1
0
mirror of https://github.com/moparisthebest/minetest synced 2024-11-15 13:55:11 -05:00
minetest/src/collision.cpp

583 lines
16 KiB
C++
Raw Normal View History

/*
2013-02-24 12:40:43 -05:00
Minetest
2013-02-24 13:38:45 -05:00
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "collision.h"
#include "mapblock.h"
#include "map.h"
2011-11-14 14:41:30 -05:00
#include "nodedef.h"
#include "gamedef.h"
#ifndef SERVER
#include "clientenvironment.h"
#endif
#include "serverenvironment.h"
#include "serverobject.h"
#include "util/timetaker.h"
#include "profiler.h"
2013-06-30 14:26:01 -04:00
// float error is 10 - 9.96875 = 0.03125
//#define COLL_ZERO 0.032 // broken unit tests
#define COLL_ZERO 0
2013-06-30 14:26:01 -04:00
struct NearbyCollisionInfo {
NearbyCollisionInfo(bool is_ul, bool is_obj, int bouncy,
const v3s16 &pos, const aabb3f &box) :
is_unloaded(is_ul),
is_step_up(false),
is_object(is_obj),
bouncy(bouncy),
position(pos),
box(box)
{}
bool is_unloaded;
bool is_step_up;
bool is_object;
int bouncy;
v3s16 position;
aabb3f box;
};
// Helper function:
// Checks for collision of a moving aabbox with a static aabbox
// Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
// The time after which the collision occurs is stored in dtime.
int axisAlignedCollision(
const aabb3f &staticbox, const aabb3f &movingbox,
const v3f &speed, f32 d, f32 *dtime)
{
//TimeTaker tt("axisAlignedCollision");
2013-06-30 14:26:01 -04:00
f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X) - COLL_ZERO; // reduce box size for solve collision stuck (flying sand)
f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z) - COLL_ZERO;
aabb3f relbox(
movingbox.MinEdge.X - staticbox.MinEdge.X,
movingbox.MinEdge.Y - staticbox.MinEdge.Y,
movingbox.MinEdge.Z - staticbox.MinEdge.Z,
movingbox.MaxEdge.X - staticbox.MinEdge.X,
movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
movingbox.MaxEdge.Z - staticbox.MinEdge.Z
);
if(speed.X > 0) // Check for collision with X- plane
{
if (relbox.MaxEdge.X <= d) {
*dtime = -relbox.MaxEdge.X / speed.X;
if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 0;
}
else if(relbox.MinEdge.X > xsize)
{
return -1;
}
}
else if(speed.X < 0) // Check for collision with X+ plane
{
if (relbox.MinEdge.X >= xsize - d) {
*dtime = (xsize - relbox.MinEdge.X) / speed.X;
if ((relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 0;
}
else if(relbox.MaxEdge.X < 0)
{
return -1;
}
}
// NO else if here
if(speed.Y > 0) // Check for collision with Y- plane
{
if (relbox.MaxEdge.Y <= d) {
*dtime = -relbox.MaxEdge.Y / speed.Y;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 1;
}
else if(relbox.MinEdge.Y > ysize)
{
return -1;
}
}
else if(speed.Y < 0) // Check for collision with Y+ plane
{
if (relbox.MinEdge.Y >= ysize - d) {
*dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Z + speed.Z * (*dtime) < zsize) &&
(relbox.MaxEdge.Z + speed.Z * (*dtime) > COLL_ZERO))
return 1;
}
else if(relbox.MaxEdge.Y < 0)
{
return -1;
}
}
// NO else if here
if(speed.Z > 0) // Check for collision with Z- plane
{
if (relbox.MaxEdge.Z <= d) {
*dtime = -relbox.MaxEdge.Z / speed.Z;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
return 2;
}
//else if(relbox.MinEdge.Z > zsize)
//{
// return -1;
//}
}
else if(speed.Z < 0) // Check for collision with Z+ plane
{
if (relbox.MinEdge.Z >= zsize - d) {
*dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
if ((relbox.MinEdge.X + speed.X * (*dtime) < xsize) &&
(relbox.MaxEdge.X + speed.X * (*dtime) > COLL_ZERO) &&
(relbox.MinEdge.Y + speed.Y * (*dtime) < ysize) &&
(relbox.MaxEdge.Y + speed.Y * (*dtime) > COLL_ZERO))
return 2;
}
//else if(relbox.MaxEdge.Z < 0)
//{
// return -1;
//}
}
return -1;
}
// Helper function:
// Checks if moving the movingbox up by the given distance would hit a ceiling.
bool wouldCollideWithCeiling(
const std::vector<NearbyCollisionInfo> &cinfo,
const aabb3f &movingbox,
f32 y_increase, f32 d)
{
//TimeTaker tt("wouldCollideWithCeiling");
assert(y_increase >= 0); // pre-condition
for (std::vector<NearbyCollisionInfo>::const_iterator it = cinfo.begin();
it != cinfo.end(); ++it) {
const aabb3f &staticbox = it->box;
if ((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
return true;
}
return false;
}
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 03:16:31 -05:00
static inline void getNeighborConnectingFace(v3s16 p, INodeDefManager *nodedef,
Map *map, MapNode n, int v, int *neighbors)
{
MapNode n2 = map->getNodeNoEx(p);
if (nodedef->nodeboxConnects(n, n2, v))
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 03:16:31 -05:00
*neighbors |= v;
}
collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
f32 pos_max_d, const aabb3f &box_0,
f32 stepheight, f32 dtime,
v3f *pos_f, v3f *speed_f,
v3f accel_f, ActiveObject *self,
bool collideWithObjects)
{
static bool time_notification_done = false;
Map *map = &env->getMap();
//TimeTaker tt("collisionMoveSimple");
ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
collisionMoveResult result;
/*
Calculate new velocity
*/
if (dtime > 0.5) {
if (!time_notification_done) {
time_notification_done = true;
infostream << "collisionMoveSimple: maximum step interval exceeded,"
" lost movement details!"<<std::endl;
}
dtime = 0.5;
} else {
time_notification_done = false;
}
*speed_f += accel_f * dtime;
// If there is no speed, there are no collisions
if (speed_f->getLength() == 0)
return result;
// Limit speed for avoiding hangs
speed_f->Y = rangelim(speed_f->Y, -5000, 5000);
speed_f->X = rangelim(speed_f->X, -5000, 5000);
speed_f->Z = rangelim(speed_f->Z, -5000, 5000);
/*
Collect node boxes in movement range
*/
std::vector<NearbyCollisionInfo> cinfo;
{
//TimeTaker tt2("collisionMoveSimple collect boxes");
2016-02-20 03:44:22 -05:00
ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
v3s16 oldpos_i = floatToInt(*pos_f, BS);
v3s16 newpos_i = floatToInt(*pos_f + *speed_f * dtime, BS);
s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
bool any_position_valid = false;
for(s16 x = min_x; x <= max_x; x++)
for(s16 y = min_y; y <= max_y; y++)
for(s16 z = min_z; z <= max_z; z++)
{
2012-09-01 05:58:37 -04:00
v3s16 p(x,y,z);
bool is_position_valid;
MapNode n = map->getNodeNoEx(p, &is_position_valid);
if (is_position_valid) {
// Object collides into walkable nodes
any_position_valid = true;
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 03:16:31 -05:00
INodeDefManager *nodedef = gamedef->getNodeDefManager();
const ContentFeatures &f = nodedef->get(n);
2012-09-01 05:58:37 -04:00
if(f.walkable == false)
continue;
2012-09-01 05:58:37 -04:00
int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
Nodebox: Allow nodeboxes to "connect" We introduce a new nodebox type "connected", and allow these nodes to have optional nodeboxes that connect it to other connecting nodeboxes. This is all done at scenedraw time in the client. The client will inspect the surrounding nodes and if they are to be connected to, it will draw the appropriate connecting nodeboxes to make those connections. In the node_box definition, we have to specify separate nodeboxes for each valid connection. This allows us to make nodes that connect only horizontally (the common case) by providing optional nodeboxes for +x, -x, +z, -z directions. Or this allows us to make wires that can connect up and down, by providing nodeboxes that connect it up and down (+y, -y) as well. The optional nodeboxes can be arrays. They are named "connect_top, "connect_bottom", "connect_front", "connect_left", "connect_back" and "connect_right". Here, "front" means the south facing side of the node that has facedir = 0. Additionally, a "fixed" nodebox list present will always be drawn, so one can make a central post, for instance. This "fixed" nodebox can be omitted, or it can be an array of nodeboxes. Collision boxes are also updated in exactly the same fashion, which allows you to walk over the upper extremities of the individual node boxes, or stand really close to them. You can also walk up node noxes that are small in height, all as expected, and unlike the NDT_FENCELIKE nodes. I've posted a screenshot demonstrating the flexibility at http://i.imgur.com/zaJq8jo.png In the screenshot, all connecting nodes are of this new subtype. Transparent textures render incorrectly, Which I don't think is related to this text, as other nodeboxes also have issues with this. A protocol bump is performed in order to be able to send older clients a nodeblock that is usable for them. In order to avoid abuse of users we send older clients a "full-size" node, so that it's impossible for them to try and walk through a fence or wall that's created in this fashion. This was tested with a pre-bump client connected against a server running the new protocol. These nodes connect to other nodes, and you can select which ones those are by specifying node names (or group names) in the connects_to string array: connects_to = { "group:fence", "default:wood" } By default, nodes do not connect to anything, allowing you to create nodes that always have to be paired in order to connect. lua_api.txt is updated to reflect the extension to the node_box API. Example lua code needed to generate these nodes can be found here: https://gist.github.com/sofar/b381c8c192c8e53e6062
2016-02-25 03:16:31 -05:00
int neighbors = 0;
if (f.drawtype == NDT_NODEBOX && f.node_box.type == NODEBOX_CONNECTED) {
v3s16 p2 = p;
p2.Y++;
getNeighborConnectingFace(p2, nodedef, map, n, 1, &neighbors);
p2 = p;
p2.Y--;
getNeighborConnectingFace(p2, nodedef, map, n, 2, &neighbors);
p2 = p;
p2.Z--;
getNeighborConnectingFace(p2, nodedef, map, n, 4, &neighbors);
p2 = p;
p2.X--;
getNeighborConnectingFace(p2, nodedef, map, n, 8, &neighbors);
p2 = p;
p2.Z++;
getNeighborConnectingFace(p2, nodedef, map, n, 16, &neighbors);
p2 = p;
p2.X++;
getNeighborConnectingFace(p2, nodedef, map, n, 32, &neighbors);
}
std::vector<aabb3f> nodeboxes;
n.getCollisionBoxes(gamedef->ndef(), &nodeboxes, neighbors);
for(std::vector<aabb3f>::iterator
i = nodeboxes.begin();
2015-08-25 16:23:05 -04:00
i != nodeboxes.end(); ++i)
{
aabb3f box = *i;
box.MinEdge += v3f(x, y, z)*BS;
box.MaxEdge += v3f(x, y, z)*BS;
cinfo.push_back(NearbyCollisionInfo(false,
false, n_bouncy_value, p, box));
}
} else {
// Collide with unloaded nodes
2012-09-01 05:58:37 -04:00
aabb3f box = getNodeBox(p, BS);
cinfo.push_back(NearbyCollisionInfo(true, false, 0, p, box));
}
}
// Do not move if world has not loaded yet, since custom node boxes
// are not available for collision detection.
if (!any_position_valid) {
*speed_f = v3f(0, 0, 0);
return result;
}
} // tt2
if(collideWithObjects)
{
ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
//TimeTaker tt3("collisionMoveSimple collect object boxes");
/* add object boxes to cinfo */
std::vector<ActiveObject*> objects;
#ifndef SERVER
ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
if (c_env != 0) {
f32 distance = speed_f->getLength();
std::vector<DistanceSortedActiveObject> clientobjects;
c_env->getActiveObjects(*pos_f, distance * 1.5, clientobjects);
for (size_t i=0; i < clientobjects.size(); i++) {
if ((self == 0) || (self != clientobjects[i].obj)) {
objects.push_back((ActiveObject*)clientobjects[i].obj);
}
}
}
else
#endif
{
ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
if (s_env != NULL) {
f32 distance = speed_f->getLength();
std::vector<u16> s_objects;
s_env->getObjectsInsideRadius(s_objects, *pos_f, distance * 1.5);
2015-08-25 16:23:05 -04:00
for (std::vector<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); ++iter) {
ServerActiveObject *current = s_env->getActiveObject(*iter);
if ((self == 0) || (self != current)) {
objects.push_back((ActiveObject*)current);
}
}
}
}
for (std::vector<ActiveObject*>::const_iterator iter = objects.begin();
iter != objects.end(); ++iter) {
ActiveObject *object = *iter;
if (object != NULL) {
aabb3f object_collisionbox;
if (object->getCollisionBox(&object_collisionbox) &&
object->collideWithObjects()) {
cinfo.push_back(NearbyCollisionInfo(false, true, 0, v3s16(), object_collisionbox));
}
}
}
} //tt3
/*
Collision detection
*/
/*
Collision uncertainty radius
Make it a bit larger than the maximum distance of movement
*/
f32 d = pos_max_d * 1.1;
// A fairly large value in here makes moving smoother
//f32 d = 0.15*BS;
// This should always apply, otherwise there are glitches
assert(d > pos_max_d); // invariant
int loopcount = 0;
while(dtime > BS * 1e-10) {
//TimeTaker tt3("collisionMoveSimple dtime loop");
2016-02-20 03:44:22 -05:00
ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
// Avoid infinite loop
loopcount++;
if (loopcount >= 100) {
warningstream << "collisionMoveSimple: Loop count exceeded, aborting to avoid infiniite loop" << std::endl;
break;
}
aabb3f movingbox = box_0;
movingbox.MinEdge += *pos_f;
movingbox.MaxEdge += *pos_f;
int nearest_collided = -1;
f32 nearest_dtime = dtime;
2016-02-20 03:44:22 -05:00
int nearest_boxindex = -1;
/*
Go through every nodebox, find nearest collision
*/
for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
NearbyCollisionInfo box_info = cinfo[boxindex];
// Ignore if already stepped up this nodebox.
if (box_info.is_step_up)
continue;
// Find nearest collision of the two boxes (raytracing-like)
f32 dtime_tmp;
int collided = axisAlignedCollision(box_info.box,
movingbox, *speed_f, d, &dtime_tmp);
if (collided == -1 || dtime_tmp >= nearest_dtime)
continue;
nearest_dtime = dtime_tmp;
nearest_collided = collided;
nearest_boxindex = boxindex;
}
if (nearest_collided == -1) {
// No collision with any collision box.
*pos_f += *speed_f * dtime;
dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers
} else {
// Otherwise, a collision occurred.
NearbyCollisionInfo &nearest_info = cinfo[nearest_boxindex];
const aabb3f& cbox = nearest_info.box;
// Check for stairs.
bool step_up = (nearest_collided != 1) && // must not be Y direction
(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
(!wouldCollideWithCeiling(cinfo, movingbox,
cbox.MaxEdge.Y - movingbox.MinEdge.Y,
d));
2012-09-01 05:58:37 -04:00
// Get bounce multiplier
bool bouncy = (nearest_info.bouncy >= 1);
float bounce = -(float)nearest_info.bouncy / 100.0;
2012-09-01 05:58:37 -04:00
// Move to the point of collision and reduce dtime by nearest_dtime
if (nearest_dtime < 0) {
// Handle negative nearest_dtime (can be caused by the d allowance)
if (!step_up) {
if (nearest_collided == 0)
pos_f->X += speed_f->X * nearest_dtime;
if (nearest_collided == 1)
pos_f->Y += speed_f->Y * nearest_dtime;
if (nearest_collided == 2)
pos_f->Z += speed_f->Z * nearest_dtime;
}
} else {
*pos_f += *speed_f * nearest_dtime;
dtime -= nearest_dtime;
}
2012-09-01 05:58:37 -04:00
bool is_collision = true;
if (nearest_info.is_unloaded)
2012-09-01 05:58:37 -04:00
is_collision = false;
CollisionInfo info;
if (nearest_info.is_object)
info.type = COLLISION_OBJECT;
else
info.type = COLLISION_NODE;
info.node_p = nearest_info.position;
2012-09-01 05:58:37 -04:00
info.bouncy = bouncy;
info.old_speed = *speed_f;
// Set the speed component that caused the collision to zero
if (step_up) {
// Special case: Handle stairs
nearest_info.is_step_up = true;
2012-09-01 05:58:37 -04:00
is_collision = false;
} else if (nearest_collided == 0) { // X
if (fabs(speed_f->X) > BS * 3)
speed_f->X *= bounce;
2012-09-01 05:58:37 -04:00
else
speed_f->X = 0;
result.collides = true;
result.collides_xz = true;
} else if (nearest_collided == 1) { // Y
if(fabs(speed_f->Y) > BS * 3)
speed_f->Y *= bounce;
else
speed_f->Y = 0;
result.collides = true;
} else if (nearest_collided == 2) { // Z
if (fabs(speed_f->Z) > BS * 3)
speed_f->Z *= bounce;
2012-09-01 05:58:37 -04:00
else
speed_f->Z = 0;
result.collides = true;
result.collides_xz = true;
}
2012-09-01 05:58:37 -04:00
info.new_speed = *speed_f;
if (info.new_speed.getDistanceFrom(info.old_speed) < 0.1 * BS)
2012-09-01 05:58:37 -04:00
is_collision = false;
if (is_collision) {
2012-09-01 05:58:37 -04:00
result.collisions.push_back(info);
}
}
}
/*
Final touches: Check if standing on ground, step up stairs.
*/
aabb3f box = box_0;
box.MinEdge += *pos_f;
box.MaxEdge += *pos_f;
for (u32 boxindex = 0; boxindex < cinfo.size(); boxindex++) {
NearbyCollisionInfo &box_info = cinfo[boxindex];
const aabb3f &cbox = box_info.box;
/*
See if the object is touching ground.
Object touches ground if object's minimum Y is near node's
maximum Y and object's X-Z-area overlaps with the node's
X-Z-area.
Use 0.15*BS so that it is easier to get on a node.
*/
if (cbox.MaxEdge.X - d > box.MinEdge.X && cbox.MinEdge.X + d < box.MaxEdge.X &&
cbox.MaxEdge.Z - d > box.MinEdge.Z &&
cbox.MinEdge.Z + d < box.MaxEdge.Z) {
if (box_info.is_step_up) {
pos_f->Y += cbox.MaxEdge.Y - box.MinEdge.Y;
box = box_0;
box.MinEdge += *pos_f;
box.MaxEdge += *pos_f;
}
if (fabs(cbox.MaxEdge.Y - box.MinEdge.Y) < 0.15 * BS) {
result.touching_ground = true;
if (box_info.is_object)
result.standing_on_object = true;
if (box_info.is_unloaded)
result.standing_on_unloaded = true;
}
}
}
return result;
}