_EPPOINTL = 0x80;
// setup watchdog (timer base is 8ms, prescaler sets up timeout /128 = ~1s)
// P0_WDTCR = 0x87; // enable watchdog ~1s
// P0_WDTKEY = 0x4e; // reset watchdog
P0_WDTCR = 0x07; // disable watchdog ~1s
P0_WDTKEY = 0xb1; // disable watchdog
// power down unused peripherlas
P0_DEVPD1 |= BIT(6) | BIT(5) | BIT(3) | BIT(1); // PWM A, timer 3, SPI, LVD
P0_DEVPD2 |= BIT(6) | BIT(3) | BIT(0); // PWM C, PWM B, I2C A
P0_DEVPD3 |= BIT(2) | BIT(1) | BIT(0); // PWM E, PWM D, PWM F
// keep UART, SPI, and I2C A in reset
//P0_PRST |= BIT(0) | BIT(2) | BIT(3);
// enable pullups only all port 6 pins and make those pins into input
PAGESW = 0;
P0_PHCON0 = 0x00;
P0_PHCON1 = 0xffu; // port 6 pull-up enable
P0_P6M0 = 0xff; // port 6 input
PAGESW = 1;
P1_PHCON2 = 0x00;
#if CONFIG_STOCK_FW
puts("ppkb firmware " FW_REVISION_STR " (stock)\n");
#else
puts("ppkb firmware " FW_REVISION_STR " (user)\n");
#endif
i2c_slave_init();
T1_SET_TIMEOUT(40000);
usb_disable();
#if CONFIG_FLASH_ENABLE
for (uint8_t i = 0; i < 128; i++)
flash_content[i] = 0;
#endif
// enable interrupts
ET1 = 1;
EA = 1;
ext_int_deassert();
keyscan_idle();
__bit usb_initialized = 0;
__bit user_app_checked = 0;
uint16_t ticks = 0;
while (1) {
// execute I2C system/flashing commands, once the I2C
// transaction ends, as soon as possible
if (i2c_n == 0) {
exec_system_command();
#if CONFIG_FLASH_ENABLE
exec_flashing_command();
#endif
}
// get current system config
uint8_t cfg = REG_SYS(CONFIG);
__bit usb_enabled = !!(cfg & REG_SYS_CONFIG_USB_DEBUG_EN);
// if we were asked to jump to USB IAP, do it
if (jump_to_usb_bootloader)
__asm__ ("ljmp _usb_bootloader_jump");
if (usb_initialized && !usb_enabled) {
usb_initialized = 0;
ticks = 0;
usb_disable();
}
// if the 20ms timer did not expire yet, check if we can
// powerdown, otherwise busyloop
if (!run_timed_tasks) {
#if CONFIG_USB_STACK
PAGESW = 1;
__bit usb_suspended = !!(P1_UDCCTRL & BIT(2));
#endif
PAGESW = 0;
__bit i2c_idle = !(P0_I2CBCR2 & BIT(7)) && i2c_n == 0;
// if USB is suspended by host and I2C has no activity,
// and we're not in active scanning mode, power down the MCU
if (i2c_idle && !scan_active
&& !p6_changed
#if CONFIG_USB_STACK
&& (usb_initialized || !usb_enabled) && usb_suspended
#endif
#if CONFIG_STOCK_FW
&& user_app_checked
#endif
) {
// go to idle CPU mode when there's nothing to
// do, any interrupt will wake us
//PCON |= BIT(0);
// enable interrupt whenever P6 is different
// from the current value (which would be
// whenever some key is pressed, because by
// default all pins on P6 are pulled high)
//
// input change detection works by comparing the
// pin state against the P6 latch for output
p6_changed = 0;
P6 = P6;
P0_ICEN = BIT(5);
ICIE = 1;
// power down (timers don't work in power-down)
PCON |= BIT(1) | BIT(0);
__asm__("nop");
// we may not be woken up only by IC interrupt, so
// disable IC interrupts after each wakeup
ICIE = 0;
#if CONFIG_USB_STACK
// if we were woken up by USB host, USBCTRL.5
// will be set, clear it
PAGESW = 1;
if (!(P1_UDCCTRL & BIT(2)))
P1_USBCTRL &= ~BIT(5);
#endif
}
continue;
}
// every 20ms we will get here to perform some timed tasks
ticks++;
run_timed_tasks = 0;
#if CONFIG_STOCK_FW
// after 300ms check if we should jump to user firmware
if (!user_app_checked && ticks > 300 / 20) {
if (app_flag == 1 && ctl_regs[REG_SYS_USER_APP_BLOCK - REG_SYS_CONFIG] != REG_SYS_USER_APP_BLOCK_MAGIC)
jmp_to_user_fw();
user_app_checked = 1;
}
#endif
#if CONFIG_USB_STACK
// after 500ms, init usb
if (!usb_initialized && usb_enabled && ticks > 500 / 20) {
usb_init();
usb_initialized = 1;
}
#endif
// do nothing if scanning is blocked
if (cfg & REG_SYS_CONFIG_SCAN_BLOCK) {
if (scan_active)
keyscan_idle();
continue;
}
// if active scanning is not active and port 6 change was
// detected, and some key is still pressed, enter active
// scanning mode
if (!scan_active && keyscan_idle_is_pressed())
keyscan_active();
// if we're in active scanning, scan the keys, and report
// new state
if (scan_active) {
uint8_t keys[12];
uint8_t active_rows = keyscan_scan(keys);
// check for changes
if (memcmp(ro_regs + REG_KEYMATRIX_STATE, keys, 12)) {
// update regs
__critical {
memcpy(ro_regs + REG_KEYMATRIX_STATE, keys, 12);
ro_regs[REG_KEYMATRIX_STATE_CRC8] = crc8(ro_regs + REG_KEYMATRIX_STATE, 12);
}
// signal interrupt
ext_int_assert();
delay_us(10);
ext_int_deassert();
#if CONFIG_USB_STACK
if (usb_enabled) {
usb_key_change = 1;
// USB wakeup
PAGESW = 1;
if (P1_UDCCTRL & BIT(2)) {
P1_UDCCTRL |= BIT(5);
P1_UDCCTRL &= ~BIT(5);
}
}
#endif
// pressing FN+PINE+F switches to flashing mode (keys 1:2 3:5 5:2, electrically)
if (keys[0] & BIT(2) && keys[2] & BIT(5) && keys[4] & BIT(2))
jump_to_usb_bootloader = 1;
}
if (!active_rows)
keyscan_idle();
}
}
}