1
0
mirror of https://github.com/moparisthebest/minetest synced 2024-11-07 09:55:09 -05:00
minetest/src/treegen.cpp

614 lines
19 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>,
2012-2013 RealBadAngel, Maciej Kasatkin <mk@realbadangel.pl>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "irr_v3d.h"
#include <stack>
#include "util/numeric.h"
#include "util/mathconstants.h"
#include "map.h"
#include "environment.h"
#include "nodedef.h"
#include "treegen.h"
namespace treegen
{
void make_tree(ManualMapVoxelManipulator &vmanip, v3s16 p0,
bool is_apple_tree, INodeDefManager *ndef, int seed)
{
MapNode treenode(ndef->getId("mapgen_tree"));
MapNode leavesnode(ndef->getId("mapgen_leaves"));
MapNode applenode(ndef->getId("mapgen_apple"));
PseudoRandom pr(seed);
s16 trunk_h = pr.range(4, 5);
v3s16 p1 = p0;
for(s16 ii=0; ii<trunk_h; ii++)
{
if(vmanip.m_area.contains(p1))
if(ii == 0 || vmanip.getNodeNoExNoEmerge(p1).getContent() == CONTENT_AIR)
vmanip.m_data[vmanip.m_area.index(p1)] = treenode;
p1.Y++;
}
// p1 is now the last piece of the trunk
p1.Y -= 1;
VoxelArea leaves_a(v3s16(-2,-1,-2), v3s16(2,2,2));
//SharedPtr<u8> leaves_d(new u8[leaves_a.getVolume()]);
Buffer<u8> leaves_d(leaves_a.getVolume());
for(s32 i=0; i<leaves_a.getVolume(); i++)
leaves_d[i] = 0;
// Force leaves at near the end of the trunk
{
s16 d = 1;
for(s16 z=-d; z<=d; z++)
for(s16 y=-d; y<=d; y++)
for(s16 x=-d; x<=d; x++)
{
leaves_d[leaves_a.index(v3s16(x,y,z))] = 1;
}
}
// Add leaves randomly
for(u32 iii=0; iii<7; iii++)
{
s16 d = 1;
v3s16 p(
pr.range(leaves_a.MinEdge.X, leaves_a.MaxEdge.X-d),
pr.range(leaves_a.MinEdge.Y, leaves_a.MaxEdge.Y-d),
pr.range(leaves_a.MinEdge.Z, leaves_a.MaxEdge.Z-d)
);
for(s16 z=0; z<=d; z++)
for(s16 y=0; y<=d; y++)
for(s16 x=0; x<=d; x++)
{
leaves_d[leaves_a.index(p+v3s16(x,y,z))] = 1;
}
}
// Blit leaves to vmanip
for(s16 z=leaves_a.MinEdge.Z; z<=leaves_a.MaxEdge.Z; z++)
for(s16 y=leaves_a.MinEdge.Y; y<=leaves_a.MaxEdge.Y; y++)
for(s16 x=leaves_a.MinEdge.X; x<=leaves_a.MaxEdge.X; x++)
{
v3s16 p(x,y,z);
p += p1;
if(vmanip.m_area.contains(p) == false)
continue;
u32 vi = vmanip.m_area.index(p);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
continue;
u32 i = leaves_a.index(x,y,z);
if(leaves_d[i] == 1) {
bool is_apple = pr.range(0,99) < 10;
if(is_apple_tree && is_apple) {
vmanip.m_data[vi] = applenode;
} else {
vmanip.m_data[vi] = leavesnode;
}
}
}
}
// L-System tree LUA spawner
void spawn_ltree(ServerEnvironment *env, v3s16 p0, INodeDefManager *ndef, TreeDef tree_definition)
{
ServerMap *map = &env->getServerMap();
std::map<v3s16, MapBlock*> modified_blocks;
ManualMapVoxelManipulator vmanip(map);
v3s16 tree_blockp = getNodeBlockPos(p0);
vmanip.initialEmerge(tree_blockp - v3s16(1,1,1), tree_blockp + v3s16(1,3,1));
make_ltree (vmanip, p0, ndef, tree_definition);
vmanip.blitBackAll(&modified_blocks);
// update lighting
std::map<v3s16, MapBlock*> lighting_modified_blocks;
lighting_modified_blocks.insert(modified_blocks.begin(), modified_blocks.end());
map->updateLighting(lighting_modified_blocks, modified_blocks);
// Send a MEET_OTHER event
MapEditEvent event;
event.type = MEET_OTHER;
for(std::map<v3s16, MapBlock*>::iterator
i = modified_blocks.begin();
i != modified_blocks.end(); ++i)
{
event.modified_blocks.insert(i->first);
}
map->dispatchEvent(&event);
}
//L-System tree generator
void make_ltree(ManualMapVoxelManipulator &vmanip, v3s16 p0, INodeDefManager *ndef,
TreeDef tree_definition)
{
MapNode dirtnode(ndef->getId("mapgen_dirt"));
PseudoRandom ps(tree_definition.seed+14002);
// chance of inserting abcd rules
double prop_a = 9;
double prop_b = 8;
double prop_c = 7;
double prop_d = 6;
//randomize tree growth level, minimum=2
s16 iterations = tree_definition.iterations;
if (tree_definition.iterations_random_level>0)
iterations -= ps.range(0,tree_definition.iterations_random_level);
if (iterations<2)
iterations=2;
s16 MAX_ANGLE_OFFSET = 5;
double angle_in_radians = (double)tree_definition.angle*M_PI/180;
double angleOffset_in_radians = (s16)(ps.range(0,1)%MAX_ANGLE_OFFSET)*M_PI/180;
//initialize rotation matrix, position and stacks for branches
core::matrix4 rotation;
rotation = setRotationAxisRadians(rotation, M_PI/2,v3f(0,0,1));
v3f position;
position.X = p0.X;
position.Y = p0.Y;
position.Z = p0.Z;
std::stack <core::matrix4> stack_orientation;
std::stack <v3f> stack_position;
//generate axiom
std::string axiom = tree_definition.initial_axiom;
for(s16 i=0; i<iterations; i++)
{
std::string temp = "";
for(s16 j=0; j<(s16)axiom.size(); j++)
{
char axiom_char = axiom.at(j);
switch (axiom_char)
{
case 'A':
temp+=tree_definition.rules_a;
break;
case 'B':
temp+=tree_definition.rules_b;
break;
case 'C':
temp+=tree_definition.rules_c;
break;
case 'D':
temp+=tree_definition.rules_d;
break;
case 'a':
if (prop_a >= ps.range(1,10))
temp+=tree_definition.rules_a;
break;
case 'b':
if (prop_b >= ps.range(1,10))
temp+=tree_definition.rules_b;
break;
case 'c':
if (prop_c >= ps.range(1,10))
temp+=tree_definition.rules_c;
break;
case 'd':
if (prop_d >= ps.range(1,10))
temp+=tree_definition.rules_d;
break;
default:
temp+=axiom_char;
break;
}
}
axiom=temp;
}
//make sure tree is not floating in the air
if (tree_definition.trunk_type == "double")
{
tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z),dirtnode);
tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z+1),dirtnode);
tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z+1),dirtnode);
}
if (tree_definition.trunk_type == "crossed")
{
tree_node_placement(vmanip,v3f(position.X+1,position.Y-1,position.Z),dirtnode);
tree_node_placement(vmanip,v3f(position.X-1,position.Y-1,position.Z),dirtnode);
tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z+1),dirtnode);
tree_node_placement(vmanip,v3f(position.X,position.Y-1,position.Z-1),dirtnode);
}
/* build tree out of generated axiom
Key for Special L-System Symbols used in Axioms
G - move forward one unit with the pen up
F - move forward one unit with the pen down drawing trunks and branches
f - move forward one unit with the pen down drawing leaves (100% chance)
T - move forward one unit with the pen down drawing trunks only
R - move forward one unit with the pen down placing fruit
A - replace with rules set A
B - replace with rules set B
C - replace with rules set C
D - replace with rules set D
a - replace with rules set A, chance 90%
b - replace with rules set B, chance 80%
c - replace with rules set C, chance 70%
d - replace with rules set D, chance 60%
+ - yaw the turtle right by angle degrees
- - yaw the turtle left by angle degrees
& - pitch the turtle down by angle degrees
^ - pitch the turtle up by angle degrees
/ - roll the turtle to the right by angle degrees
* - roll the turtle to the left by angle degrees
[ - save in stack current state info
] - recover from stack state info
*/
s16 x,y,z;
for(s16 i=0; i<(s16)axiom.size(); i++)
{
char axiom_char = axiom.at(i);
core::matrix4 temp_rotation;
temp_rotation.makeIdentity();
v3f dir;
switch (axiom_char)
{
case 'G':
dir = v3f(1,0,0);
dir = transposeMatrix(rotation,dir);
position+=dir;
break;
case 'T':
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition);
if (tree_definition.trunk_type == "double" && !tree_definition.thin_branches)
{
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z+1),tree_definition);
}
if (tree_definition.trunk_type == "crossed" && !tree_definition.thin_branches)
{
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X-1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z-1),tree_definition);
}
dir = v3f(1,0,0);
dir = transposeMatrix(rotation,dir);
position+=dir;
break;
case 'F':
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition);
if ((stack_orientation.empty() && tree_definition.trunk_type == "double") ||
(!stack_orientation.empty() && tree_definition.trunk_type == "double" && !tree_definition.thin_branches))
{
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z+1),tree_definition);
}
if ((stack_orientation.empty() && tree_definition.trunk_type == "crossed") ||
(!stack_orientation.empty() && tree_definition.trunk_type == "crossed" && !tree_definition.thin_branches))
{
tree_trunk_placement(vmanip,v3f(position.X+1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X-1,position.Y,position.Z),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z+1),tree_definition);
tree_trunk_placement(vmanip,v3f(position.X,position.Y,position.Z-1),tree_definition);
}
if (stack_orientation.empty() == false)
{
s16 size = 1;
for(x=-size; x<=size; x++)
for(y=-size; y<=size; y++)
for(z=-size; z<=size; z++)
if (abs(x) == size && abs(y) == size && abs(z) == size)
{
tree_leaves_placement(vmanip,v3f(position.X+x+1,position.Y+y,position.Z+z),ps.next(), tree_definition);
tree_leaves_placement(vmanip,v3f(position.X+x-1,position.Y+y,position.Z+z),ps.next(), tree_definition);
tree_leaves_placement(vmanip,v3f(position.X+x,position.Y+y,position.Z+z+1),ps.next(), tree_definition);
tree_leaves_placement(vmanip,v3f(position.X+x,position.Y+y,position.Z+z-1),ps.next(), tree_definition);
}
}
dir = v3f(1,0,0);
dir = transposeMatrix(rotation,dir);
position+=dir;
break;
case 'f':
tree_single_leaves_placement(vmanip,v3f(position.X,position.Y,position.Z),ps.next() ,tree_definition);
dir = v3f(1,0,0);
dir = transposeMatrix(rotation,dir);
position+=dir;
break;
case 'R':
tree_fruit_placement(vmanip,v3f(position.X,position.Y,position.Z),tree_definition);
dir = v3f(1,0,0);
dir = transposeMatrix(rotation,dir);
position+=dir;
break;
// turtle orientation commands
case '[':
stack_orientation.push(rotation);
stack_position.push(position);
break;
case ']':
rotation=stack_orientation.top();
stack_orientation.pop();
position=stack_position.top();
stack_position.pop();
break;
case '+':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,0,1));
rotation*=temp_rotation;
break;
case '-':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,0,-1));
rotation*=temp_rotation;
break;
case '&':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,1,0));
rotation*=temp_rotation;
break;
case '^':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians+angleOffset_in_radians,v3f(0,-1,0));
rotation*=temp_rotation;
break;
case '*':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians,v3f(1,0,0));
rotation*=temp_rotation;
break;
case '/':
temp_rotation.makeIdentity();
temp_rotation=setRotationAxisRadians(temp_rotation, angle_in_radians,v3f(-1,0,0));
rotation*=temp_rotation;
break;
default:
break;
}
}
}
void tree_node_placement(ManualMapVoxelManipulator &vmanip, v3f p0,
MapNode node)
{
v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z));
if(vmanip.m_area.contains(p1) == false)
return;
u32 vi = vmanip.m_area.index(p1);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
return;
vmanip.m_data[vmanip.m_area.index(p1)] = node;
}
void tree_trunk_placement(ManualMapVoxelManipulator &vmanip, v3f p0,
TreeDef &tree_definition)
{
v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z));
if(vmanip.m_area.contains(p1) == false)
return;
u32 vi = vmanip.m_area.index(p1);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
return;
vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.trunknode;
}
void tree_leaves_placement(ManualMapVoxelManipulator &vmanip, v3f p0,
PseudoRandom ps ,TreeDef &tree_definition)
{
MapNode leavesnode=tree_definition.leavesnode;
if (ps.range(1,100) > 100-tree_definition.leaves2_chance)
leavesnode=tree_definition.leaves2node;
v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z));
if(vmanip.m_area.contains(p1) == false)
return;
u32 vi = vmanip.m_area.index(p1);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
return;
if (tree_definition.fruit_chance>0)
{
if (ps.range(1,100) > 100-tree_definition.fruit_chance)
vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.fruitnode;
else
vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode;
}
else if (ps.range(1,100) > 20)
vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode;
}
void tree_single_leaves_placement(ManualMapVoxelManipulator &vmanip, v3f p0,
PseudoRandom ps, TreeDef &tree_definition)
{
MapNode leavesnode=tree_definition.leavesnode;
if (ps.range(1,100) > 100-tree_definition.leaves2_chance)
leavesnode=tree_definition.leaves2node;
v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z));
if(vmanip.m_area.contains(p1) == false)
return;
u32 vi = vmanip.m_area.index(p1);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
return;
vmanip.m_data[vmanip.m_area.index(p1)] = leavesnode;
}
void tree_fruit_placement(ManualMapVoxelManipulator &vmanip, v3f p0,
TreeDef &tree_definition)
{
v3s16 p1 = v3s16(myround(p0.X),myround(p0.Y),myround(p0.Z));
if(vmanip.m_area.contains(p1) == false)
return;
u32 vi = vmanip.m_area.index(p1);
if(vmanip.m_data[vi].getContent() != CONTENT_AIR
&& vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
return;
vmanip.m_data[vmanip.m_area.index(p1)] = tree_definition.fruitnode;
}
irr::core::matrix4 setRotationAxisRadians(irr::core::matrix4 M, double angle, v3f axis)
{
double c = cos(angle);
double s = sin(angle);
double t = 1.0 - c;
double tx = t * axis.X;
double ty = t * axis.Y;
double tz = t * axis.Z;
double sx = s * axis.X;
double sy = s * axis.Y;
double sz = s * axis.Z;
M[0] = tx * axis.X + c;
M[1] = tx * axis.Y + sz;
M[2] = tx * axis.Z - sy;
M[4] = ty * axis.X - sz;
M[5] = ty * axis.Y + c;
M[6] = ty * axis.Z + sx;
M[8] = tz * axis.X + sy;
M[9] = tz * axis.Y - sx;
M[10] = tz * axis.Z + c;
return M;
}
v3f transposeMatrix(irr::core::matrix4 M, v3f v)
{
v3f translated;
double x = M[0] * v.X + M[4] * v.Y + M[8] * v.Z +M[12];
double y = M[1] * v.X + M[5] * v.Y + M[9] * v.Z +M[13];
double z = M[2] * v.X + M[6] * v.Y + M[10] * v.Z +M[14];
translated.X=x;
translated.Y=y;
translated.Z=z;
return translated;
}
void make_jungletree(VoxelManipulator &vmanip, v3s16 p0,
INodeDefManager *ndef, int seed)
{
content_t c_tree = ndef->getId("mapgen_jungletree");
content_t c_leaves = ndef->getId("mapgen_jungleleaves");
if (c_tree == CONTENT_IGNORE)
c_tree = ndef->getId("mapgen_tree");
if (c_leaves == CONTENT_IGNORE)
c_leaves = ndef->getId("mapgen_leaves");
MapNode treenode(c_tree);
MapNode leavesnode(c_leaves);
PseudoRandom pr(seed);
for(s16 x=-1; x<=1; x++)
for(s16 z=-1; z<=1; z++)
{
if(pr.range(0, 2) == 0)
continue;
v3s16 p1 = p0 + v3s16(x,0,z);
v3s16 p2 = p0 + v3s16(x,-1,z);
u32 vi1 = vmanip.m_area.index(p1);
u32 vi2 = vmanip.m_area.index(p2);
if (vmanip.m_area.contains(p2) &&
vmanip.m_data[vi2].getContent() == CONTENT_AIR)
vmanip.m_data[vi2] = treenode;
else if (vmanip.m_area.contains(p1) &&
vmanip.m_data[vi1].getContent() == CONTENT_AIR)
vmanip.m_data[vi1] = treenode;
}
vmanip.m_data[vmanip.m_area.index(p0)] = treenode;
s16 trunk_h = pr.range(8, 12);
v3s16 p1 = p0;
for (s16 ii=0; ii<trunk_h; ii++)
{
if (vmanip.m_area.contains(p1)) {
u32 vi = vmanip.m_area.index(p1);
if (vmanip.m_data[vi].getContent() == CONTENT_AIR)
vmanip.m_data[vi] = treenode;
}
p1.Y++;
}
// p1 is now the last piece of the trunk
p1.Y -= 1;
VoxelArea leaves_a(v3s16(-3,-2,-3), v3s16(3,2,3));
//SharedPtr<u8> leaves_d(new u8[leaves_a.getVolume()]);
Buffer<u8> leaves_d(leaves_a.getVolume());
for(s32 i=0; i<leaves_a.getVolume(); i++)
leaves_d[i] = 0;
// Force leaves at near the end of the trunk
{
s16 d = 1;
for(s16 z=-d; z<=d; z++)
for(s16 y=-d; y<=d; y++)
for(s16 x=-d; x<=d; x++)
{
leaves_d[leaves_a.index(v3s16(x,y,z))] = 1;
}
}
// Add leaves randomly
for(u32 iii=0; iii<30; iii++)
{
s16 d = 1;
v3s16 p(
pr.range(leaves_a.MinEdge.X, leaves_a.MaxEdge.X-d),
pr.range(leaves_a.MinEdge.Y, leaves_a.MaxEdge.Y-d),
pr.range(leaves_a.MinEdge.Z, leaves_a.MaxEdge.Z-d)
);
for(s16 z=0; z<=d; z++)
for(s16 y=0; y<=d; y++)
for(s16 x=0; x<=d; x++)
{
leaves_d[leaves_a.index(p+v3s16(x,y,z))] = 1;
}
}
// Blit leaves to vmanip
for(s16 z=leaves_a.MinEdge.Z; z<=leaves_a.MaxEdge.Z; z++)
for(s16 y=leaves_a.MinEdge.Y; y<=leaves_a.MaxEdge.Y; y++)
for(s16 x=leaves_a.MinEdge.X; x<=leaves_a.MaxEdge.X; x++)
{
v3s16 p(x,y,z);
p += p1;
if(vmanip.m_area.contains(p) == false)
continue;
u32 vi = vmanip.m_area.index(p);
if (vmanip.m_data[vi].getContent() != CONTENT_AIR &&
vmanip.m_data[vi].getContent() != CONTENT_IGNORE)
continue;
u32 i = leaves_a.index(x,y,z);
if(leaves_d[i] == 1)
vmanip.m_data[vi] = leavesnode;
}
}
}; // namespace treegen