package javax.crypto; import java.util.StringTokenizer; import java.security.Key; import java.security.Provider; import java.security.SecureRandom; import java.security.AlgorithmParameters; import java.security.InvalidKeyException; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.InvalidAlgorithmParameterException; import java.security.cert.Certificate; import java.security.spec.AlgorithmParameterSpec; /** * This class provides the functionality of a cryptographic cipher for * encryption and decryption. It forms the core of the Java Cryptographic * Extension (JCE) framework. *
* In order to create a Cipher object, the application calls the
* Cipher's getInstance
method, and passes the name of the
* requested transformation to it. Optionally, the name of a provider
* may be specified.
*
* A transformation is a string that describes the operation (or * set of operations) to be performed on the given input, to produce some * output. A transformation always includes the name of a cryptographic * algorithm (e.g., DES), and may be followed by a feedback mode and * padding scheme. * *
A transformation is of the form:
* *
*
(in the latter case, * provider-specific default values for the mode and padding scheme are used). * For example, the following is a valid transformation:
* *
* Cipher c = Cipher.getInstance("DES/CBC/PKCS5Padding"); **
* When requesting a block cipher in stream cipher mode (e.g.,
* DES
in CFB
or OFB
mode), the user may
* optionally specify the number of bits to be
* processed at a time, by appending this number to the mode name as shown in
* the "DES/CFB8/NoPadding" and "DES/OFB32/PKCS5Padding"
* transformations. If no such number is specified, a provider-specific default
* is used. (For example, the "SunJCE" provider uses a default of 64 bits.)
*/
public class Cipher
{
static private final int UNINITIALIZED = 0;
static public final int ENCRYPT_MODE = 1;
static public final int DECRYPT_MODE = 2;
static public final int WRAP_MODE = 3;
static public final int UNWRAP_MODE = 4;
static public final int PUBLIC_KEY = 1;
static public final int PRIVATE_KEY = 2;
static public final int SECRET_KEY = 3;
private CipherSpi cipherSpi;
private Provider provider;
private String transformation;
private int mode = UNINITIALIZED;
/**
* Creates a Cipher object.
*
* @param cipherSpi the delegate
* @param provider the provider
* @param transformation the transformation
*/
protected Cipher(
CipherSpi cipherSpi,
Provider provider,
String transformation)
{
this.cipherSpi = cipherSpi;
this.provider = provider;
this.transformation = transformation;
}
/**
* Generates a Cipher
object that implements the specified
* transformation.
*
* If the default provider package supplies an implementation of the
* requested transformation, an instance of Cipher
containing
* that implementation is returned.
* If the transformation is not available in the default provider package,
* other provider packages are searched.
*
* @param transformation the name of the transformation, e.g., DES/CBC/PKCS5Padding.
* See Appendix A in the Java Cryptography Extension API Specification & Reference
* for information about standard transformation names.
*
* @return a cipher that implements the requested transformation
* @exception NoSuchAlgorithmException if the specified transformation is not available in the default
* provider package or any of the other provider packages that were searched.
* @exception NoSuchPaddingException if transformation
contains a padding scheme that is
* not available.
*/
public static final Cipher getInstance(
String transformation)
throws NoSuchAlgorithmException, NoSuchPaddingException
{
try
{
JCEUtil.Implementation imp = JCEUtil.getImplementation("Cipher", transformation, (String) null);
if (imp != null)
{
return new Cipher((CipherSpi)imp.getEngine(), imp.getProvider(), transformation);
}
//
// try the long way
//
StringTokenizer tok = new StringTokenizer(transformation, "/");
String algorithm = tok.nextToken();
imp = JCEUtil.getImplementation("Cipher", algorithm, (String) null);
if (imp == null)
{
throw new NoSuchAlgorithmException(transformation + " not found");
}
CipherSpi cipherSpi = (CipherSpi)imp.getEngine();
//
// make sure we don't get fooled by a "//" in the string
//
if (tok.hasMoreTokens() && !transformation.regionMatches(algorithm.length(), "//", 0, 2))
{
cipherSpi.engineSetMode(tok.nextToken());
}
if (tok.hasMoreTokens())
{
cipherSpi.engineSetPadding(tok.nextToken());
}
return new Cipher(cipherSpi, imp.getProvider(), transformation);
}
catch (NoSuchProviderException e)
{
throw new NoSuchAlgorithmException(transformation + " not found");
}
}
/**
* Creates a Cipher
object that implements the specified
* transformation, as supplied by the specified provider.
*
* @param transformation the name of the transformation, e.g., DES/CBC/PKCS5Padding.
* See Appendix A in the Java Cryptography Extension API Specification & Reference
* for information about standard transformation names.
*
* @param provider the provider
* @return a cipher that implements the requested transformation
* @exception NoSuchAlgorithmException if no transformation was specified, or if the specified
* transformation is not available from the specified provider.
* @exception NoSuchPaddingException if transformation
contains a padding scheme
* that is not available.
*/
public static final Cipher getInstance(
String transformation,
Provider provider)
throws NoSuchAlgorithmException, NoSuchPaddingException
{
if (transformation == null)
{
throw new IllegalArgumentException("No transformation specified for Cipher.getInstance()");
}
JCEUtil.Implementation imp = JCEUtil.getImplementation("Cipher", transformation, provider);
if (imp != null)
{
return new Cipher((CipherSpi)imp.getEngine(), imp.getProvider(), transformation);
}
//
// try the long way
//
StringTokenizer tok = new StringTokenizer(transformation, "/");
String algorithm = tok.nextToken();
imp = JCEUtil.getImplementation("Cipher", algorithm, provider);
if (imp == null)
{
throw new NoSuchAlgorithmException(transformation + " not found");
}
CipherSpi cipherSpi = (CipherSpi)imp.getEngine();
//
// make sure we don't get fooled by a "//" in the string
//
if (tok.hasMoreTokens() && !transformation.regionMatches(algorithm.length(), "//", 0, 2))
{
cipherSpi.engineSetMode(tok.nextToken());
}
if (tok.hasMoreTokens())
{
cipherSpi.engineSetPadding(tok.nextToken());
}
return new Cipher(cipherSpi, imp.getProvider(), transformation);
}
/**
* Creates a Cipher
object that implements the specified
* transformation, as supplied by the specified provider.
*
* @param transformation the name of the transformation, e.g., DES/CBC/PKCS5Padding.
* See Appendix A in the Java Cryptography Extension API Specification & Reference
* for information about standard transformation names.
*
* @param provider the name of the provider
* @return a cipher that implements the requested transformation
* @exception NoSuchAlgorithmException if no transformation was specified, or if the specified
* transformation is not available from the specified provider.
* @exception NoSuchProviderException if the specified provider has not been configured.
* @exception NoSuchPaddingException if transformation
contains a padding scheme
* that is not available.
*/
public static final Cipher getInstance(
String transformation,
String provider)
throws NoSuchAlgorithmException, NoSuchProviderException, NoSuchPaddingException
{
if (transformation == null)
{
throw new IllegalArgumentException("No transformation specified for Cipher.getInstance()");
}
JCEUtil.Implementation imp = JCEUtil.getImplementation("Cipher", transformation, provider);
if (imp != null)
{
return new Cipher((CipherSpi)imp.getEngine(), imp.getProvider(), transformation);
}
//
// try the long way
//
StringTokenizer tok = new StringTokenizer(transformation, "/");
String algorithm = tok.nextToken();
imp = JCEUtil.getImplementation("Cipher", algorithm, provider);
if (imp == null)
{
throw new NoSuchAlgorithmException(transformation + " not found");
}
CipherSpi cipherSpi = (CipherSpi)imp.getEngine();
//
// make sure we don't get fooled by a "//" in the string
//
if (tok.hasMoreTokens() && !transformation.regionMatches(algorithm.length(), "//", 0, 2))
{
cipherSpi.engineSetMode(tok.nextToken());
}
if (tok.hasMoreTokens())
{
cipherSpi.engineSetPadding(tok.nextToken());
}
return new Cipher(cipherSpi, imp.getProvider(), transformation);
}
/**
* Returns the provider of this Cipher
object.
*
* @return the provider of this Cipher
object
*/
public final Provider getProvider()
{
return provider;
}
/**
* Returns the algorithm name of this Cipher
object.
*
* This is the same name that was specified in one of the
* getInstance
calls that created this Cipher
* object..
*
* @return the algorithm name of this Cipher
object.
*/
public final String getAlgorithm()
{
return transformation;
}
/**
* Returns the block size (in bytes).
*
* @return the block size (in bytes), or 0 if the underlying algorithm is not a block cipher
*/
public final int getBlockSize()
{
return cipherSpi.engineGetBlockSize();
}
/**
* Returns the length in bytes that an output buffer would need to be in
* order to hold the result of the next update
or
* doFinal
operation, given the input length inputLen
(in bytes).
*
* This call takes into account any unprocessed (buffered) data from a
* previous update
call, and padding.
*
* The actual output length of the next update
or
* doFinal
call may be smaller than the length returned by
* this method.
*
* @param inputLen the input length (in bytes)
* @return the required output buffer size (in bytes)
* @exception java.lang.IllegalStateException if this cipher is in a wrong state (e.g., has not
* yet been initialized)
*/
public final int getOutputSize(
int inputLen)
throws IllegalStateException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
return cipherSpi.engineGetOutputSize(inputLen);
}
/**
* Returns the initialization vector (IV) in a new buffer.
*
* This is useful in the case where a random IV was created, * or in the context of password-based encryption or decryption, where the IV * is derived from a user-supplied password. * * @return the initialization vector in a new buffer, or null if the * underlying algorithm does not use an IV, or if the IV has not yet been set. */ public final byte[] getIV() { return cipherSpi.engineGetIV(); } /** * Returns the parameters used with this cipher. *
* The returned parameters may be the same that were used to initialize * this cipher, or may contain a combination of default and random * parameter values used by the underlying cipher implementation if this * cipher requires algorithm parameters but was not initialized with any. * * @return the parameters used with this cipher, or null if this cipher * does not use any parameters. */ public final AlgorithmParameters getParameters() { return cipherSpi.engineGetParameters(); } /** * Returns the exemption mechanism object used with this cipher. * * @return the exemption mechanism object used with this cipher, or * null if this cipher does not use any exemption mechanism. */ public final ExemptionMechanism getExemptionMechanism() { return null; } /** * Initializes this cipher with a key. *
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters that cannot be
* derived from the given key
, the underlying cipher
* implementation is supposed to generate the required parameters itself
* (using provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidKeyException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them using the
* SecureRandom
implementation of the highest-priority
* installed provider as the source of randomness.
* (If none of the installed providers supply an implementation of
* SecureRandom, a system-provided source of randomness will be used.)
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the following:
* ENCRYPT_MODE
, DECRYPT_MODE
,
* WRAP_MODE
or UNWRAP_MODE
)
* @param key the key
* @exception InvalidKeyException if the given key is inappropriate for
* initializing this cipher, or if this cipher is being initialized for
* decryption and requires algorithm parameters that cannot be
* determined from the given key, or if the given key has a keysize that
* exceeds the maximum allowable keysize (as determined from the
* configured jurisdiction policy files). Note: Jurisdiction files are ignored
* in this implementation.
*/
public final void init(
int opmode,
Key key)
throws InvalidKeyException
{
cipherSpi.engineInit(opmode, key, new SecureRandom());
mode = opmode;
}
/**
* Initializes this cipher with a key and a source of randomness.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters that cannot be
* derived from the given key
, the underlying cipher
* implementation is supposed to generate the required parameters itself
* (using provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidKeyException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* engineGetParameters or
* engineGetIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them from random
.
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
,
* WRAP_MODE
or UNWRAP_MODE
)
* @param key the encryption key
* @param random the source of randomness
* @exception InvalidKeyException if the given key is inappropriate for
* initializing this cipher, or if this cipher is being initialized for
* decryption and requires algorithm parameters that cannot be
* determined from the given key, or if the given key has a keysize that
* exceeds the maximum allowable keysize (as determined from the
* configured jurisdiction policy files). Note: Jurisdiction files are ignored
* in this implementation.
*/
public final void init(
int opmode,
Key key,
SecureRandom random)
throws InvalidKeyException
{
cipherSpi.engineInit(opmode, key, random);
mode = opmode;
}
/**
* Initializes this cipher with a key and a set of algorithm parameters.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters and
* params
is null, the underlying cipher implementation is
* supposed to generate the required parameters itself (using
* provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidAlgorithmParameterException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them using the
*
* SecureRandom
implementation of the highest-priority
* installed provider as the source of randomness.
* (If none of the installed providers supply an implementation of
* SecureRandom, a system-provided source of randomness will be used.)
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
, WRAP_MODE
* or UNWRAP_MODE
)
* @param key the encryption key
* @param params the algorithm parameters
* @exception InvalidKeyException if the given key is inappropriate for initializing this
* cipher, or its keysize exceeds the maximum allowable keysize (as determined from the
* configured jurisdiction policy files).
* @exception InvalidAlgorithmParameterException if the given algorithm parameters are
* inappropriate for this cipher, or this cipher is being initialized for decryption and
* requires algorithm parameters and params
is null, or the given algorithm
* parameters imply a cryptographic strength that would exceed the legal limits (as determined
* from the configured jurisdiction policy files). Note: Jurisdiction files are ignored
* in this implementation.
*/
public final void init(
int opmode,
Key key,
AlgorithmParameterSpec params)
throws InvalidKeyException, InvalidAlgorithmParameterException
{
cipherSpi.engineInit(opmode, key, params, new SecureRandom());
mode = opmode;
}
/**
* Initializes this cipher with a key, a set of algorithm
* parameters, and a source of randomness.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters and
* params
is null, the underlying cipher implementation is
* supposed to generate the required parameters itself (using
* provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidAlgorithmParameterException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them from random
.
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
,
* WRAP_MODE
or UNWRAP_MODE
)
* @param key the encryption key
* @param params the algorithm parameters
* @param random the source of randomness
* @exception InvalidKeyException if the given key is inappropriate for
* initializing this cipher, or its keysize exceeds the maximum allowable
* keysize (as determined from the configured jurisdiction policy files).
* @exception InvalidAlgorithmParameterException if the given algorithm
* parameters are inappropriate for this cipher,
* or this cipher is being initialized for decryption and requires
* algorithm parameters and params
is null, or the given
* algorithm parameters imply a cryptographic strength that would exceed
* the legal limits (as determined from the configured jurisdiction
* policy files).
* Note: Jurisdiction files are ignored in this implementation.
*/
public final void init(
int opmode,
Key key,
AlgorithmParameterSpec params,
SecureRandom random)
throws InvalidKeyException, InvalidAlgorithmParameterException
{
cipherSpi.engineInit(opmode, key, params, random);
mode = opmode;
}
/**
* Initializes this cipher with a key and a set of algorithm
* parameters.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters and
* params
is null, the underlying cipher implementation is
* supposed to generate the required parameters itself (using
* provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidAlgorithmParameterException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them using the
*
* SecureRandom
implementation of the highest-priority
* installed provider as the source of randomness.
* (If none of the installed providers supply an implementation of
* SecureRandom, a system-provided source of randomness will be used.)
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
, WRAP_MODE
* or UNWRAP_MODE
)
* @param key the encryption key
* @param params the algorithm parameters
* @exception InvalidKeyException if the given key is inappropriate for
* initializing this cipher, or its keysize exceeds the maximum allowable
* keysize (as determined from the configured jurisdiction policy files).
* @exception InvalidAlgorithmParameterException if the given algorithm
* parameters are inappropriate for this cipher,
* or this cipher is being initialized for decryption and requires
* algorithm parameters and params
is null, or the given
* algorithm parameters imply a cryptographic strength that would exceed
* the legal limits (as determined from the configured jurisdiction
* policy files).
* Note: Jurisdiction files are ignored in this implementation.
*/
public final void init(
int opmode,
Key key,
AlgorithmParameters params)
throws InvalidKeyException, InvalidAlgorithmParameterException
{
cipherSpi.engineInit(opmode, key, params, new SecureRandom());
mode = opmode;
}
/**
* Initializes this cipher with a key, a set of algorithm
* parameters, and a source of randomness.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If this cipher requires any algorithm parameters and
* params
is null, the underlying cipher implementation is
* supposed to generate the required parameters itself (using
* provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidAlgorithmParameterException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them from random
.
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
, WRAP_MODE
* or UNWRAP_MODE
)
* @param key the encryption key
* @param params the algorithm parameters
* @param random the source of randomness
* @exception InvalidKeyException if the given key is inappropriate for
* initializing this cipher, or its keysize exceeds the maximum allowable
* keysize (as determined from the configured jurisdiction policy files).
* @exception InvalidAlgorithmParameterException if the given algorithm
* parameters are inappropriate for this cipher,
* or this cipher is being initialized for decryption and requires
* algorithm parameters and params
is null, or the given
* algorithm parameters imply a cryptographic strength that would exceed
* the legal limits (as determined from the configured jurisdiction
* policy files).
* Note: Jurisdiction files are ignored in this implementation.
*/
public final void init(
int opmode,
Key key,
AlgorithmParameters params,
SecureRandom random)
throws InvalidKeyException, InvalidAlgorithmParameterException
{
cipherSpi.engineInit(opmode, key, params, random);
mode = opmode;
}
/**
* Initializes this cipher with the public key from the given certificate.
*
* The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping or key unwrapping, depending
* on the value of opmode
.
*
* If the certificate is of type X.509 and has a key usage
* extension field marked as critical, and the value of the key usage
* extension field implies that the public key in
* the certificate and its corresponding private key are not
* supposed to be used for the operation represented by the value
* of opmode
,
* an InvalidKeyException
* is thrown.
*
* If this cipher requires any algorithm parameters that cannot be
* derived from the public key in the given certificate, the underlying
* cipher
* implementation is supposed to generate the required parameters itself
* (using provider-specific default or ramdom values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidKeyException
if it is being initialized for decryption or
* key unwrapping.
* The generated parameters can be retrieved using
* getParameters or
* getIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them using the
*
* SecureRandom
* implementation of the highest-priority installed provider as the source of randomness.
* (If none of the installed providers supply an implementation of
* SecureRandom, a system-provided source of randomness will be used.)
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
* @param opmode the operation mode of this cipher (this is one of the
* following:
* ENCRYPT_MODE
, DECRYPT_MODE
,
* WRAP_MODE
or UNWRAP_MODE
)
* @param certificate the certificate
* @exception InvalidKeyException if the public key in the given
* certificate is inappropriate for initializing this cipher, or this
* cipher is being initialized for decryption or unwrapping keys and
* requires algorithm parameters that cannot be determined from the
* public key in the given certificate, or the keysize of the public key
* in the given certificate has a keysize that exceeds the maximum
* allowable keysize (as determined by the configured jurisdiction policy
* files).
* Note: Jurisdiction files are ignored in this implementation.
*/
public final void init(
int opmode,
Certificate certificate)
throws InvalidKeyException
{
cipherSpi.engineInit(opmode, certificate.getPublicKey(), new SecureRandom());
mode = opmode;
}
/**
* Initializes this cipher with the public key from the given certificate
* and a source of randomness.
*
The cipher is initialized for one of the following four operations:
* encryption, decryption, key wrapping
* or key unwrapping, depending on
* the value of opmode
.
*
* If the certificate is of type X.509 and has a key usage
* extension field marked as critical, and the value of the key usage
* extension field implies that the public key in
* the certificate and its corresponding private key are not
* supposed to be used for the operation represented by the value of
* opmode
,
* an InvalidKeyException
* is thrown.
*
* If this cipher requires any algorithm parameters that cannot be
* derived from the public key in the given certificate
,
* the underlying cipher
* implementation is supposed to generate the required parameters itself
* (using provider-specific default or random values) if it is being
* initialized for encryption or key wrapping, and raise an
* InvalidKeyException
if it is being
* initialized for decryption or key unwrapping.
* The generated parameters can be retrieved using
* engineGetParameters or
* engineGetIV (if the parameter is an IV).
*
* If this cipher (including its underlying feedback or padding scheme)
* requires any random bytes (e.g., for parameter generation), it will get
* them from random
.
*
* Note that when a Cipher object is initialized, it loses all
* previously-acquired state. In other words, initializing a Cipher is
* equivalent to creating a new instance of that Cipher and initializing
* it.
*
* @param opmode the operation mode of this cipher (this is one of the
* following: ENCRYPT_MODE
, DECRYPT_MODE
,
* WRAP_MODE
or UNWRAP_MODE
)
* @param certificate the certificate
* @param random the source of randomness
* @exception InvalidKeyException if the public key in the given
* certificate is inappropriate for initializing this cipher, or this
* cipher is being initialized for decryption or unwrapping keys and
* requires algorithm parameters that cannot be determined from the
* public key in the given certificate, or the keysize of the public key
* in the given certificate has a keysize that exceeds the maximum
* allowable keysize (as determined by the configured jurisdiction policy
* files).
*/
public final void init(
int opmode,
Certificate certificate,
SecureRandom random)
throws InvalidKeyException
{
cipherSpi.engineInit(opmode, certificate.getPublicKey(), random);
mode = opmode;
}
/**
* Continues a multiple-part encryption or decryption operation
* (depending on how this cipher was initialized), processing another data
* part.
*
* The bytes in the input
buffer are processed, and the
* result is stored in a new buffer.
*
* If input
has a length of zero, this method returns
* null
.
*
* @param input the input buffer
* @return the new buffer with the result, or null if the underlying
* cipher is a block cipher and the input data is too short to result in a
* new block.
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
*/
public final byte[] update(
byte[] input)
throws IllegalStateException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input buffer");
}
if (input.length == 0)
{
return null;
}
return cipherSpi.engineUpdate(input, 0, input.length);
}
/**
* Continues a multiple-part encryption or decryption operation
* (depending on how this cipher was initialized), processing another data
* part.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, are processed,
* and the result is stored in a new buffer.
*
* If inputLen
is zero, this method returns
* null
.
*
* @param input the input buffer
* @param inputOffset the offset in input
where the input
* starts
* @param inputLen the input length
* @return the new buffer with the result, or null if the underlying
* cipher is a block cipher and the input data is too short to result in a
* new block.
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
*/
public final byte[] update(
byte[] input,
int inputOffset,
int inputLen)
throws IllegalStateException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
if (inputLen == 0)
{
return null;
}
return cipherSpi.engineUpdate(input, inputOffset, inputLen);
}
/**
* Continues a multiple-part encryption or decryption operation
* (depending on how this cipher was initialized), processing another data
* part.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, are processed,
* and the result is stored in the output
buffer.
*
* If the output
buffer is too small to hold the result,
* a ShortBufferException
is thrown. In this case, repeat this
* call with a larger output buffer. Use
* getOutputSize to determine how big
* the output buffer should be.
*
* If inputLen
is zero, this method returns
* a length of zero.
*
* @param input the input buffer
* @param inputOffset the offset in input
where the input starts
* @param inputLen the input length
* @param output the buffer for the result
* @return the number of bytes stored in output
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception ShortBufferException if the given output buffer is too small
* to hold the result
*/
public final int update(
byte[] input,
int inputOffset,
int inputLen,
byte[] output)
throws IllegalStateException, ShortBufferException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
if (output == null)
{
throw new IllegalArgumentException("Null output passed");
}
if (inputLen == 0)
{
return 0;
}
return cipherSpi.engineUpdate(input, inputOffset, inputLen, output, 0);
}
/**
* Continues a multiple-part encryption or decryption operation
* (depending on how this cipher was initialized), processing another data
* part.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, are processed,
* and the result is stored in the output
buffer, starting at
* outputOffset
inclusive.
*
* If the output
buffer is too small to hold the result,
* a ShortBufferException
is thrown. In this case, repeat this
* call with a larger output buffer. Use
* getOutputSize to determine how big
* the output buffer should be.
*
* If inputLen
is zero, this method returns
* a length of zero.
*
* @param input the input buffer
* @param inputOffset the offset in input
where the input starts
* @param inputLen the input length
* @param output the buffer for the result
* @param outputOffset the offset in output
where the result
* is stored
* @return the number of bytes stored in output
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception ShortBufferException if the given output buffer is too small
* to hold the result
*/
public final int update(
byte[] input,
int inputOffset,
int inputLen,
byte[] output,
int outputOffset)
throws IllegalStateException, ShortBufferException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
if (output == null)
{
throw new IllegalArgumentException("Null output passed");
}
if (outputOffset < 0 || outputOffset >= output.length)
{
throw new IllegalArgumentException("Bad outputOffset");
}
if (inputLen == 0)
{
return 0;
}
return cipherSpi.engineUpdate(input, inputOffset, inputLen, output, outputOffset);
}
/**
* Finishes a multiple-part encryption or decryption operation, depending
* on how this cipher was initialized.
*
* Input data that may have been buffered during a previous
* update
operation is processed, with padding (if requested)
* being applied.
* The result is stored in a new buffer.
*
* A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
* @return the new buffer with the result
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final byte[] doFinal()
throws java.lang.IllegalStateException, IllegalBlockSizeException,
BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
return cipherSpi.engineDoFinal(null, 0, 0);
}
/**
* Finishes a multiple-part encryption or decryption operation, depending
* on how this cipher was initialized.
*
* Input data that may have been buffered during a previous
* update
operation is processed, with padding (if requested)
* being applied.
* The result is stored in the output
buffer, starting at
* outputOffset
inclusive.
*
* If the output
buffer is too small to hold the result,
* a ShortBufferException
is thrown. In this case, repeat this
* call with a larger output buffer. Use
* getOutputSize to determine how big
* the output buffer should be.
*
* A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
*
* @param output the buffer for the result
* @param outputOffset the offset in output
where the result
* is stored
* @return the number of bytes stored in output
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception ShortBufferException if the given output buffer is too small
* to hold the result
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final int doFinal(
byte[] output,
int outputOffset)
throws IllegalStateException, IllegalBlockSizeException,
ShortBufferException, BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (output == null)
{
throw new IllegalArgumentException("Null output passed");
}
if (outputOffset < 0 || outputOffset >= output.length)
{
throw new IllegalArgumentException("Bad outputOffset");
}
return cipherSpi.engineDoFinal(null, 0, 0, output, outputOffset);
}
/**
* Encrypts or decrypts data in a single-part operation, or finishes a
* multiple-part operation. The data is encrypted or decrypted,
* depending on how this cipher was initialized.
*
* The bytes in the input
buffer, and any input bytes that
* may have been buffered during a previous update
operation,
* are processed, with padding (if requested) being applied.
* The result is stored in a new buffer.
*
* A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
*
* @param input the input buffer
* @return the new buffer with the result
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final byte[] doFinal(
byte[] input)
throws java.lang.IllegalStateException, IllegalBlockSizeException, BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
return cipherSpi.engineDoFinal(input, 0, input.length);
}
/**
* Encrypts or decrypts data in a single-part operation, or finishes a
* multiple-part operation. The data is encrypted or decrypted,
* depending on how this cipher was initialized.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, and any input
* bytes that may have been buffered during a previous update
* operation, are processed, with padding (if requested) being applied.
* The result is stored in a new buffer.
*
A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
*
* @param input the input buffer
* @param inputOffset the offset in input
where the input starts
* @param inputLen the input length
* @return the new buffer with the result
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final byte[] doFinal(
byte[] input,
int inputOffset,
int inputLen)
throws IllegalStateException, IllegalBlockSizeException, BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
return cipherSpi.engineDoFinal(input, inputOffset, inputLen);
}
/**
* Encrypts or decrypts data in a single-part operation, or finishes a
* multiple-part operation. The data is encrypted or decrypted,
* depending on how this cipher was initialized.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, and any input
* bytes that may have been buffered during a previous update
* operation, are processed, with padding (if requested) being applied.
* The result is stored in the output
buffer.
*
* If the output
buffer is too small to hold the result,
* a ShortBufferException
is thrown. In this case, repeat this
* call with a larger output buffer. Use
* getOutputSize to determine how big
* the output buffer should be.
*
* A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
* @param input the input buffer
* @param inputOffset the offset in input
where the input starts
* @param inputLen the input length
* @param output the buffer for the result
* @return the number of bytes stored in output
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception ShortBufferException if the given output buffer is too small
* to hold the result
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final int doFinal(
byte[] input,
int inputOffset,
int inputLen,
byte[] output)
throws IllegalStateException, ShortBufferException,
IllegalBlockSizeException, BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
if (output == null)
{
throw new IllegalArgumentException("Null output passed");
}
return cipherSpi.engineDoFinal(input, inputOffset, inputLen, output, 0);
}
/**
* Encrypts or decrypts data in a single-part operation, or finishes a
* multiple-part operation. The data is encrypted or decrypted,
* depending on how this cipher was initialized.
*
* The first inputLen
bytes in the input
* buffer, starting at inputOffset
inclusive, and any input
* bytes that may have been buffered during a previous
* update
operation, are processed, with padding
* (if requested) being applied.
* The result is stored in the output
buffer, starting at
* outputOffset
inclusive.
*
* If the output
buffer is too small to hold the result,
* a ShortBufferException
is thrown. In this case, repeat this
* call with a larger output buffer. Use
* getOutputSize to determine how big
* the output buffer should be.
*
* A call to this method resets this cipher object to the state
* it was in when previously initialized via a call to init
.
* That is, the object is reset and available to encrypt or decrypt
* (depending on the operation mode that was specified in the call to
* init
) more data.
*
* @param input the input buffer
* @param inputOffset the offset in input
where the input starts
* @param inputLen the input length
* @param output the buffer for the result
* @param outputOffset the offset in output
where the result is
* stored
* @return the number of bytes stored in output
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized)
* @exception IllegalBlockSizeException if this cipher is a block cipher,
* no padding has been requested (only in encryption mode), and the total
* input length of the data processed by this cipher is not a multiple of
* block size
* @exception ShortBufferException if the given output buffer is too small
* to hold the result
* @exception BadPaddingException if this cipher is in decryption mode,
* and (un)padding has been requested, but the decrypted data is not
* bounded by the appropriate padding bytes
*/
public final int doFinal(
byte[] input,
int inputOffset,
int inputLen,
byte[] output,
int outputOffset)
throws IllegalStateException, ShortBufferException,
IllegalBlockSizeException, BadPaddingException
{
if (mode != ENCRYPT_MODE && mode != DECRYPT_MODE)
{
throw new IllegalStateException("Cipher is uninitialised");
}
if (input == null)
{
throw new IllegalArgumentException("Null input passed");
}
if (inputLen < 0 || inputOffset < 0
|| inputLen > (input.length - inputOffset))
{
throw new IllegalArgumentException("Bad inputOffset/inputLen");
}
if (output == null)
{
throw new IllegalArgumentException("Null output passed");
}
if (outputOffset < 0 || outputOffset >= output.length)
{
throw new IllegalArgumentException("Bad outputOffset");
}
return cipherSpi.engineDoFinal(input, inputOffset, inputLen, output, outputOffset);
}
/**
* Wrap a key.
*
* @param key the key to be wrapped.
* @return the wrapped key.
* @exception IllegalStateException if this cipher is in a wrong state (e.g., has not
* been initialized).
* @exception IllegalBlockSizeException if this cipher is a block cipher, no padding
* has been requested, and the length of the encoding of the key to be wrapped is not a
* multiple of the block size.
* @exception
SECRET_KEY
, PRIVATE_KEY
, or PUBLIC_KEY
.
* @return the unwrapped key.
* @exception IllegalStateException if this cipher is in a wrong state
* (e.g., has not been initialized).
* @exception InvalidKeyException if wrappedKey
does not
* represent a wrapped key, or if the algorithm associated with the
* wrapped key is different from wrappedKeyAlgorithm
* and/or its key type is different from wrappedKeyType
.
* @exception NoSuchAlgorithmException - if no installed providers
* can create keys for the wrappedKeyAlgorithm
.
*/
public final Key unwrap(
byte[] wrappedKey,
String wrappedKeyAlgorithm,
int wrappedKeyType)
throws IllegalStateException, InvalidKeyException, NoSuchAlgorithmException
{
if (mode != UNWRAP_MODE)
{
throw new IllegalStateException("Cipher is not initialised for unwrapping");
}
if (wrappedKeyType != SECRET_KEY && wrappedKeyType != PUBLIC_KEY
&& wrappedKeyType != PRIVATE_KEY)
{
throw new IllegalArgumentException("Invalid key type argument");
}
if (wrappedKey == null)
{
throw new IllegalArgumentException("Null wrappedKey passed");
}
if (wrappedKeyAlgorithm == null)
{
throw new IllegalArgumentException("Null wrappedKeyAlgorithm string passed");
}
return cipherSpi.engineUnwrap(wrappedKey, wrappedKeyAlgorithm, wrappedKeyType);
}
}