pegh/pegh.c

642 lines
22 KiB
C
Raw Normal View History

2019-12-25 01:21:43 -05:00
/*
* pegh is a file encryption tool using passwords and authenticated encryption
* Copyright (C) 2019 Travis Burtrum
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
2019-12-25 09:45:47 -05:00
/* compile with: cc pegh.c -lcrypto -O3 -o pegh */
2019-12-25 01:21:43 -05:00
#include <openssl/conf.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*
2019-12-26 01:19:05 -05:00
* tweak default scrypt hardness params here
2019-12-25 01:21:43 -05:00
*
* https://tools.ietf.org/html/rfc7914#section-2
* https://blog.filippo.io/the-scrypt-parameters/
*/
#define SCRYPT_N 32768
#define SCRYPT_R 8
#define SCRYPT_P 1
2019-12-26 00:15:54 -05:00
#define SCRYPT_MAX_MEM_MB 64
2019-12-25 01:21:43 -05:00
/* tweak buffer sizes here, memory use will be twice this */
#define BUFFER_SIZE_MB 16
2019-12-25 01:21:43 -05:00
2019-12-26 01:19:05 -05:00
/*
* pegh file format, numbers are inclusive 0-based byte array indices
*
* 0th byte is always version number, everything else depends on version number
*
* |---------------------------------------------------------------------------------------------|
* | Version 0, scrypt key derivation, aes-256-gcm encryption, 51 byte header, 16 byte footer |
* |--------------|---------------------------------------------|--------------------------------|
* | indices | format | value interpretation |
* |--------------|---------------------------------------------|--------------------------------|
* | 0 | 8 bit unsigned byte | pegh file format version |
* | 1-4 | 32 bit unsigned integer in big endian order | scrypt N parameter |
* | 5 | 8 bit unsigned byte | scrypt r parameter |
* | 6 | 8 bit unsigned byte | scrypt p parameter |
* | 7-38 | 32 randomly generated bytes | scrypt key derivation seed |
* | 39-50 | 12 randomly generated bytes | AES-256-GCM IV |
* | 51-X | any number of bytes | AES-256-GCM encrypted data |
* | (X+1)-(X+16) | 16 bytes, always last 16 bytes in file | AES-256-GCM authentication tag |
* |---------------------------------------------------------------------------------------------|
*/
2019-12-25 09:45:47 -05:00
/* don't touch below here unless you know what you are doing */
2019-12-25 01:21:43 -05:00
2019-12-26 00:15:54 -05:00
#define PEGH_VERSION "1.0.0"
/* 256 bit key required for AES-256 */
#define KEY_LEN 32
2019-12-25 01:21:43 -05:00
2019-12-25 09:45:47 -05:00
/* 1 for file format version, 4 for N, 1 for r, 1 for p */
2019-12-25 01:21:43 -05:00
#define PRE_SALT_LEN 7
2019-12-25 09:45:47 -05:00
/* from libsodium's crypto_pwhash_scryptsalsa208sha256_SALTBYTES */
2019-12-25 01:21:43 -05:00
#define SALT_LEN 32
2019-12-25 09:45:47 -05:00
/* AES-GCM should only ever have an IV_LEN of 12 */
2019-12-25 01:21:43 -05:00
#define IV_LEN 12
#define GCM_TAG_LEN 16
#define SALT_IV_LEN (SALT_LEN+IV_LEN)
/*
* reads buffer_size at a time from in, encrypts with AES-256-GCM, and writes them to out
*
2019-12-25 01:21:43 -05:00
* returns 1 on success, 0 on failure
*
* key must be length KEY_LEN
* iv must be length IV_LEN
*
* buffer_size must be non-zero, this function will allocate this twice
* in/out must be set
* err can be NULL in which case no messages are printed
2019-12-25 01:21:43 -05:00
*/
int gcm_encrypt(const unsigned char *key, const unsigned char *iv, size_t buffer_size,
FILE *in, FILE *out, FILE *err
)
2019-12-25 01:21:43 -05:00
{
/* these are actually mallocd and freed */
EVP_CIPHER_CTX *ctx = NULL;
unsigned char *plaintext = NULL, *ciphertext = NULL;
int exit_code = 0, ciphertext_written;
size_t plaintext_read;
2019-12-25 01:21:43 -05:00
do {
plaintext = malloc(buffer_size);
if(!plaintext) {
if(NULL != err)
fprintf(err, "plaintext memory allocation failed\n");
break;
}
ciphertext = malloc(buffer_size);
if(!ciphertext) {
if(NULL != err)
fprintf(err, "ciphertext memory allocation failed\n");
break;
}
2019-12-25 01:21:43 -05:00
/* Create and initialise the context */
if(!(ctx = EVP_CIPHER_CTX_new()))
break;
/* Initialise the encryption operation. */
if(1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL))
break;
/* Setting IV length is not necessary because the default of 12 bytes (96 bits) will be used
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_LEN, NULL))
2019-12-25 01:21:43 -05:00
break;
*/
/* Initialise key and IV */
if(1 != EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv))
break;
/*
* Provide the message to be encrypted, and obtain the encrypted output.
* EVP_EncryptUpdate can be called multiple times if necessary
*
2019-12-25 01:21:43 -05:00
*/
while ((plaintext_read = fread(plaintext, 1, buffer_size, in)) > 0) {
if(1 != EVP_EncryptUpdate(ctx, ciphertext, &ciphertext_written, plaintext, plaintext_read))
goto fail;
if(((size_t) ciphertext_written) != plaintext_read) {
if(NULL != err)
fprintf(err, "ciphertext_written (%d) != plaintext_read (%lu)\n", ciphertext_written, (unsigned long) plaintext_read);
goto fail;
}
fwrite(ciphertext, 1, ciphertext_written, out);
}
2019-12-25 01:21:43 -05:00
/*
* Finalise the encryption. Normally ciphertext bytes may be written at
* this stage, but this does not occur in GCM mode
*/
if(1 != EVP_EncryptFinal_ex(ctx, NULL, &ciphertext_written))
break;
/* Get the tag, go ahead and re-use ciphertext as it's not needed anymore */
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, GCM_TAG_LEN, ciphertext))
2019-12-25 01:21:43 -05:00
break;
fwrite(ciphertext, 1, GCM_TAG_LEN, out);
/* success! */
exit_code = 1;
2019-12-25 01:21:43 -05:00
} while(0);
fail:
if(plaintext)
free(plaintext);
if(ciphertext)
free(ciphertext);
2019-12-25 01:21:43 -05:00
if(ctx)
EVP_CIPHER_CTX_free(ctx);
if(NULL != err && exit_code != 1) {
/* print openssl errors */
ERR_print_errors_fp(err);
fprintf(err, "encryption failed\n");
}
return exit_code;
2019-12-25 01:21:43 -05:00
}
/*
* reads buffer_size at a time from out, decrypts with AES-256-GCM, and writes them to out
*
* assumes the GCM authentication tag is the last 16 bytes and checks that too, it's the
* responsibility of the calling function to then go back in time and not use the invalid
* bytes already written to out...
*
2019-12-25 01:21:43 -05:00
* returns 1 on success, 0 on failure
*
* key must be length KEY_LEN
* iv must be length IV_LEN
*
* buffer_size must be non-zero, this function will allocate this twice + 16 bytes for tag
* in/out must be set
* err can be NULL in which case no messages are printed
2019-12-25 01:21:43 -05:00
*/
int gcm_decrypt(const unsigned char *key, const unsigned char *iv, size_t buffer_size,
FILE *in, FILE *out, FILE *err
)
2019-12-25 01:21:43 -05:00
{
/* these are actually mallocd and freed */
EVP_CIPHER_CTX *ctx = NULL;
unsigned char *plaintext = NULL, *ciphertext = NULL;
/* these are simply pointers into ciphertext */
unsigned char *tag, *ciphertext_read_zone;
int exit_code = 0, plaintext_written;
size_t ciphertext_read;
2019-12-25 01:21:43 -05:00
do {
plaintext = malloc(buffer_size);
if(!plaintext) {
if(NULL != err)
fprintf(err, "plaintext memory allocation failed\n");
break;
}
ciphertext = malloc(buffer_size + GCM_TAG_LEN);
if(!ciphertext) {
if(NULL != err)
fprintf(err, "ciphertext memory allocation failed\n");
break;
}
tag = ciphertext;
ciphertext_read_zone = ciphertext + GCM_TAG_LEN;
/* there must be *at least* 16 byte gcm tag / footer */
ciphertext_read = fread(tag, 1, GCM_TAG_LEN, in);
if(ciphertext_read != GCM_TAG_LEN) {
if(NULL != err)
fprintf(err, "File too small for decryption, no footer/tag?\n");
break;
}
2019-12-25 01:21:43 -05:00
/* Create and initialise the context */
if(!(ctx = EVP_CIPHER_CTX_new()))
break;
/* Initialise the decryption operation. */
if(1 != EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL))
2019-12-25 01:21:43 -05:00
break;
/* Setting IV length is not necessary because the default of 12 bytes (96 bits) will be used
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, IV_LEN, NULL))
2019-12-25 01:21:43 -05:00
break;
*/
/* Initialise key and IV */
if(1 != EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv))
2019-12-25 01:21:43 -05:00
break;
/*
* Provide the message to be decrypted, and obtain the plaintext output.
* EVP_DecryptUpdate can be called multiple times if necessary
*/
do {
ciphertext_read = fread(ciphertext_read_zone, 1, buffer_size, in);
/* decrypt the bytes previously saved in tag plus ones currently read except the last 16 bytes */
if(1 != EVP_DecryptUpdate(ctx, plaintext, &plaintext_written, tag, ciphertext_read))
goto fail;
/* now save the unused last 16 bytes in tag */
memcpy(tag, ciphertext_read_zone + ciphertext_read - GCM_TAG_LEN, GCM_TAG_LEN);
if(((size_t) plaintext_written) != ciphertext_read) {
if(NULL != err)
fprintf(err, "plaintext_written (%d) != plaintext_read (%lu)\n", plaintext_written, (unsigned long) ciphertext_read);
goto fail;
}
fwrite(plaintext, 1, plaintext_written, out);
} while(buffer_size == ciphertext_read);
2019-12-25 01:21:43 -05:00
/* Set expected tag value. Works in OpenSSL 1.0.1d and later */
if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, GCM_TAG_LEN, ciphertext))
2019-12-25 01:21:43 -05:00
break;
/*
* Finalise the decryption. A return value of 1 indicates success,
* return value of 0 is a failure - the plaintext is not trustworthy.
*/
if(1 != EVP_DecryptFinal_ex(ctx, NULL, &plaintext_written)) {
if(NULL != err)
fprintf(err, "integrity check failed\n");
break;
}
/* success! */
exit_code = 1;
2019-12-25 01:21:43 -05:00
} while(0);
fail:
if(plaintext)
free(plaintext);
if(ciphertext)
free(ciphertext);
2019-12-25 01:21:43 -05:00
if(ctx)
EVP_CIPHER_CTX_free(ctx);
if(NULL != err && exit_code != 1) {
/* print openssl errors */
ERR_print_errors_fp(err);
fprintf(err, "decryption failed\n");
}
return exit_code;
2019-12-25 01:21:43 -05:00
}
/* returns 1 on success, 0 on error */
int scrypt_derive_key(char *password,
2019-12-26 00:15:54 -05:00
uint32_t scrypt_max_mem_mb, uint32_t N,
uint8_t r, uint8_t p, unsigned char *salt, unsigned char *key, FILE *err) {
/* derive key using salt, password, and scrypt parameters */
if (EVP_PBE_scrypt(
password, strlen(password),
salt, SALT_LEN,
(uint64_t) N, (uint64_t) r, (uint64_t) p,
(uint64_t) scrypt_max_mem_mb * 1024 * 1024,
key, KEY_LEN
) <= 0) {
if(NULL != err) {
fprintf(err, "scrypt key derivation error\n");
ERR_print_errors_fp(err);
}
return 0;
2019-12-25 01:21:43 -05:00
}
return 1;
}
2019-12-25 01:21:43 -05:00
/* returns 1 on success, 0 on failure */
int pegh_encrypt(char *password,
uint32_t scrypt_max_mem_mb, size_t buffer_size,
FILE *in, FILE *out, FILE *err,
uint32_t N, uint8_t r, uint8_t p)
{
unsigned char key[KEY_LEN] = {0}, salt[SALT_IV_LEN] = {0};
/* this is simply a pointer into salt */
const unsigned char *iv = salt + SALT_LEN;
/* first write the version and parameters */
salt[0] = 0;
salt[1] = (N >> 24) & 0xFF;
salt[2] = (N >> 16) & 0xFF;
salt[3] = (N >> 8) & 0xFF;
salt[4] = N & 0xFF;
salt[5] = r;
salt[6] = p;
fwrite(salt, 1, PRE_SALT_LEN, out);
/* generate random salt+iv, then write it out */
if (RAND_bytes(salt, SALT_IV_LEN) <= 0) {
if(NULL != err) {
fprintf(err, "random salt+iv generation error\n");
ERR_print_errors_fp(err);
2019-12-25 01:21:43 -05:00
}
return 0;
2019-12-25 01:21:43 -05:00
}
fwrite(salt, 1, SALT_IV_LEN, out);
2019-12-25 01:21:43 -05:00
if(1 != scrypt_derive_key(password, scrypt_max_mem_mb, N, r, p, salt, key, err))
return 0;
2019-12-25 01:21:43 -05:00
return gcm_encrypt(key, iv, buffer_size, in, out, err);
}
2019-12-25 01:21:43 -05:00
/* returns 1 on success, 0 on failure */
int pegh_decrypt(char *password,
uint32_t scrypt_max_mem_mb, size_t buffer_size,
FILE *in, FILE *out, FILE *err)
{
unsigned char key[KEY_LEN] = {0}, salt[SALT_IV_LEN] = {0};
/* this is simply a pointer into salt */
const unsigned char *iv = salt + SALT_LEN;
2019-12-25 01:21:43 -05:00
size_t header_read;
2019-12-25 01:21:43 -05:00
uint32_t N;
uint8_t r, p;
2019-12-25 01:21:43 -05:00
/* first read the version and parameters */
header_read = fread(salt, 1, PRE_SALT_LEN, in);
if(header_read != PRE_SALT_LEN) {
if(NULL != err)
fprintf(err, "File too small for decryption, invalid header?\n");
return 0;
}
if(salt[0] != 0) {
if(NULL != err)
fprintf(err, "unsupported file format version %d, we only support version 0\n", salt[0]);
return 0;
}
N = ((salt[1] & 0xFF) << 24)
| ((salt[2] & 0xFF) << 16)
| ((salt[3] & 0xFF) << 8)
| (salt[4] & 0xFF);
r = salt[5];
p = salt[6];
/* next read salt+iv */
header_read = fread(salt, 1, SALT_IV_LEN, in);
if(header_read != SALT_IV_LEN) {
if(NULL != err)
fprintf(err, "File too small for decryption, invalid header?\n");
return 0;
}
2019-12-25 01:21:43 -05:00
if(1 != scrypt_derive_key(password, scrypt_max_mem_mb, N, r, p, salt, key, err))
return 0;
2019-12-25 01:21:43 -05:00
return gcm_decrypt(key, iv, buffer_size, in, out, err);
2019-12-25 01:21:43 -05:00
}
2019-12-26 00:15:54 -05:00
int help(int exit_code) {
/* this ridiculous split is because C89 only supports strings of 509 characters */
fprintf(stderr, "\
usage: pegh [options...] password\n\
-e encrypt input to output, default mode\n\
-d decrypt input to output\n\
-i <filename> file to use for input, default stdin\n\
-o <filename> file to use for output, if set and there is an error and append\n\
is not set, we try to delete this file before exiting,\n");
fprintf(stderr, "\
default stdout\n\
-a append to -o instead of truncate\n\
-b <max_mb> maximum megabytes of ram to use per read/write buffer, so while\n\
decrypting/encrypting twice this will be used, but these are\n");
fprintf(stderr, "\
only allocated after scrypt is finished so max usage will be\n\
the highest of these only, not both combined, default: %d\n\
2019-12-26 00:15:54 -05:00
-m <max_mb> maximum megabytes of ram to use when deriving key from password\n\
with scrypt, applies for encryption AND decryption, must\n\
almost linearly scale with -N, if too low operation will fail,\n\
default: %d\n", BUFFER_SIZE_MB, SCRYPT_MAX_MEM_MB);
2019-12-26 00:15:54 -05:00
fprintf(stderr, "\
-N <num> scrypt parameter N, only applies for encryption, default %d\n\
this is rounded up to the next highest power of 2\n\
-r <num> scrypt parameter r, only applies for encryption, default %d\n\
-p <num> scrypt parameter p, only applies for encryption, default %d\n\
-s <num> multiplication factor to apply to both -N and -m for easy\n\
2019-12-26 01:19:05 -05:00
work scaling, rounded up to the next highest power of 2,\n", SCRYPT_N, SCRYPT_R, SCRYPT_P);
2019-12-26 00:15:54 -05:00
fprintf(stderr, "\
2019-12-26 01:19:05 -05:00
BEWARE: -s 32 requires 2G ram, -s 64 requires 4G and so on,\n\
default: 1\n\
2019-12-26 00:15:54 -05:00
-h print this usage text\n\
-q do not print error output to stderr\n\
2019-12-26 00:15:54 -05:00
-V show version number and format version support then quit\n\
\nFor additional info on scrypt params refer to:\n\
https://blog.filippo.io/the-scrypt-parameters/\n\
https://tools.ietf.org/html/rfc7914#section-2\n\n");
exit(exit_code);
return exit_code;
}
uint32_t parse_int_arg(int optind, int argc, char **argv) {
uint32_t tmp = 0;
if(optind >= argc) {
fprintf(stderr, "Error: %s requires an argument\n", argv[optind - 1]);
return help(2);
}
errno = 0;
tmp = strtoul(argv[optind], NULL, 10);
if(errno != 0 || tmp < 1) {
fprintf(stderr, "Error: %s %s failed to parse as a number\n", argv[optind - 1], argv[optind]);
return help(2);
}
return tmp;
}
uint8_t parse_byte_arg(int optind, int argc, char **argv) {
uint32_t tmp;
tmp = parse_int_arg(optind, argc, argv);
if(tmp > 255) {
fprintf(stderr, "Error: %s %s failed to parse as a number 1-255\n", argv[optind - 1], argv[optind]);
return help(2);
}
return (uint8_t) tmp;
}
uint32_t next_highest_power_of_2(uint32_t v) {
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return ++v;
}
/* returns 0 on success, 1 on openssl failure, 2 on other failure */
int main(int argc, char **argv)
{
int optind, decrypt = 0, append = 0, exit_code = 2;
2019-12-26 00:15:54 -05:00
char *password = NULL;
uint32_t N = SCRYPT_N, scrypt_max_mem_mb = SCRYPT_MAX_MEM_MB, buffer_size_mb = BUFFER_SIZE_MB, scale = 1;
2019-12-26 00:15:54 -05:00
uint8_t r = SCRYPT_R, p = SCRYPT_P;
FILE *in = stdin, *out = stdout, *err = stderr;
char *in_filename = NULL, *out_filename = NULL;
2019-12-26 00:15:54 -05:00
for (optind = 1; optind < argc; ++optind) {
if(strlen(argv[optind]) == 2 && argv[optind][0] == '-') {
/* -- means stop parsing options */
if(argv[optind][1] == '-') {
++optind;
break;
}
switch (argv[optind][1]) {
case 'e':
decrypt = 0;
break;
case 'd':
decrypt = 1;
break;
case 'a':
append = 1;
break;
case 'i':
if(++optind >= argc) {
fprintf(stderr, "Error: %s requires an argument\n", argv[optind - 1]);
return help(2);
}
in_filename = argv[optind];
break;
case 'o':
if(++optind >= argc) {
fprintf(stderr, "Error: %s requires an argument\n", argv[optind - 1]);
return help(2);
}
out_filename = argv[optind];
break;
case 'b':
buffer_size_mb = parse_int_arg(++optind, argc, argv);
break;
2019-12-26 00:15:54 -05:00
case 'm':
scrypt_max_mem_mb = parse_int_arg(++optind, argc, argv);
break;
case 'N':
N = next_highest_power_of_2(parse_int_arg(++optind, argc, argv));
break;
case 's':
scale = next_highest_power_of_2(parse_int_arg(++optind, argc, argv));
break;
case 'r':
r = parse_byte_arg(++optind, argc, argv);
break;
case 'p':
p = parse_byte_arg(++optind, argc, argv);
break;
case 'q':
err = NULL;
break;
2019-12-26 00:15:54 -05:00
case 'V':
fprintf(stderr, "pegh %s\nformat versions supported: 0\n", PEGH_VERSION);
return 0;
case 'h':
return help(0);
default:
fprintf(stderr, "Error: invalid option %s\n", argv[optind]);
return help(exit_code);
2019-12-26 00:15:54 -05:00
}
} else if (password == NULL) {
password = argv[optind];
} else {
fprintf (stderr, "Error: more than one password provided\n");
return help(exit_code);
2019-12-26 00:15:54 -05:00
}
}
if(password == NULL) {
if(argc == optind) {
fprintf (stderr, "Error: no password provided\n");
return help(exit_code);
2019-12-26 00:15:54 -05:00
}
if((argc - optind) != 1) {
fprintf (stderr, "Error: more than one password provided\n");
return help(exit_code);
2019-12-26 00:15:54 -05:00
}
password = argv[optind];
}
/* apply scale */
N *= scale;
scrypt_max_mem_mb *= scale;
/*
fprintf (stderr, "decrypt = %d, key = %s, scrypt_max_mem_mb = %d, N = %d, r = %d, p = %d, scale = %d\n",
decrypt, password, scrypt_max_mem_mb, N, r, p, scale);
return 0;
*/
if(NULL != in_filename) {
in = fopen(in_filename, "rb");
if(!in) {
fprintf (stderr, "Error: file '%s' cannot be opened for reading\n", in_filename);
return exit_code;
}
}
if(NULL != out_filename) {
out = fopen(out_filename, append ? "ab" : "wb");
if(!out) {
fprintf (stderr, "Error: file '%s' cannot be opened for writing\n", out_filename);
if(NULL != in_filename)
fclose(in);
return exit_code;
}
}
if(decrypt)
exit_code = pegh_decrypt(password, scrypt_max_mem_mb, 1024 * 1024 * buffer_size_mb, in, out, err);
else
exit_code = pegh_encrypt(password, scrypt_max_mem_mb, 1024 * 1024 * buffer_size_mb, in, out, err, N, r, p);
if(NULL != in_filename)
fclose(in);
if(NULL != out_filename) {
fclose(out);
/* attempt to stop programs from using incomplete/bad data */
if(exit_code != 1 && !append)
remove(out_filename);
}
/* to the OS, 0 means success, the above functions 1 means success */
return exit_code == 1 ? 0 : 1;
2019-12-26 00:15:54 -05:00
}