mirror of
https://github.com/moparisthebest/mail
synced 2024-11-22 00:42:20 -05:00
removed crypto.js and jsbn libs
This commit is contained in:
parent
4d47a3cdec
commit
d3ebb8dc50
@ -1,213 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
(function () {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var BlockCipher = C_lib.BlockCipher;
|
||||
var C_algo = C.algo;
|
||||
|
||||
// Lookup tables
|
||||
var SBOX = [];
|
||||
var INV_SBOX = [];
|
||||
var SUB_MIX_0 = [];
|
||||
var SUB_MIX_1 = [];
|
||||
var SUB_MIX_2 = [];
|
||||
var SUB_MIX_3 = [];
|
||||
var INV_SUB_MIX_0 = [];
|
||||
var INV_SUB_MIX_1 = [];
|
||||
var INV_SUB_MIX_2 = [];
|
||||
var INV_SUB_MIX_3 = [];
|
||||
|
||||
// Compute lookup tables
|
||||
(function () {
|
||||
// Compute double table
|
||||
var d = [];
|
||||
for (var i = 0; i < 256; i++) {
|
||||
if (i < 128) {
|
||||
d[i] = i << 1;
|
||||
} else {
|
||||
d[i] = (i << 1) ^ 0x11b;
|
||||
}
|
||||
}
|
||||
|
||||
// Walk GF(2^8)
|
||||
var x = 0;
|
||||
var xi = 0;
|
||||
for (var i = 0; i < 256; i++) {
|
||||
// Compute sbox
|
||||
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
|
||||
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
|
||||
SBOX[x] = sx;
|
||||
INV_SBOX[sx] = x;
|
||||
|
||||
// Compute multiplication
|
||||
var x2 = d[x];
|
||||
var x4 = d[x2];
|
||||
var x8 = d[x4];
|
||||
|
||||
// Compute sub bytes, mix columns tables
|
||||
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
|
||||
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
|
||||
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
|
||||
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
|
||||
SUB_MIX_3[x] = t;
|
||||
|
||||
// Compute inv sub bytes, inv mix columns tables
|
||||
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
|
||||
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
|
||||
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
|
||||
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
|
||||
INV_SUB_MIX_3[sx] = t;
|
||||
|
||||
// Compute next counter
|
||||
if (!x) {
|
||||
x = xi = 1;
|
||||
} else {
|
||||
x = x2 ^ d[d[d[x8 ^ x2]]];
|
||||
xi ^= d[d[xi]];
|
||||
}
|
||||
}
|
||||
}());
|
||||
|
||||
// Precomputed Rcon lookup
|
||||
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
|
||||
|
||||
/**
|
||||
* AES block cipher algorithm.
|
||||
*/
|
||||
var AES = C_algo.AES = BlockCipher.extend({
|
||||
_doReset: function () {
|
||||
// Shortcuts
|
||||
var key = this._key;
|
||||
var keyWords = key.words;
|
||||
var keySize = key.sigBytes / 4;
|
||||
|
||||
// Compute number of rounds
|
||||
var nRounds = this._nRounds = keySize + 6
|
||||
|
||||
// Compute number of key schedule rows
|
||||
var ksRows = (nRounds + 1) * 4;
|
||||
|
||||
// Compute key schedule
|
||||
var keySchedule = this._keySchedule = [];
|
||||
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
|
||||
if (ksRow < keySize) {
|
||||
keySchedule[ksRow] = keyWords[ksRow];
|
||||
} else {
|
||||
var t = keySchedule[ksRow - 1];
|
||||
|
||||
if (!(ksRow % keySize)) {
|
||||
// Rot word
|
||||
t = (t << 8) | (t >>> 24);
|
||||
|
||||
// Sub word
|
||||
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
|
||||
|
||||
// Mix Rcon
|
||||
t ^= RCON[(ksRow / keySize) | 0] << 24;
|
||||
} else if (keySize > 6 && ksRow % keySize == 4) {
|
||||
// Sub word
|
||||
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
|
||||
}
|
||||
|
||||
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute inv key schedule
|
||||
var invKeySchedule = this._invKeySchedule = [];
|
||||
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
|
||||
var ksRow = ksRows - invKsRow;
|
||||
|
||||
if (invKsRow % 4) {
|
||||
var t = keySchedule[ksRow];
|
||||
} else {
|
||||
var t = keySchedule[ksRow - 4];
|
||||
}
|
||||
|
||||
if (invKsRow < 4 || ksRow <= 4) {
|
||||
invKeySchedule[invKsRow] = t;
|
||||
} else {
|
||||
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
|
||||
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
encryptBlock: function (M, offset) {
|
||||
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
|
||||
},
|
||||
|
||||
decryptBlock: function (M, offset) {
|
||||
// Swap 2nd and 4th rows
|
||||
var t = M[offset + 1];
|
||||
M[offset + 1] = M[offset + 3];
|
||||
M[offset + 3] = t;
|
||||
|
||||
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
|
||||
|
||||
// Inv swap 2nd and 4th rows
|
||||
var t = M[offset + 1];
|
||||
M[offset + 1] = M[offset + 3];
|
||||
M[offset + 3] = t;
|
||||
},
|
||||
|
||||
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
|
||||
// Shortcut
|
||||
var nRounds = this._nRounds;
|
||||
|
||||
// Get input, add round key
|
||||
var s0 = M[offset] ^ keySchedule[0];
|
||||
var s1 = M[offset + 1] ^ keySchedule[1];
|
||||
var s2 = M[offset + 2] ^ keySchedule[2];
|
||||
var s3 = M[offset + 3] ^ keySchedule[3];
|
||||
|
||||
// Key schedule row counter
|
||||
var ksRow = 4;
|
||||
|
||||
// Rounds
|
||||
for (var round = 1; round < nRounds; round++) {
|
||||
// Shift rows, sub bytes, mix columns, add round key
|
||||
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
|
||||
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
|
||||
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
|
||||
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
|
||||
|
||||
// Update state
|
||||
s0 = t0;
|
||||
s1 = t1;
|
||||
s2 = t2;
|
||||
s3 = t3;
|
||||
}
|
||||
|
||||
// Shift rows, sub bytes, add round key
|
||||
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
|
||||
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
|
||||
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
|
||||
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
|
||||
|
||||
// Set output
|
||||
M[offset] = t0;
|
||||
M[offset + 1] = t1;
|
||||
M[offset + 2] = t2;
|
||||
M[offset + 3] = t3;
|
||||
},
|
||||
|
||||
keySize: 256/32
|
||||
});
|
||||
|
||||
/**
|
||||
* Shortcut functions to the cipher's object interface.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
|
||||
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
|
||||
*/
|
||||
C.AES = BlockCipher._createHelper(AES);
|
||||
}());
|
@ -1,863 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
/**
|
||||
* Cipher core components.
|
||||
*/
|
||||
CryptoJS.lib.Cipher || (function (undefined) {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var Base = C_lib.Base;
|
||||
var WordArray = C_lib.WordArray;
|
||||
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
|
||||
var C_enc = C.enc;
|
||||
var Utf8 = C_enc.Utf8;
|
||||
var Base64 = C_enc.Base64;
|
||||
var C_algo = C.algo;
|
||||
var EvpKDF = C_algo.EvpKDF;
|
||||
|
||||
/**
|
||||
* Abstract base cipher template.
|
||||
*
|
||||
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
|
||||
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
|
||||
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
|
||||
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
|
||||
*/
|
||||
var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*
|
||||
* @property {WordArray} iv The IV to use for this operation.
|
||||
*/
|
||||
cfg: Base.extend(),
|
||||
|
||||
/**
|
||||
* Creates this cipher in encryption mode.
|
||||
*
|
||||
* @param {WordArray} key The key.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {Cipher} A cipher instance.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
|
||||
*/
|
||||
createEncryptor: function (key, cfg) {
|
||||
return this.create(this._ENC_XFORM_MODE, key, cfg);
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates this cipher in decryption mode.
|
||||
*
|
||||
* @param {WordArray} key The key.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {Cipher} A cipher instance.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
|
||||
*/
|
||||
createDecryptor: function (key, cfg) {
|
||||
return this.create(this._DEC_XFORM_MODE, key, cfg);
|
||||
},
|
||||
|
||||
/**
|
||||
* Initializes a newly created cipher.
|
||||
*
|
||||
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
|
||||
* @param {WordArray} key The key.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
|
||||
*/
|
||||
init: function (xformMode, key, cfg) {
|
||||
// Apply config defaults
|
||||
this.cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Store transform mode and key
|
||||
this._xformMode = xformMode;
|
||||
this._key = key;
|
||||
|
||||
// Set initial values
|
||||
this.reset();
|
||||
},
|
||||
|
||||
/**
|
||||
* Resets this cipher to its initial state.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* cipher.reset();
|
||||
*/
|
||||
reset: function () {
|
||||
// Reset data buffer
|
||||
BufferedBlockAlgorithm.reset.call(this);
|
||||
|
||||
// Perform concrete-cipher logic
|
||||
this._doReset();
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds data to be encrypted or decrypted.
|
||||
*
|
||||
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
|
||||
*
|
||||
* @return {WordArray} The data after processing.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var encrypted = cipher.process('data');
|
||||
* var encrypted = cipher.process(wordArray);
|
||||
*/
|
||||
process: function (dataUpdate) {
|
||||
// Append
|
||||
this._append(dataUpdate);
|
||||
|
||||
// Process available blocks
|
||||
return this._process();
|
||||
},
|
||||
|
||||
/**
|
||||
* Finalizes the encryption or decryption process.
|
||||
* Note that the finalize operation is effectively a destructive, read-once operation.
|
||||
*
|
||||
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
|
||||
*
|
||||
* @return {WordArray} The data after final processing.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var encrypted = cipher.finalize();
|
||||
* var encrypted = cipher.finalize('data');
|
||||
* var encrypted = cipher.finalize(wordArray);
|
||||
*/
|
||||
finalize: function (dataUpdate) {
|
||||
// Final data update
|
||||
if (dataUpdate) {
|
||||
this._append(dataUpdate);
|
||||
}
|
||||
|
||||
// Perform concrete-cipher logic
|
||||
var finalProcessedData = this._doFinalize();
|
||||
|
||||
return finalProcessedData;
|
||||
},
|
||||
|
||||
keySize: 128/32,
|
||||
|
||||
ivSize: 128/32,
|
||||
|
||||
_ENC_XFORM_MODE: 1,
|
||||
|
||||
_DEC_XFORM_MODE: 2,
|
||||
|
||||
/**
|
||||
* Creates shortcut functions to a cipher's object interface.
|
||||
*
|
||||
* @param {Cipher} cipher The cipher to create a helper for.
|
||||
*
|
||||
* @return {Object} An object with encrypt and decrypt shortcut functions.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
|
||||
*/
|
||||
_createHelper: (function () {
|
||||
function selectCipherStrategy(key) {
|
||||
if (typeof key == 'string') {
|
||||
return PasswordBasedCipher;
|
||||
} else {
|
||||
return SerializableCipher;
|
||||
}
|
||||
}
|
||||
|
||||
return function (cipher) {
|
||||
return {
|
||||
encrypt: function (message, key, cfg) {
|
||||
return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
|
||||
},
|
||||
|
||||
decrypt: function (ciphertext, key, cfg) {
|
||||
return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
|
||||
}
|
||||
};
|
||||
};
|
||||
}())
|
||||
});
|
||||
|
||||
/**
|
||||
* Abstract base stream cipher template.
|
||||
*
|
||||
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
|
||||
*/
|
||||
var StreamCipher = C_lib.StreamCipher = Cipher.extend({
|
||||
_doFinalize: function () {
|
||||
// Process partial blocks
|
||||
var finalProcessedBlocks = this._process(!!'flush');
|
||||
|
||||
return finalProcessedBlocks;
|
||||
},
|
||||
|
||||
blockSize: 1
|
||||
});
|
||||
|
||||
/**
|
||||
* Mode namespace.
|
||||
*/
|
||||
var C_mode = C.mode = {};
|
||||
|
||||
/**
|
||||
* Abstract base block cipher mode template.
|
||||
*/
|
||||
var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
|
||||
/**
|
||||
* Creates this mode for encryption.
|
||||
*
|
||||
* @param {Cipher} cipher A block cipher instance.
|
||||
* @param {Array} iv The IV words.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
|
||||
*/
|
||||
createEncryptor: function (cipher, iv) {
|
||||
return this.Encryptor.create(cipher, iv);
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates this mode for decryption.
|
||||
*
|
||||
* @param {Cipher} cipher A block cipher instance.
|
||||
* @param {Array} iv The IV words.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
|
||||
*/
|
||||
createDecryptor: function (cipher, iv) {
|
||||
return this.Decryptor.create(cipher, iv);
|
||||
},
|
||||
|
||||
/**
|
||||
* Initializes a newly created mode.
|
||||
*
|
||||
* @param {Cipher} cipher A block cipher instance.
|
||||
* @param {Array} iv The IV words.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
|
||||
*/
|
||||
init: function (cipher, iv) {
|
||||
this._cipher = cipher;
|
||||
this._iv = iv;
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Cipher Block Chaining mode.
|
||||
*/
|
||||
var CBC = C_mode.CBC = (function () {
|
||||
/**
|
||||
* Abstract base CBC mode.
|
||||
*/
|
||||
var CBC = BlockCipherMode.extend();
|
||||
|
||||
/**
|
||||
* CBC encryptor.
|
||||
*/
|
||||
CBC.Encryptor = CBC.extend({
|
||||
/**
|
||||
* Processes the data block at offset.
|
||||
*
|
||||
* @param {Array} words The data words to operate on.
|
||||
* @param {number} offset The offset where the block starts.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* mode.processBlock(data.words, offset);
|
||||
*/
|
||||
processBlock: function (words, offset) {
|
||||
// Shortcuts
|
||||
var cipher = this._cipher;
|
||||
var blockSize = cipher.blockSize;
|
||||
|
||||
// XOR and encrypt
|
||||
xorBlock.call(this, words, offset, blockSize);
|
||||
cipher.encryptBlock(words, offset);
|
||||
|
||||
// Remember this block to use with next block
|
||||
this._prevBlock = words.slice(offset, offset + blockSize);
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* CBC decryptor.
|
||||
*/
|
||||
CBC.Decryptor = CBC.extend({
|
||||
/**
|
||||
* Processes the data block at offset.
|
||||
*
|
||||
* @param {Array} words The data words to operate on.
|
||||
* @param {number} offset The offset where the block starts.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* mode.processBlock(data.words, offset);
|
||||
*/
|
||||
processBlock: function (words, offset) {
|
||||
// Shortcuts
|
||||
var cipher = this._cipher;
|
||||
var blockSize = cipher.blockSize;
|
||||
|
||||
// Remember this block to use with next block
|
||||
var thisBlock = words.slice(offset, offset + blockSize);
|
||||
|
||||
// Decrypt and XOR
|
||||
cipher.decryptBlock(words, offset);
|
||||
xorBlock.call(this, words, offset, blockSize);
|
||||
|
||||
// This block becomes the previous block
|
||||
this._prevBlock = thisBlock;
|
||||
}
|
||||
});
|
||||
|
||||
function xorBlock(words, offset, blockSize) {
|
||||
// Shortcut
|
||||
var iv = this._iv;
|
||||
|
||||
// Choose mixing block
|
||||
if (iv) {
|
||||
var block = iv;
|
||||
|
||||
// Remove IV for subsequent blocks
|
||||
this._iv = undefined;
|
||||
} else {
|
||||
var block = this._prevBlock;
|
||||
}
|
||||
|
||||
// XOR blocks
|
||||
for (var i = 0; i < blockSize; i++) {
|
||||
words[offset + i] ^= block[i];
|
||||
}
|
||||
}
|
||||
|
||||
return CBC;
|
||||
}());
|
||||
|
||||
/**
|
||||
* Padding namespace.
|
||||
*/
|
||||
var C_pad = C.pad = {};
|
||||
|
||||
/**
|
||||
* PKCS #5/7 padding strategy.
|
||||
*/
|
||||
var Pkcs7 = C_pad.Pkcs7 = {
|
||||
/**
|
||||
* Pads data using the algorithm defined in PKCS #5/7.
|
||||
*
|
||||
* @param {WordArray} data The data to pad.
|
||||
* @param {number} blockSize The multiple that the data should be padded to.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
|
||||
*/
|
||||
pad: function (data, blockSize) {
|
||||
// Shortcut
|
||||
var blockSizeBytes = blockSize * 4;
|
||||
|
||||
// Count padding bytes
|
||||
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
|
||||
|
||||
// Create padding word
|
||||
var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
|
||||
|
||||
// Create padding
|
||||
var paddingWords = [];
|
||||
for (var i = 0; i < nPaddingBytes; i += 4) {
|
||||
paddingWords.push(paddingWord);
|
||||
}
|
||||
var padding = WordArray.create(paddingWords, nPaddingBytes);
|
||||
|
||||
// Add padding
|
||||
data.concat(padding);
|
||||
},
|
||||
|
||||
/**
|
||||
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
|
||||
*
|
||||
* @param {WordArray} data The data to unpad.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* CryptoJS.pad.Pkcs7.unpad(wordArray);
|
||||
*/
|
||||
unpad: function (data) {
|
||||
// Get number of padding bytes from last byte
|
||||
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
|
||||
|
||||
// Remove padding
|
||||
data.sigBytes -= nPaddingBytes;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract base block cipher template.
|
||||
*
|
||||
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
|
||||
*/
|
||||
var BlockCipher = C_lib.BlockCipher = Cipher.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*
|
||||
* @property {Mode} mode The block mode to use. Default: CBC
|
||||
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
|
||||
*/
|
||||
cfg: Cipher.cfg.extend({
|
||||
mode: CBC,
|
||||
padding: Pkcs7
|
||||
}),
|
||||
|
||||
reset: function () {
|
||||
// Reset cipher
|
||||
Cipher.reset.call(this);
|
||||
|
||||
// Shortcuts
|
||||
var cfg = this.cfg;
|
||||
var iv = cfg.iv;
|
||||
var mode = cfg.mode;
|
||||
|
||||
// Reset block mode
|
||||
if (this._xformMode == this._ENC_XFORM_MODE) {
|
||||
var modeCreator = mode.createEncryptor;
|
||||
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
|
||||
var modeCreator = mode.createDecryptor;
|
||||
|
||||
// Keep at least one block in the buffer for unpadding
|
||||
this._minBufferSize = 1;
|
||||
}
|
||||
this._mode = modeCreator.call(mode, this, iv && iv.words);
|
||||
},
|
||||
|
||||
_doProcessBlock: function (words, offset) {
|
||||
this._mode.processBlock(words, offset);
|
||||
},
|
||||
|
||||
_doFinalize: function () {
|
||||
// Shortcut
|
||||
var padding = this.cfg.padding;
|
||||
|
||||
// Finalize
|
||||
if (this._xformMode == this._ENC_XFORM_MODE) {
|
||||
// Pad data
|
||||
padding.pad(this._data, this.blockSize);
|
||||
|
||||
// Process final blocks
|
||||
var finalProcessedBlocks = this._process(!!'flush');
|
||||
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
|
||||
// Process final blocks
|
||||
var finalProcessedBlocks = this._process(!!'flush');
|
||||
|
||||
// Unpad data
|
||||
padding.unpad(finalProcessedBlocks);
|
||||
}
|
||||
|
||||
return finalProcessedBlocks;
|
||||
},
|
||||
|
||||
blockSize: 128/32
|
||||
});
|
||||
|
||||
/**
|
||||
* A collection of cipher parameters.
|
||||
*
|
||||
* @property {WordArray} ciphertext The raw ciphertext.
|
||||
* @property {WordArray} key The key to this ciphertext.
|
||||
* @property {WordArray} iv The IV used in the ciphering operation.
|
||||
* @property {WordArray} salt The salt used with a key derivation function.
|
||||
* @property {Cipher} algorithm The cipher algorithm.
|
||||
* @property {Mode} mode The block mode used in the ciphering operation.
|
||||
* @property {Padding} padding The padding scheme used in the ciphering operation.
|
||||
* @property {number} blockSize The block size of the cipher.
|
||||
* @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
|
||||
*/
|
||||
var CipherParams = C_lib.CipherParams = Base.extend({
|
||||
/**
|
||||
* Initializes a newly created cipher params object.
|
||||
*
|
||||
* @param {Object} cipherParams An object with any of the possible cipher parameters.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var cipherParams = CryptoJS.lib.CipherParams.create({
|
||||
* ciphertext: ciphertextWordArray,
|
||||
* key: keyWordArray,
|
||||
* iv: ivWordArray,
|
||||
* salt: saltWordArray,
|
||||
* algorithm: CryptoJS.algo.AES,
|
||||
* mode: CryptoJS.mode.CBC,
|
||||
* padding: CryptoJS.pad.PKCS7,
|
||||
* blockSize: 4,
|
||||
* formatter: CryptoJS.format.OpenSSL
|
||||
* });
|
||||
*/
|
||||
init: function (cipherParams) {
|
||||
this.mixIn(cipherParams);
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts this cipher params object to a string.
|
||||
*
|
||||
* @param {Format} formatter (Optional) The formatting strategy to use.
|
||||
*
|
||||
* @return {string} The stringified cipher params.
|
||||
*
|
||||
* @throws Error If neither the formatter nor the default formatter is set.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var string = cipherParams + '';
|
||||
* var string = cipherParams.toString();
|
||||
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
|
||||
*/
|
||||
toString: function (formatter) {
|
||||
return (formatter || this.formatter).stringify(this);
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Format namespace.
|
||||
*/
|
||||
var C_format = C.format = {};
|
||||
|
||||
/**
|
||||
* OpenSSL formatting strategy.
|
||||
*/
|
||||
var OpenSSLFormatter = C_format.OpenSSL = {
|
||||
/**
|
||||
* Converts a cipher params object to an OpenSSL-compatible string.
|
||||
*
|
||||
* @param {CipherParams} cipherParams The cipher params object.
|
||||
*
|
||||
* @return {string} The OpenSSL-compatible string.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
|
||||
*/
|
||||
stringify: function (cipherParams) {
|
||||
// Shortcuts
|
||||
var ciphertext = cipherParams.ciphertext;
|
||||
var salt = cipherParams.salt;
|
||||
|
||||
// Format
|
||||
if (salt) {
|
||||
var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
|
||||
} else {
|
||||
var wordArray = ciphertext;
|
||||
}
|
||||
|
||||
return wordArray.toString(Base64);
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts an OpenSSL-compatible string to a cipher params object.
|
||||
*
|
||||
* @param {string} openSSLStr The OpenSSL-compatible string.
|
||||
*
|
||||
* @return {CipherParams} The cipher params object.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
|
||||
*/
|
||||
parse: function (openSSLStr) {
|
||||
// Parse base64
|
||||
var ciphertext = Base64.parse(openSSLStr);
|
||||
|
||||
// Shortcut
|
||||
var ciphertextWords = ciphertext.words;
|
||||
|
||||
// Test for salt
|
||||
if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
|
||||
// Extract salt
|
||||
var salt = WordArray.create(ciphertextWords.slice(2, 4));
|
||||
|
||||
// Remove salt from ciphertext
|
||||
ciphertextWords.splice(0, 4);
|
||||
ciphertext.sigBytes -= 16;
|
||||
}
|
||||
|
||||
return CipherParams.create({ ciphertext: ciphertext, salt: salt });
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
|
||||
*/
|
||||
var SerializableCipher = C_lib.SerializableCipher = Base.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*
|
||||
* @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
|
||||
*/
|
||||
cfg: Base.extend({
|
||||
format: OpenSSLFormatter
|
||||
}),
|
||||
|
||||
/**
|
||||
* Encrypts a message.
|
||||
*
|
||||
* @param {Cipher} cipher The cipher algorithm to use.
|
||||
* @param {WordArray|string} message The message to encrypt.
|
||||
* @param {WordArray} key The key.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {CipherParams} A cipher params object.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
|
||||
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
|
||||
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
|
||||
*/
|
||||
encrypt: function (cipher, message, key, cfg) {
|
||||
// Apply config defaults
|
||||
cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Encrypt
|
||||
var encryptor = cipher.createEncryptor(key, cfg);
|
||||
var ciphertext = encryptor.finalize(message);
|
||||
|
||||
// Shortcut
|
||||
var cipherCfg = encryptor.cfg;
|
||||
|
||||
// Create and return serializable cipher params
|
||||
return CipherParams.create({
|
||||
ciphertext: ciphertext,
|
||||
key: key,
|
||||
iv: cipherCfg.iv,
|
||||
algorithm: cipher,
|
||||
mode: cipherCfg.mode,
|
||||
padding: cipherCfg.padding,
|
||||
blockSize: cipher.blockSize,
|
||||
formatter: cfg.format
|
||||
});
|
||||
},
|
||||
|
||||
/**
|
||||
* Decrypts serialized ciphertext.
|
||||
*
|
||||
* @param {Cipher} cipher The cipher algorithm to use.
|
||||
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
|
||||
* @param {WordArray} key The key.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {WordArray} The plaintext.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
|
||||
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
|
||||
*/
|
||||
decrypt: function (cipher, ciphertext, key, cfg) {
|
||||
// Apply config defaults
|
||||
cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Convert string to CipherParams
|
||||
ciphertext = this._parse(ciphertext, cfg.format);
|
||||
|
||||
// Decrypt
|
||||
var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
|
||||
|
||||
return plaintext;
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts serialized ciphertext to CipherParams,
|
||||
* else assumed CipherParams already and returns ciphertext unchanged.
|
||||
*
|
||||
* @param {CipherParams|string} ciphertext The ciphertext.
|
||||
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
|
||||
*
|
||||
* @return {CipherParams} The unserialized ciphertext.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
|
||||
*/
|
||||
_parse: function (ciphertext, format) {
|
||||
if (typeof ciphertext == 'string') {
|
||||
return format.parse(ciphertext, this);
|
||||
} else {
|
||||
return ciphertext;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Key derivation function namespace.
|
||||
*/
|
||||
var C_kdf = C.kdf = {};
|
||||
|
||||
/**
|
||||
* OpenSSL key derivation function.
|
||||
*/
|
||||
var OpenSSLKdf = C_kdf.OpenSSL = {
|
||||
/**
|
||||
* Derives a key and IV from a password.
|
||||
*
|
||||
* @param {string} password The password to derive from.
|
||||
* @param {number} keySize The size in words of the key to generate.
|
||||
* @param {number} ivSize The size in words of the IV to generate.
|
||||
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
|
||||
*
|
||||
* @return {CipherParams} A cipher params object with the key, IV, and salt.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
|
||||
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
|
||||
*/
|
||||
execute: function (password, keySize, ivSize, salt) {
|
||||
// Generate random salt
|
||||
if (!salt) {
|
||||
salt = WordArray.random(64/8);
|
||||
}
|
||||
|
||||
// Derive key and IV
|
||||
var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
|
||||
|
||||
// Separate key and IV
|
||||
var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
|
||||
key.sigBytes = keySize * 4;
|
||||
|
||||
// Return params
|
||||
return CipherParams.create({ key: key, iv: iv, salt: salt });
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A serializable cipher wrapper that derives the key from a password,
|
||||
* and returns ciphertext as a serializable cipher params object.
|
||||
*/
|
||||
var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*
|
||||
* @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
|
||||
*/
|
||||
cfg: SerializableCipher.cfg.extend({
|
||||
kdf: OpenSSLKdf
|
||||
}),
|
||||
|
||||
/**
|
||||
* Encrypts a message using a password.
|
||||
*
|
||||
* @param {Cipher} cipher The cipher algorithm to use.
|
||||
* @param {WordArray|string} message The message to encrypt.
|
||||
* @param {string} password The password.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {CipherParams} A cipher params object.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
|
||||
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
|
||||
*/
|
||||
encrypt: function (cipher, message, password, cfg) {
|
||||
// Apply config defaults
|
||||
cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Derive key and other params
|
||||
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
|
||||
|
||||
// Add IV to config
|
||||
cfg.iv = derivedParams.iv;
|
||||
|
||||
// Encrypt
|
||||
var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
|
||||
|
||||
// Mix in derived params
|
||||
ciphertext.mixIn(derivedParams);
|
||||
|
||||
return ciphertext;
|
||||
},
|
||||
|
||||
/**
|
||||
* Decrypts serialized ciphertext using a password.
|
||||
*
|
||||
* @param {Cipher} cipher The cipher algorithm to use.
|
||||
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
|
||||
* @param {string} password The password.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this operation.
|
||||
*
|
||||
* @return {WordArray} The plaintext.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
|
||||
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
|
||||
*/
|
||||
decrypt: function (cipher, ciphertext, password, cfg) {
|
||||
// Apply config defaults
|
||||
cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Convert string to CipherParams
|
||||
ciphertext = this._parse(ciphertext, cfg.format);
|
||||
|
||||
// Derive key and other params
|
||||
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
|
||||
|
||||
// Add IV to config
|
||||
cfg.iv = derivedParams.iv;
|
||||
|
||||
// Decrypt
|
||||
var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
|
||||
|
||||
return plaintext;
|
||||
}
|
||||
});
|
||||
}());
|
@ -1,712 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
/**
|
||||
* CryptoJS core components.
|
||||
*/
|
||||
var CryptoJS = CryptoJS || (function (Math, undefined) {
|
||||
/**
|
||||
* CryptoJS namespace.
|
||||
*/
|
||||
var C = {};
|
||||
|
||||
/**
|
||||
* Library namespace.
|
||||
*/
|
||||
var C_lib = C.lib = {};
|
||||
|
||||
/**
|
||||
* Base object for prototypal inheritance.
|
||||
*/
|
||||
var Base = C_lib.Base = (function () {
|
||||
function F() {}
|
||||
|
||||
return {
|
||||
/**
|
||||
* Creates a new object that inherits from this object.
|
||||
*
|
||||
* @param {Object} overrides Properties to copy into the new object.
|
||||
*
|
||||
* @return {Object} The new object.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var MyType = CryptoJS.lib.Base.extend({
|
||||
* field: 'value',
|
||||
*
|
||||
* method: function () {
|
||||
* }
|
||||
* });
|
||||
*/
|
||||
extend: function (overrides) {
|
||||
// Spawn
|
||||
F.prototype = this;
|
||||
var subtype = new F();
|
||||
|
||||
// Augment
|
||||
if (overrides) {
|
||||
subtype.mixIn(overrides);
|
||||
}
|
||||
|
||||
// Create default initializer
|
||||
if (!subtype.hasOwnProperty('init')) {
|
||||
subtype.init = function () {
|
||||
subtype.$super.init.apply(this, arguments);
|
||||
};
|
||||
}
|
||||
|
||||
// Initializer's prototype is the subtype object
|
||||
subtype.init.prototype = subtype;
|
||||
|
||||
// Reference supertype
|
||||
subtype.$super = this;
|
||||
|
||||
return subtype;
|
||||
},
|
||||
|
||||
/**
|
||||
* Extends this object and runs the init method.
|
||||
* Arguments to create() will be passed to init().
|
||||
*
|
||||
* @return {Object} The new object.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var instance = MyType.create();
|
||||
*/
|
||||
create: function () {
|
||||
var instance = this.extend();
|
||||
instance.init.apply(instance, arguments);
|
||||
|
||||
return instance;
|
||||
},
|
||||
|
||||
/**
|
||||
* Initializes a newly created object.
|
||||
* Override this method to add some logic when your objects are created.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var MyType = CryptoJS.lib.Base.extend({
|
||||
* init: function () {
|
||||
* // ...
|
||||
* }
|
||||
* });
|
||||
*/
|
||||
init: function () {
|
||||
},
|
||||
|
||||
/**
|
||||
* Copies properties into this object.
|
||||
*
|
||||
* @param {Object} properties The properties to mix in.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* MyType.mixIn({
|
||||
* field: 'value'
|
||||
* });
|
||||
*/
|
||||
mixIn: function (properties) {
|
||||
for (var propertyName in properties) {
|
||||
if (properties.hasOwnProperty(propertyName)) {
|
||||
this[propertyName] = properties[propertyName];
|
||||
}
|
||||
}
|
||||
|
||||
// IE won't copy toString using the loop above
|
||||
if (properties.hasOwnProperty('toString')) {
|
||||
this.toString = properties.toString;
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a copy of this object.
|
||||
*
|
||||
* @return {Object} The clone.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var clone = instance.clone();
|
||||
*/
|
||||
clone: function () {
|
||||
return this.init.prototype.extend(this);
|
||||
}
|
||||
};
|
||||
}());
|
||||
|
||||
/**
|
||||
* An array of 32-bit words.
|
||||
*
|
||||
* @property {Array} words The array of 32-bit words.
|
||||
* @property {number} sigBytes The number of significant bytes in this word array.
|
||||
*/
|
||||
var WordArray = C_lib.WordArray = Base.extend({
|
||||
/**
|
||||
* Initializes a newly created word array.
|
||||
*
|
||||
* @param {Array} words (Optional) An array of 32-bit words.
|
||||
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.lib.WordArray.create();
|
||||
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
|
||||
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
|
||||
*/
|
||||
init: function (words, sigBytes) {
|
||||
words = this.words = words || [];
|
||||
|
||||
if (sigBytes != undefined) {
|
||||
this.sigBytes = sigBytes;
|
||||
} else {
|
||||
this.sigBytes = words.length * 4;
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts this word array to a string.
|
||||
*
|
||||
* @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
|
||||
*
|
||||
* @return {string} The stringified word array.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var string = wordArray + '';
|
||||
* var string = wordArray.toString();
|
||||
* var string = wordArray.toString(CryptoJS.enc.Utf8);
|
||||
*/
|
||||
toString: function (encoder) {
|
||||
return (encoder || Hex).stringify(this);
|
||||
},
|
||||
|
||||
/**
|
||||
* Concatenates a word array to this word array.
|
||||
*
|
||||
* @param {WordArray} wordArray The word array to append.
|
||||
*
|
||||
* @return {WordArray} This word array.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* wordArray1.concat(wordArray2);
|
||||
*/
|
||||
concat: function (wordArray) {
|
||||
// Shortcuts
|
||||
var thisWords = this.words;
|
||||
var thatWords = wordArray.words;
|
||||
var thisSigBytes = this.sigBytes;
|
||||
var thatSigBytes = wordArray.sigBytes;
|
||||
|
||||
// Clamp excess bits
|
||||
this.clamp();
|
||||
|
||||
// Concat
|
||||
if (thisSigBytes % 4) {
|
||||
// Copy one byte at a time
|
||||
for (var i = 0; i < thatSigBytes; i++) {
|
||||
var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
|
||||
thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
|
||||
}
|
||||
} else if (thatWords.length > 0xffff) {
|
||||
// Copy one word at a time
|
||||
for (var i = 0; i < thatSigBytes; i += 4) {
|
||||
thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
|
||||
}
|
||||
} else {
|
||||
// Copy all words at once
|
||||
thisWords.push.apply(thisWords, thatWords);
|
||||
}
|
||||
this.sigBytes += thatSigBytes;
|
||||
|
||||
// Chainable
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Removes insignificant bits.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* wordArray.clamp();
|
||||
*/
|
||||
clamp: function () {
|
||||
// Shortcuts
|
||||
var words = this.words;
|
||||
var sigBytes = this.sigBytes;
|
||||
|
||||
// Clamp
|
||||
words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
|
||||
words.length = Math.ceil(sigBytes / 4);
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a copy of this word array.
|
||||
*
|
||||
* @return {WordArray} The clone.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var clone = wordArray.clone();
|
||||
*/
|
||||
clone: function () {
|
||||
var clone = Base.clone.call(this);
|
||||
clone.words = this.words.slice(0);
|
||||
|
||||
return clone;
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a word array filled with random bytes.
|
||||
*
|
||||
* @param {number} nBytes The number of random bytes to generate.
|
||||
*
|
||||
* @return {WordArray} The random word array.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.lib.WordArray.random(16);
|
||||
*/
|
||||
random: function (nBytes) {
|
||||
var words = [];
|
||||
for (var i = 0; i < nBytes; i += 4) {
|
||||
words.push((Math.random() * 0x100000000) | 0);
|
||||
}
|
||||
|
||||
return new WordArray.init(words, nBytes);
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Encoder namespace.
|
||||
*/
|
||||
var C_enc = C.enc = {};
|
||||
|
||||
/**
|
||||
* Hex encoding strategy.
|
||||
*/
|
||||
var Hex = C_enc.Hex = {
|
||||
/**
|
||||
* Converts a word array to a hex string.
|
||||
*
|
||||
* @param {WordArray} wordArray The word array.
|
||||
*
|
||||
* @return {string} The hex string.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hexString = CryptoJS.enc.Hex.stringify(wordArray);
|
||||
*/
|
||||
stringify: function (wordArray) {
|
||||
// Shortcuts
|
||||
var words = wordArray.words;
|
||||
var sigBytes = wordArray.sigBytes;
|
||||
|
||||
// Convert
|
||||
var hexChars = [];
|
||||
for (var i = 0; i < sigBytes; i++) {
|
||||
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
|
||||
hexChars.push((bite >>> 4).toString(16));
|
||||
hexChars.push((bite & 0x0f).toString(16));
|
||||
}
|
||||
|
||||
return hexChars.join('');
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts a hex string to a word array.
|
||||
*
|
||||
* @param {string} hexStr The hex string.
|
||||
*
|
||||
* @return {WordArray} The word array.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.enc.Hex.parse(hexString);
|
||||
*/
|
||||
parse: function (hexStr) {
|
||||
// Shortcut
|
||||
var hexStrLength = hexStr.length;
|
||||
|
||||
// Convert
|
||||
var words = [];
|
||||
for (var i = 0; i < hexStrLength; i += 2) {
|
||||
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
|
||||
}
|
||||
|
||||
return new WordArray.init(words, hexStrLength / 2);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Latin1 encoding strategy.
|
||||
*/
|
||||
var Latin1 = C_enc.Latin1 = {
|
||||
/**
|
||||
* Converts a word array to a Latin1 string.
|
||||
*
|
||||
* @param {WordArray} wordArray The word array.
|
||||
*
|
||||
* @return {string} The Latin1 string.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
|
||||
*/
|
||||
stringify: function (wordArray) {
|
||||
// Shortcuts
|
||||
var words = wordArray.words;
|
||||
var sigBytes = wordArray.sigBytes;
|
||||
|
||||
// Convert
|
||||
var latin1Chars = [];
|
||||
for (var i = 0; i < sigBytes; i++) {
|
||||
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
|
||||
latin1Chars.push(String.fromCharCode(bite));
|
||||
}
|
||||
|
||||
return latin1Chars.join('');
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts a Latin1 string to a word array.
|
||||
*
|
||||
* @param {string} latin1Str The Latin1 string.
|
||||
*
|
||||
* @return {WordArray} The word array.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
|
||||
*/
|
||||
parse: function (latin1Str) {
|
||||
// Shortcut
|
||||
var latin1StrLength = latin1Str.length;
|
||||
|
||||
// Convert
|
||||
var words = [];
|
||||
for (var i = 0; i < latin1StrLength; i++) {
|
||||
words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
|
||||
}
|
||||
|
||||
return new WordArray.init(words, latin1StrLength);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* UTF-8 encoding strategy.
|
||||
*/
|
||||
var Utf8 = C_enc.Utf8 = {
|
||||
/**
|
||||
* Converts a word array to a UTF-8 string.
|
||||
*
|
||||
* @param {WordArray} wordArray The word array.
|
||||
*
|
||||
* @return {string} The UTF-8 string.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
|
||||
*/
|
||||
stringify: function (wordArray) {
|
||||
try {
|
||||
return decodeURIComponent(escape(Latin1.stringify(wordArray)));
|
||||
} catch (e) {
|
||||
throw new Error('Malformed UTF-8 data');
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts a UTF-8 string to a word array.
|
||||
*
|
||||
* @param {string} utf8Str The UTF-8 string.
|
||||
*
|
||||
* @return {WordArray} The word array.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
|
||||
*/
|
||||
parse: function (utf8Str) {
|
||||
return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract buffered block algorithm template.
|
||||
*
|
||||
* The property blockSize must be implemented in a concrete subtype.
|
||||
*
|
||||
* @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
|
||||
*/
|
||||
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
|
||||
/**
|
||||
* Resets this block algorithm's data buffer to its initial state.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* bufferedBlockAlgorithm.reset();
|
||||
*/
|
||||
reset: function () {
|
||||
// Initial values
|
||||
this._data = new WordArray.init();
|
||||
this._nDataBytes = 0;
|
||||
},
|
||||
|
||||
/**
|
||||
* Adds new data to this block algorithm's buffer.
|
||||
*
|
||||
* @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* bufferedBlockAlgorithm._append('data');
|
||||
* bufferedBlockAlgorithm._append(wordArray);
|
||||
*/
|
||||
_append: function (data) {
|
||||
// Convert string to WordArray, else assume WordArray already
|
||||
if (typeof data == 'string') {
|
||||
data = Utf8.parse(data);
|
||||
}
|
||||
|
||||
// Append
|
||||
this._data.concat(data);
|
||||
this._nDataBytes += data.sigBytes;
|
||||
},
|
||||
|
||||
/**
|
||||
* Processes available data blocks.
|
||||
*
|
||||
* This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
|
||||
*
|
||||
* @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
|
||||
*
|
||||
* @return {WordArray} The processed data.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var processedData = bufferedBlockAlgorithm._process();
|
||||
* var processedData = bufferedBlockAlgorithm._process(!!'flush');
|
||||
*/
|
||||
_process: function (doFlush) {
|
||||
// Shortcuts
|
||||
var data = this._data;
|
||||
var dataWords = data.words;
|
||||
var dataSigBytes = data.sigBytes;
|
||||
var blockSize = this.blockSize;
|
||||
var blockSizeBytes = blockSize * 4;
|
||||
|
||||
// Count blocks ready
|
||||
var nBlocksReady = dataSigBytes / blockSizeBytes;
|
||||
if (doFlush) {
|
||||
// Round up to include partial blocks
|
||||
nBlocksReady = Math.ceil(nBlocksReady);
|
||||
} else {
|
||||
// Round down to include only full blocks,
|
||||
// less the number of blocks that must remain in the buffer
|
||||
nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
|
||||
}
|
||||
|
||||
// Count words ready
|
||||
var nWordsReady = nBlocksReady * blockSize;
|
||||
|
||||
// Count bytes ready
|
||||
var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
|
||||
|
||||
// Process blocks
|
||||
if (nWordsReady) {
|
||||
for (var offset = 0; offset < nWordsReady; offset += blockSize) {
|
||||
// Perform concrete-algorithm logic
|
||||
this._doProcessBlock(dataWords, offset);
|
||||
}
|
||||
|
||||
// Remove processed words
|
||||
var processedWords = dataWords.splice(0, nWordsReady);
|
||||
data.sigBytes -= nBytesReady;
|
||||
}
|
||||
|
||||
// Return processed words
|
||||
return new WordArray.init(processedWords, nBytesReady);
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a copy of this object.
|
||||
*
|
||||
* @return {Object} The clone.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var clone = bufferedBlockAlgorithm.clone();
|
||||
*/
|
||||
clone: function () {
|
||||
var clone = Base.clone.call(this);
|
||||
clone._data = this._data.clone();
|
||||
|
||||
return clone;
|
||||
},
|
||||
|
||||
_minBufferSize: 0
|
||||
});
|
||||
|
||||
/**
|
||||
* Abstract hasher template.
|
||||
*
|
||||
* @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
|
||||
*/
|
||||
var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*/
|
||||
cfg: Base.extend(),
|
||||
|
||||
/**
|
||||
* Initializes a newly created hasher.
|
||||
*
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this hash computation.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hasher = CryptoJS.algo.SHA256.create();
|
||||
*/
|
||||
init: function (cfg) {
|
||||
// Apply config defaults
|
||||
this.cfg = this.cfg.extend(cfg);
|
||||
|
||||
// Set initial values
|
||||
this.reset();
|
||||
},
|
||||
|
||||
/**
|
||||
* Resets this hasher to its initial state.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* hasher.reset();
|
||||
*/
|
||||
reset: function () {
|
||||
// Reset data buffer
|
||||
BufferedBlockAlgorithm.reset.call(this);
|
||||
|
||||
// Perform concrete-hasher logic
|
||||
this._doReset();
|
||||
},
|
||||
|
||||
/**
|
||||
* Updates this hasher with a message.
|
||||
*
|
||||
* @param {WordArray|string} messageUpdate The message to append.
|
||||
*
|
||||
* @return {Hasher} This hasher.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* hasher.update('message');
|
||||
* hasher.update(wordArray);
|
||||
*/
|
||||
update: function (messageUpdate) {
|
||||
// Append
|
||||
this._append(messageUpdate);
|
||||
|
||||
// Update the hash
|
||||
this._process();
|
||||
|
||||
// Chainable
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Finalizes the hash computation.
|
||||
* Note that the finalize operation is effectively a destructive, read-once operation.
|
||||
*
|
||||
* @param {WordArray|string} messageUpdate (Optional) A final message update.
|
||||
*
|
||||
* @return {WordArray} The hash.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hash = hasher.finalize();
|
||||
* var hash = hasher.finalize('message');
|
||||
* var hash = hasher.finalize(wordArray);
|
||||
*/
|
||||
finalize: function (messageUpdate) {
|
||||
// Final message update
|
||||
if (messageUpdate) {
|
||||
this._append(messageUpdate);
|
||||
}
|
||||
|
||||
// Perform concrete-hasher logic
|
||||
var hash = this._doFinalize();
|
||||
|
||||
return hash;
|
||||
},
|
||||
|
||||
blockSize: 512/32,
|
||||
|
||||
/**
|
||||
* Creates a shortcut function to a hasher's object interface.
|
||||
*
|
||||
* @param {Hasher} hasher The hasher to create a helper for.
|
||||
*
|
||||
* @return {Function} The shortcut function.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
|
||||
*/
|
||||
_createHelper: function (hasher) {
|
||||
return function (message, cfg) {
|
||||
return new hasher.init(cfg).finalize(message);
|
||||
};
|
||||
},
|
||||
|
||||
/**
|
||||
* Creates a shortcut function to the HMAC's object interface.
|
||||
*
|
||||
* @param {Hasher} hasher The hasher to use in this HMAC helper.
|
||||
*
|
||||
* @return {Function} The shortcut function.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
|
||||
*/
|
||||
_createHmacHelper: function (hasher) {
|
||||
return function (message, key) {
|
||||
return new C_algo.HMAC.init(hasher, key).finalize(message);
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Algorithm namespace.
|
||||
*/
|
||||
var C_algo = C.algo = {};
|
||||
|
||||
return C;
|
||||
}(Math));
|
@ -1,109 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
(function () {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var WordArray = C_lib.WordArray;
|
||||
var C_enc = C.enc;
|
||||
|
||||
/**
|
||||
* Base64 encoding strategy.
|
||||
*/
|
||||
var Base64 = C_enc.Base64 = {
|
||||
/**
|
||||
* Converts a word array to a Base64 string.
|
||||
*
|
||||
* @param {WordArray} wordArray The word array.
|
||||
*
|
||||
* @return {string} The Base64 string.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var base64String = CryptoJS.enc.Base64.stringify(wordArray);
|
||||
*/
|
||||
stringify: function (wordArray) {
|
||||
// Shortcuts
|
||||
var words = wordArray.words;
|
||||
var sigBytes = wordArray.sigBytes;
|
||||
var map = this._map;
|
||||
|
||||
// Clamp excess bits
|
||||
wordArray.clamp();
|
||||
|
||||
// Convert
|
||||
var base64Chars = [];
|
||||
for (var i = 0; i < sigBytes; i += 3) {
|
||||
var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
|
||||
var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
|
||||
var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
|
||||
|
||||
var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
|
||||
|
||||
for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
|
||||
base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
|
||||
}
|
||||
}
|
||||
|
||||
// Add padding
|
||||
var paddingChar = map.charAt(64);
|
||||
if (paddingChar) {
|
||||
while (base64Chars.length % 4) {
|
||||
base64Chars.push(paddingChar);
|
||||
}
|
||||
}
|
||||
|
||||
return base64Chars.join('');
|
||||
},
|
||||
|
||||
/**
|
||||
* Converts a Base64 string to a word array.
|
||||
*
|
||||
* @param {string} base64Str The Base64 string.
|
||||
*
|
||||
* @return {WordArray} The word array.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var wordArray = CryptoJS.enc.Base64.parse(base64String);
|
||||
*/
|
||||
parse: function (base64Str) {
|
||||
// Shortcuts
|
||||
var base64StrLength = base64Str.length;
|
||||
var map = this._map;
|
||||
|
||||
// Ignore padding
|
||||
var paddingChar = map.charAt(64);
|
||||
if (paddingChar) {
|
||||
var paddingIndex = base64Str.indexOf(paddingChar);
|
||||
if (paddingIndex != -1) {
|
||||
base64StrLength = paddingIndex;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert
|
||||
var words = [];
|
||||
var nBytes = 0;
|
||||
for (var i = 0; i < base64StrLength; i++) {
|
||||
if (i % 4) {
|
||||
var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
|
||||
var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
|
||||
words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
|
||||
nBytes++;
|
||||
}
|
||||
}
|
||||
|
||||
return WordArray.create(words, nBytes);
|
||||
},
|
||||
|
||||
_map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
|
||||
};
|
||||
}());
|
@ -1,131 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
(function () {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var Base = C_lib.Base;
|
||||
var C_enc = C.enc;
|
||||
var Utf8 = C_enc.Utf8;
|
||||
var C_algo = C.algo;
|
||||
|
||||
/**
|
||||
* HMAC algorithm.
|
||||
*/
|
||||
var HMAC = C_algo.HMAC = Base.extend({
|
||||
/**
|
||||
* Initializes a newly created HMAC.
|
||||
*
|
||||
* @param {Hasher} hasher The hash algorithm to use.
|
||||
* @param {WordArray|string} key The secret key.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
|
||||
*/
|
||||
init: function (hasher, key) {
|
||||
// Init hasher
|
||||
hasher = this._hasher = new hasher.init();
|
||||
|
||||
// Convert string to WordArray, else assume WordArray already
|
||||
if (typeof key == 'string') {
|
||||
key = Utf8.parse(key);
|
||||
}
|
||||
|
||||
// Shortcuts
|
||||
var hasherBlockSize = hasher.blockSize;
|
||||
var hasherBlockSizeBytes = hasherBlockSize * 4;
|
||||
|
||||
// Allow arbitrary length keys
|
||||
if (key.sigBytes > hasherBlockSizeBytes) {
|
||||
key = hasher.finalize(key);
|
||||
}
|
||||
|
||||
// Clamp excess bits
|
||||
key.clamp();
|
||||
|
||||
// Clone key for inner and outer pads
|
||||
var oKey = this._oKey = key.clone();
|
||||
var iKey = this._iKey = key.clone();
|
||||
|
||||
// Shortcuts
|
||||
var oKeyWords = oKey.words;
|
||||
var iKeyWords = iKey.words;
|
||||
|
||||
// XOR keys with pad constants
|
||||
for (var i = 0; i < hasherBlockSize; i++) {
|
||||
oKeyWords[i] ^= 0x5c5c5c5c;
|
||||
iKeyWords[i] ^= 0x36363636;
|
||||
}
|
||||
oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
|
||||
|
||||
// Set initial values
|
||||
this.reset();
|
||||
},
|
||||
|
||||
/**
|
||||
* Resets this HMAC to its initial state.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* hmacHasher.reset();
|
||||
*/
|
||||
reset: function () {
|
||||
// Shortcut
|
||||
var hasher = this._hasher;
|
||||
|
||||
// Reset
|
||||
hasher.reset();
|
||||
hasher.update(this._iKey);
|
||||
},
|
||||
|
||||
/**
|
||||
* Updates this HMAC with a message.
|
||||
*
|
||||
* @param {WordArray|string} messageUpdate The message to append.
|
||||
*
|
||||
* @return {HMAC} This HMAC instance.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* hmacHasher.update('message');
|
||||
* hmacHasher.update(wordArray);
|
||||
*/
|
||||
update: function (messageUpdate) {
|
||||
this._hasher.update(messageUpdate);
|
||||
|
||||
// Chainable
|
||||
return this;
|
||||
},
|
||||
|
||||
/**
|
||||
* Finalizes the HMAC computation.
|
||||
* Note that the finalize operation is effectively a destructive, read-once operation.
|
||||
*
|
||||
* @param {WordArray|string} messageUpdate (Optional) A final message update.
|
||||
*
|
||||
* @return {WordArray} The HMAC.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hmac = hmacHasher.finalize();
|
||||
* var hmac = hmacHasher.finalize('message');
|
||||
* var hmac = hmacHasher.finalize(wordArray);
|
||||
*/
|
||||
finalize: function (messageUpdate) {
|
||||
// Shortcut
|
||||
var hasher = this._hasher;
|
||||
|
||||
// Compute HMAC
|
||||
var innerHash = hasher.finalize(messageUpdate);
|
||||
hasher.reset();
|
||||
var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
|
||||
|
||||
return hmac;
|
||||
}
|
||||
});
|
||||
}());
|
@ -1,131 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
(function () {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var Base = C_lib.Base;
|
||||
var WordArray = C_lib.WordArray;
|
||||
var C_algo = C.algo;
|
||||
var SHA1 = C_algo.SHA1;
|
||||
var HMAC = C_algo.HMAC;
|
||||
|
||||
/**
|
||||
* Password-Based Key Derivation Function 2 algorithm.
|
||||
*/
|
||||
var PBKDF2 = C_algo.PBKDF2 = Base.extend({
|
||||
/**
|
||||
* Configuration options.
|
||||
*
|
||||
* @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
|
||||
* @property {Hasher} hasher The hasher to use. Default: SHA1
|
||||
* @property {number} iterations The number of iterations to perform. Default: 1
|
||||
*/
|
||||
cfg: Base.extend({
|
||||
keySize: 128/32,
|
||||
hasher: SHA1,
|
||||
iterations: 1
|
||||
}),
|
||||
|
||||
/**
|
||||
* Initializes a newly created key derivation function.
|
||||
*
|
||||
* @param {Object} cfg (Optional) The configuration options to use for the derivation.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var kdf = CryptoJS.algo.PBKDF2.create();
|
||||
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8 });
|
||||
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8, iterations: 1000 });
|
||||
*/
|
||||
init: function (cfg) {
|
||||
this.cfg = this.cfg.extend(cfg);
|
||||
},
|
||||
|
||||
/**
|
||||
* Computes the Password-Based Key Derivation Function 2.
|
||||
*
|
||||
* @param {WordArray|string} password The password.
|
||||
* @param {WordArray|string} salt A salt.
|
||||
*
|
||||
* @return {WordArray} The derived key.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var key = kdf.compute(password, salt);
|
||||
*/
|
||||
compute: function (password, salt) {
|
||||
// Shortcut
|
||||
var cfg = this.cfg;
|
||||
|
||||
// Init HMAC
|
||||
var hmac = HMAC.create(cfg.hasher, password);
|
||||
|
||||
// Initial values
|
||||
var derivedKey = WordArray.create();
|
||||
var blockIndex = WordArray.create([0x00000001]);
|
||||
|
||||
// Shortcuts
|
||||
var derivedKeyWords = derivedKey.words;
|
||||
var blockIndexWords = blockIndex.words;
|
||||
var keySize = cfg.keySize;
|
||||
var iterations = cfg.iterations;
|
||||
|
||||
// Generate key
|
||||
while (derivedKeyWords.length < keySize) {
|
||||
var block = hmac.update(salt).finalize(blockIndex);
|
||||
hmac.reset();
|
||||
|
||||
// Shortcuts
|
||||
var blockWords = block.words;
|
||||
var blockWordsLength = blockWords.length;
|
||||
|
||||
// Iterations
|
||||
var intermediate = block;
|
||||
for (var i = 1; i < iterations; i++) {
|
||||
intermediate = hmac.finalize(intermediate);
|
||||
hmac.reset();
|
||||
|
||||
// Shortcut
|
||||
var intermediateWords = intermediate.words;
|
||||
|
||||
// XOR intermediate with block
|
||||
for (var j = 0; j < blockWordsLength; j++) {
|
||||
blockWords[j] ^= intermediateWords[j];
|
||||
}
|
||||
}
|
||||
|
||||
derivedKey.concat(block);
|
||||
blockIndexWords[0]++;
|
||||
}
|
||||
derivedKey.sigBytes = keySize * 4;
|
||||
|
||||
return derivedKey;
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Computes the Password-Based Key Derivation Function 2.
|
||||
*
|
||||
* @param {WordArray|string} password The password.
|
||||
* @param {WordArray|string} salt A salt.
|
||||
* @param {Object} cfg (Optional) The configuration options to use for this computation.
|
||||
*
|
||||
* @return {WordArray} The derived key.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var key = CryptoJS.PBKDF2(password, salt);
|
||||
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8 });
|
||||
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8, iterations: 1000 });
|
||||
*/
|
||||
C.PBKDF2 = function (password, salt, cfg) {
|
||||
return PBKDF2.create(cfg).compute(password, salt);
|
||||
};
|
||||
}());
|
@ -1,136 +0,0 @@
|
||||
/*
|
||||
CryptoJS v3.1.2
|
||||
code.google.com/p/crypto-js
|
||||
(c) 2009-2013 by Jeff Mott. All rights reserved.
|
||||
code.google.com/p/crypto-js/wiki/License
|
||||
*/
|
||||
(function () {
|
||||
// Shortcuts
|
||||
var C = CryptoJS;
|
||||
var C_lib = C.lib;
|
||||
var WordArray = C_lib.WordArray;
|
||||
var Hasher = C_lib.Hasher;
|
||||
var C_algo = C.algo;
|
||||
|
||||
// Reusable object
|
||||
var W = [];
|
||||
|
||||
/**
|
||||
* SHA-1 hash algorithm.
|
||||
*/
|
||||
var SHA1 = C_algo.SHA1 = Hasher.extend({
|
||||
_doReset: function () {
|
||||
this._hash = new WordArray.init([
|
||||
0x67452301, 0xefcdab89,
|
||||
0x98badcfe, 0x10325476,
|
||||
0xc3d2e1f0
|
||||
]);
|
||||
},
|
||||
|
||||
_doProcessBlock: function (M, offset) {
|
||||
// Shortcut
|
||||
var H = this._hash.words;
|
||||
|
||||
// Working variables
|
||||
var a = H[0];
|
||||
var b = H[1];
|
||||
var c = H[2];
|
||||
var d = H[3];
|
||||
var e = H[4];
|
||||
|
||||
// Computation
|
||||
for (var i = 0; i < 80; i++) {
|
||||
if (i < 16) {
|
||||
W[i] = M[offset + i] | 0;
|
||||
} else {
|
||||
var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
|
||||
W[i] = (n << 1) | (n >>> 31);
|
||||
}
|
||||
|
||||
var t = ((a << 5) | (a >>> 27)) + e + W[i];
|
||||
if (i < 20) {
|
||||
t += ((b & c) | (~b & d)) + 0x5a827999;
|
||||
} else if (i < 40) {
|
||||
t += (b ^ c ^ d) + 0x6ed9eba1;
|
||||
} else if (i < 60) {
|
||||
t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
|
||||
} else /* if (i < 80) */ {
|
||||
t += (b ^ c ^ d) - 0x359d3e2a;
|
||||
}
|
||||
|
||||
e = d;
|
||||
d = c;
|
||||
c = (b << 30) | (b >>> 2);
|
||||
b = a;
|
||||
a = t;
|
||||
}
|
||||
|
||||
// Intermediate hash value
|
||||
H[0] = (H[0] + a) | 0;
|
||||
H[1] = (H[1] + b) | 0;
|
||||
H[2] = (H[2] + c) | 0;
|
||||
H[3] = (H[3] + d) | 0;
|
||||
H[4] = (H[4] + e) | 0;
|
||||
},
|
||||
|
||||
_doFinalize: function () {
|
||||
// Shortcuts
|
||||
var data = this._data;
|
||||
var dataWords = data.words;
|
||||
|
||||
var nBitsTotal = this._nDataBytes * 8;
|
||||
var nBitsLeft = data.sigBytes * 8;
|
||||
|
||||
// Add padding
|
||||
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
|
||||
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
|
||||
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
|
||||
data.sigBytes = dataWords.length * 4;
|
||||
|
||||
// Hash final blocks
|
||||
this._process();
|
||||
|
||||
// Return final computed hash
|
||||
return this._hash;
|
||||
},
|
||||
|
||||
clone: function () {
|
||||
var clone = Hasher.clone.call(this);
|
||||
clone._hash = this._hash.clone();
|
||||
|
||||
return clone;
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Shortcut function to the hasher's object interface.
|
||||
*
|
||||
* @param {WordArray|string} message The message to hash.
|
||||
*
|
||||
* @return {WordArray} The hash.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hash = CryptoJS.SHA1('message');
|
||||
* var hash = CryptoJS.SHA1(wordArray);
|
||||
*/
|
||||
C.SHA1 = Hasher._createHelper(SHA1);
|
||||
|
||||
/**
|
||||
* Shortcut function to the HMAC's object interface.
|
||||
*
|
||||
* @param {WordArray|string} message The message to hash.
|
||||
* @param {WordArray|string} key The secret key.
|
||||
*
|
||||
* @return {WordArray} The HMAC.
|
||||
*
|
||||
* @static
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* var hmac = CryptoJS.HmacSHA1(message, key);
|
||||
*/
|
||||
C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
|
||||
}());
|
@ -1,40 +0,0 @@
|
||||
Licensing
|
||||
---------
|
||||
|
||||
This software is covered under the following copyright:
|
||||
|
||||
/*
|
||||
* Copyright (c) 2003-2005 Tom Wu
|
||||
* All Rights Reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining
|
||||
* a copy of this software and associated documentation files (the
|
||||
* "Software"), to deal in the Software without restriction, including
|
||||
* without limitation the rights to use, copy, modify, merge, publish,
|
||||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||||
* permit persons to whom the Software is furnished to do so, subject to
|
||||
* the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
||||
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*
|
||||
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
|
||||
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
|
||||
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
|
||||
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
|
||||
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*
|
||||
* In addition, the following condition applies:
|
||||
*
|
||||
* All redistributions must retain an intact copy of this copyright notice
|
||||
* and disclaimer.
|
||||
*/
|
||||
|
||||
Address all questions regarding this license to:
|
||||
|
||||
Tom Wu
|
||||
tjw@cs.Stanford.EDU
|
@ -1,71 +0,0 @@
|
||||
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
var b64pad="=";
|
||||
|
||||
function hex2b64(h) {
|
||||
var i;
|
||||
var c;
|
||||
var ret = "";
|
||||
for(i = 0; i+3 <= h.length; i+=3) {
|
||||
c = parseInt(h.substring(i,i+3),16);
|
||||
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
|
||||
}
|
||||
if(i+1 == h.length) {
|
||||
c = parseInt(h.substring(i,i+1),16);
|
||||
ret += b64map.charAt(c << 2);
|
||||
}
|
||||
else if(i+2 == h.length) {
|
||||
c = parseInt(h.substring(i,i+2),16);
|
||||
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
|
||||
}
|
||||
while((ret.length & 3) > 0) ret += b64pad;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// convert a base64 string to hex
|
||||
function b64tohex(s) {
|
||||
var ret = ""
|
||||
var i;
|
||||
var k = 0; // b64 state, 0-3
|
||||
var slop;
|
||||
for(i = 0; i < s.length; ++i) {
|
||||
if(s.charAt(i) == b64pad) break;
|
||||
v = b64map.indexOf(s.charAt(i));
|
||||
if(v < 0) continue;
|
||||
if(k == 0) {
|
||||
ret += int2char(v >> 2);
|
||||
slop = v & 3;
|
||||
k = 1;
|
||||
}
|
||||
else if(k == 1) {
|
||||
ret += int2char((slop << 2) | (v >> 4));
|
||||
slop = v & 0xf;
|
||||
k = 2;
|
||||
}
|
||||
else if(k == 2) {
|
||||
ret += int2char(slop);
|
||||
ret += int2char(v >> 2);
|
||||
slop = v & 3;
|
||||
k = 3;
|
||||
}
|
||||
else {
|
||||
ret += int2char((slop << 2) | (v >> 4));
|
||||
ret += int2char(v & 0xf);
|
||||
k = 0;
|
||||
}
|
||||
}
|
||||
if(k == 1)
|
||||
ret += int2char(slop << 2);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// convert a base64 string to a byte/number array
|
||||
function b64toBA(s) {
|
||||
//piggyback on b64tohex for now, optimize later
|
||||
var h = b64tohex(s);
|
||||
var i;
|
||||
var a = new Array();
|
||||
for(i = 0; 2*i < h.length; ++i) {
|
||||
a[i] = parseInt(h.substring(2*i,2*i+2),16);
|
||||
}
|
||||
return a;
|
||||
}
|
@ -1,316 +0,0 @@
|
||||
// Basic Javascript Elliptic Curve implementation
|
||||
// Ported loosely from BouncyCastle's Java EC code
|
||||
// Only Fp curves implemented for now
|
||||
|
||||
// Requires jsbn.js and jsbn2.js
|
||||
|
||||
// ----------------
|
||||
// ECFieldElementFp
|
||||
|
||||
// constructor
|
||||
function ECFieldElementFp(q,x) {
|
||||
this.x = x;
|
||||
// TODO if(x.compareTo(q) >= 0) error
|
||||
this.q = q;
|
||||
}
|
||||
|
||||
function feFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
return (this.q.equals(other.q) && this.x.equals(other.x));
|
||||
}
|
||||
|
||||
function feFpToBigInteger() {
|
||||
return this.x;
|
||||
}
|
||||
|
||||
function feFpNegate() {
|
||||
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q));
|
||||
}
|
||||
|
||||
function feFpAdd(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpSubtract(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpMultiply(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q));
|
||||
}
|
||||
|
||||
function feFpSquare() {
|
||||
return new ECFieldElementFp(this.q, this.x.square().mod(this.q));
|
||||
}
|
||||
|
||||
function feFpDivide(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q));
|
||||
}
|
||||
|
||||
ECFieldElementFp.prototype.equals = feFpEquals;
|
||||
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger;
|
||||
ECFieldElementFp.prototype.negate = feFpNegate;
|
||||
ECFieldElementFp.prototype.add = feFpAdd;
|
||||
ECFieldElementFp.prototype.subtract = feFpSubtract;
|
||||
ECFieldElementFp.prototype.multiply = feFpMultiply;
|
||||
ECFieldElementFp.prototype.square = feFpSquare;
|
||||
ECFieldElementFp.prototype.divide = feFpDivide;
|
||||
|
||||
// ----------------
|
||||
// ECPointFp
|
||||
|
||||
// constructor
|
||||
function ECPointFp(curve,x,y,z) {
|
||||
this.curve = curve;
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
// Projective coordinates: either zinv == null or z * zinv == 1
|
||||
// z and zinv are just BigIntegers, not fieldElements
|
||||
if(z == null) {
|
||||
this.z = BigInteger.ONE;
|
||||
}
|
||||
else {
|
||||
this.z = z;
|
||||
}
|
||||
this.zinv = null;
|
||||
//TODO: compression flag
|
||||
}
|
||||
|
||||
function pointFpGetX() {
|
||||
if(this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q);
|
||||
}
|
||||
return this.curve.fromBigInteger(this.x.toBigInteger().multiply(this.zinv).mod(this.curve.q));
|
||||
}
|
||||
|
||||
function pointFpGetY() {
|
||||
if(this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q);
|
||||
}
|
||||
return this.curve.fromBigInteger(this.y.toBigInteger().multiply(this.zinv).mod(this.curve.q));
|
||||
}
|
||||
|
||||
function pointFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
if(this.isInfinity()) return other.isInfinity();
|
||||
if(other.isInfinity()) return this.isInfinity();
|
||||
var u, v;
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
||||
if(!u.equals(BigInteger.ZERO)) return false;
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
|
||||
return v.equals(BigInteger.ZERO);
|
||||
}
|
||||
|
||||
function pointFpIsInfinity() {
|
||||
if((this.x == null) && (this.y == null)) return true;
|
||||
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
|
||||
}
|
||||
|
||||
function pointFpNegate() {
|
||||
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z);
|
||||
}
|
||||
|
||||
function pointFpAdd(b) {
|
||||
if(this.isInfinity()) return b;
|
||||
if(b.isInfinity()) return this;
|
||||
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
|
||||
|
||||
if(BigInteger.ZERO.equals(v)) {
|
||||
if(BigInteger.ZERO.equals(u)) {
|
||||
return this.twice(); // this == b, so double
|
||||
}
|
||||
return this.curve.getInfinity(); // this = -b, so infinity
|
||||
}
|
||||
|
||||
var THREE = new BigInteger("3");
|
||||
var x1 = this.x.toBigInteger();
|
||||
var y1 = this.y.toBigInteger();
|
||||
var x2 = b.x.toBigInteger();
|
||||
var y2 = b.y.toBigInteger();
|
||||
|
||||
var v2 = v.square();
|
||||
var v3 = v2.multiply(v);
|
||||
var x1v2 = x1.multiply(v2);
|
||||
var zu2 = u.square().multiply(this.z);
|
||||
|
||||
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
||||
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
|
||||
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
||||
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
|
||||
// z3 = v^3 * z1 * z2
|
||||
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
||||
}
|
||||
|
||||
function pointFpTwice() {
|
||||
if(this.isInfinity()) return this;
|
||||
if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
|
||||
|
||||
// TODO: optimized handling of constants
|
||||
var THREE = new BigInteger("3");
|
||||
var x1 = this.x.toBigInteger();
|
||||
var y1 = this.y.toBigInteger();
|
||||
|
||||
var y1z1 = y1.multiply(this.z);
|
||||
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
|
||||
var a = this.curve.a.toBigInteger();
|
||||
|
||||
// w = 3 * x1^2 + a * z1^2
|
||||
var w = x1.square().multiply(THREE);
|
||||
if(!BigInteger.ZERO.equals(a)) {
|
||||
w = w.add(this.z.square().multiply(a));
|
||||
}
|
||||
w = w.mod(this.curve.q);
|
||||
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
||||
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
|
||||
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
||||
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
|
||||
// z3 = 8 * (y1 * z1)^3
|
||||
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
|
||||
|
||||
return new ECPointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
|
||||
}
|
||||
|
||||
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
||||
// TODO: modularize the multiplication algorithm
|
||||
function pointFpMultiply(k) {
|
||||
if(this.isInfinity()) return this;
|
||||
if(k.signum() == 0) return this.curve.getInfinity();
|
||||
|
||||
var e = k;
|
||||
var h = e.multiply(new BigInteger("3"));
|
||||
|
||||
var neg = this.negate();
|
||||
var R = this;
|
||||
|
||||
var i;
|
||||
for(i = h.bitLength() - 2; i > 0; --i) {
|
||||
R = R.twice();
|
||||
|
||||
var hBit = h.testBit(i);
|
||||
var eBit = e.testBit(i);
|
||||
|
||||
if (hBit != eBit) {
|
||||
R = R.add(hBit ? this : neg);
|
||||
}
|
||||
}
|
||||
|
||||
return R;
|
||||
}
|
||||
|
||||
// Compute this*j + x*k (simultaneous multiplication)
|
||||
function pointFpMultiplyTwo(j,x,k) {
|
||||
var i;
|
||||
if(j.bitLength() > k.bitLength())
|
||||
i = j.bitLength() - 1;
|
||||
else
|
||||
i = k.bitLength() - 1;
|
||||
|
||||
var R = this.curve.getInfinity();
|
||||
var both = this.add(x);
|
||||
while(i >= 0) {
|
||||
R = R.twice();
|
||||
if(j.testBit(i)) {
|
||||
if(k.testBit(i)) {
|
||||
R = R.add(both);
|
||||
}
|
||||
else {
|
||||
R = R.add(this);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(k.testBit(i)) {
|
||||
R = R.add(x);
|
||||
}
|
||||
}
|
||||
--i;
|
||||
}
|
||||
|
||||
return R;
|
||||
}
|
||||
|
||||
ECPointFp.prototype.getX = pointFpGetX;
|
||||
ECPointFp.prototype.getY = pointFpGetY;
|
||||
ECPointFp.prototype.equals = pointFpEquals;
|
||||
ECPointFp.prototype.isInfinity = pointFpIsInfinity;
|
||||
ECPointFp.prototype.negate = pointFpNegate;
|
||||
ECPointFp.prototype.add = pointFpAdd;
|
||||
ECPointFp.prototype.twice = pointFpTwice;
|
||||
ECPointFp.prototype.multiply = pointFpMultiply;
|
||||
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo;
|
||||
|
||||
// ----------------
|
||||
// ECCurveFp
|
||||
|
||||
// constructor
|
||||
function ECCurveFp(q,a,b) {
|
||||
this.q = q;
|
||||
this.a = this.fromBigInteger(a);
|
||||
this.b = this.fromBigInteger(b);
|
||||
this.infinity = new ECPointFp(this, null, null);
|
||||
}
|
||||
|
||||
function curveFpGetQ() {
|
||||
return this.q;
|
||||
}
|
||||
|
||||
function curveFpGetA() {
|
||||
return this.a;
|
||||
}
|
||||
|
||||
function curveFpGetB() {
|
||||
return this.b;
|
||||
}
|
||||
|
||||
function curveFpEquals(other) {
|
||||
if(other == this) return true;
|
||||
return(this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
|
||||
}
|
||||
|
||||
function curveFpGetInfinity() {
|
||||
return this.infinity;
|
||||
}
|
||||
|
||||
function curveFpFromBigInteger(x) {
|
||||
return new ECFieldElementFp(this.q, x);
|
||||
}
|
||||
|
||||
// for now, work with hex strings because they're easier in JS
|
||||
function curveFpDecodePointHex(s) {
|
||||
switch(parseInt(s.substr(0,2), 16)) { // first byte
|
||||
case 0:
|
||||
return this.infinity;
|
||||
case 2:
|
||||
case 3:
|
||||
// point compression not supported yet
|
||||
return null;
|
||||
case 4:
|
||||
case 6:
|
||||
case 7:
|
||||
var len = (s.length - 2) / 2;
|
||||
var xHex = s.substr(2, len);
|
||||
var yHex = s.substr(len+2, len);
|
||||
|
||||
return new ECPointFp(this,
|
||||
this.fromBigInteger(new BigInteger(xHex, 16)),
|
||||
this.fromBigInteger(new BigInteger(yHex, 16)));
|
||||
|
||||
default: // unsupported
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
ECCurveFp.prototype.getQ = curveFpGetQ;
|
||||
ECCurveFp.prototype.getA = curveFpGetA;
|
||||
ECCurveFp.prototype.getB = curveFpGetB;
|
||||
ECCurveFp.prototype.equals = curveFpEquals;
|
||||
ECCurveFp.prototype.getInfinity = curveFpGetInfinity;
|
||||
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger;
|
||||
ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex;
|
@ -1,559 +0,0 @@
|
||||
// Copyright (c) 2005 Tom Wu
|
||||
// All Rights Reserved.
|
||||
// See "LICENSE" for details.
|
||||
|
||||
// Basic JavaScript BN library - subset useful for RSA encryption.
|
||||
|
||||
// Bits per digit
|
||||
var dbits;
|
||||
|
||||
// JavaScript engine analysis
|
||||
var canary = 0xdeadbeefcafe;
|
||||
var j_lm = ((canary&0xffffff)==0xefcafe);
|
||||
|
||||
// (public) Constructor
|
||||
function BigInteger(a,b,c) {
|
||||
if(a != null)
|
||||
if("number" == typeof a) this.fromNumber(a,b,c);
|
||||
else if(b == null && "string" != typeof a) this.fromString(a,256);
|
||||
else this.fromString(a,b);
|
||||
}
|
||||
|
||||
// return new, unset BigInteger
|
||||
function nbi() { return new BigInteger(null); }
|
||||
|
||||
// am: Compute w_j += (x*this_i), propagate carries,
|
||||
// c is initial carry, returns final carry.
|
||||
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
||||
// We need to select the fastest one that works in this environment.
|
||||
|
||||
// am1: use a single mult and divide to get the high bits,
|
||||
// max digit bits should be 26 because
|
||||
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
||||
function am1(i,x,w,j,c,n) {
|
||||
while(--n >= 0) {
|
||||
var v = x*this[i++]+w[j]+c;
|
||||
c = Math.floor(v/0x4000000);
|
||||
w[j++] = v&0x3ffffff;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
// am2 avoids a big mult-and-extract completely.
|
||||
// Max digit bits should be <= 30 because we do bitwise ops
|
||||
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
||||
function am2(i,x,w,j,c,n) {
|
||||
var xl = x&0x7fff, xh = x>>15;
|
||||
while(--n >= 0) {
|
||||
var l = this[i]&0x7fff;
|
||||
var h = this[i++]>>15;
|
||||
var m = xh*l+h*xl;
|
||||
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
|
||||
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
|
||||
w[j++] = l&0x3fffffff;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
// Alternately, set max digit bits to 28 since some
|
||||
// browsers slow down when dealing with 32-bit numbers.
|
||||
function am3(i,x,w,j,c,n) {
|
||||
var xl = x&0x3fff, xh = x>>14;
|
||||
while(--n >= 0) {
|
||||
var l = this[i]&0x3fff;
|
||||
var h = this[i++]>>14;
|
||||
var m = xh*l+h*xl;
|
||||
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
|
||||
c = (l>>28)+(m>>14)+xh*h;
|
||||
w[j++] = l&0xfffffff;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
||||
BigInteger.prototype.am = am2;
|
||||
dbits = 30;
|
||||
}
|
||||
else if(j_lm && (navigator.appName != "Netscape")) {
|
||||
BigInteger.prototype.am = am1;
|
||||
dbits = 26;
|
||||
}
|
||||
else { // Mozilla/Netscape seems to prefer am3
|
||||
BigInteger.prototype.am = am3;
|
||||
dbits = 28;
|
||||
}
|
||||
|
||||
BigInteger.prototype.DB = dbits;
|
||||
BigInteger.prototype.DM = ((1<<dbits)-1);
|
||||
BigInteger.prototype.DV = (1<<dbits);
|
||||
|
||||
var BI_FP = 52;
|
||||
BigInteger.prototype.FV = Math.pow(2,BI_FP);
|
||||
BigInteger.prototype.F1 = BI_FP-dbits;
|
||||
BigInteger.prototype.F2 = 2*dbits-BI_FP;
|
||||
|
||||
// Digit conversions
|
||||
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
||||
var BI_RC = new Array();
|
||||
var rr,vv;
|
||||
rr = "0".charCodeAt(0);
|
||||
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
||||
rr = "a".charCodeAt(0);
|
||||
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
||||
rr = "A".charCodeAt(0);
|
||||
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
||||
|
||||
function int2char(n) { return BI_RM.charAt(n); }
|
||||
function intAt(s,i) {
|
||||
var c = BI_RC[s.charCodeAt(i)];
|
||||
return (c==null)?-1:c;
|
||||
}
|
||||
|
||||
// (protected) copy this to r
|
||||
function bnpCopyTo(r) {
|
||||
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
|
||||
r.t = this.t;
|
||||
r.s = this.s;
|
||||
}
|
||||
|
||||
// (protected) set from integer value x, -DV <= x < DV
|
||||
function bnpFromInt(x) {
|
||||
this.t = 1;
|
||||
this.s = (x<0)?-1:0;
|
||||
if(x > 0) this[0] = x;
|
||||
else if(x < -1) this[0] = x+DV;
|
||||
else this.t = 0;
|
||||
}
|
||||
|
||||
// return bigint initialized to value
|
||||
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
|
||||
|
||||
// (protected) set from string and radix
|
||||
function bnpFromString(s,b) {
|
||||
var k;
|
||||
if(b == 16) k = 4;
|
||||
else if(b == 8) k = 3;
|
||||
else if(b == 256) k = 8; // byte array
|
||||
else if(b == 2) k = 1;
|
||||
else if(b == 32) k = 5;
|
||||
else if(b == 4) k = 2;
|
||||
else { this.fromRadix(s,b); return; }
|
||||
this.t = 0;
|
||||
this.s = 0;
|
||||
var i = s.length, mi = false, sh = 0;
|
||||
while(--i >= 0) {
|
||||
var x = (k==8)?s[i]&0xff:intAt(s,i);
|
||||
if(x < 0) {
|
||||
if(s.charAt(i) == "-") mi = true;
|
||||
continue;
|
||||
}
|
||||
mi = false;
|
||||
if(sh == 0)
|
||||
this[this.t++] = x;
|
||||
else if(sh+k > this.DB) {
|
||||
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
|
||||
this[this.t++] = (x>>(this.DB-sh));
|
||||
}
|
||||
else
|
||||
this[this.t-1] |= x<<sh;
|
||||
sh += k;
|
||||
if(sh >= this.DB) sh -= this.DB;
|
||||
}
|
||||
if(k == 8 && (s[0]&0x80) != 0) {
|
||||
this.s = -1;
|
||||
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
|
||||
}
|
||||
this.clamp();
|
||||
if(mi) BigInteger.ZERO.subTo(this,this);
|
||||
}
|
||||
|
||||
// (protected) clamp off excess high words
|
||||
function bnpClamp() {
|
||||
var c = this.s&this.DM;
|
||||
while(this.t > 0 && this[this.t-1] == c) --this.t;
|
||||
}
|
||||
|
||||
// (public) return string representation in given radix
|
||||
function bnToString(b) {
|
||||
if(this.s < 0) return "-"+this.negate().toString(b);
|
||||
var k;
|
||||
if(b == 16) k = 4;
|
||||
else if(b == 8) k = 3;
|
||||
else if(b == 2) k = 1;
|
||||
else if(b == 32) k = 5;
|
||||
else if(b == 4) k = 2;
|
||||
else return this.toRadix(b);
|
||||
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
|
||||
var p = this.DB-(i*this.DB)%k;
|
||||
if(i-- > 0) {
|
||||
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
|
||||
while(i >= 0) {
|
||||
if(p < k) {
|
||||
d = (this[i]&((1<<p)-1))<<(k-p);
|
||||
d |= this[--i]>>(p+=this.DB-k);
|
||||
}
|
||||
else {
|
||||
d = (this[i]>>(p-=k))&km;
|
||||
if(p <= 0) { p += this.DB; --i; }
|
||||
}
|
||||
if(d > 0) m = true;
|
||||
if(m) r += int2char(d);
|
||||
}
|
||||
}
|
||||
return m?r:"0";
|
||||
}
|
||||
|
||||
// (public) -this
|
||||
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
|
||||
|
||||
// (public) |this|
|
||||
function bnAbs() { return (this.s<0)?this.negate():this; }
|
||||
|
||||
// (public) return + if this > a, - if this < a, 0 if equal
|
||||
function bnCompareTo(a) {
|
||||
var r = this.s-a.s;
|
||||
if(r != 0) return r;
|
||||
var i = this.t;
|
||||
r = i-a.t;
|
||||
if(r != 0) return (this.s<0)?-r:r;
|
||||
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// returns bit length of the integer x
|
||||
function nbits(x) {
|
||||
var r = 1, t;
|
||||
if((t=x>>>16) != 0) { x = t; r += 16; }
|
||||
if((t=x>>8) != 0) { x = t; r += 8; }
|
||||
if((t=x>>4) != 0) { x = t; r += 4; }
|
||||
if((t=x>>2) != 0) { x = t; r += 2; }
|
||||
if((t=x>>1) != 0) { x = t; r += 1; }
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) return the number of bits in "this"
|
||||
function bnBitLength() {
|
||||
if(this.t <= 0) return 0;
|
||||
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
|
||||
}
|
||||
|
||||
// (protected) r = this << n*DB
|
||||
function bnpDLShiftTo(n,r) {
|
||||
var i;
|
||||
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
|
||||
for(i = n-1; i >= 0; --i) r[i] = 0;
|
||||
r.t = this.t+n;
|
||||
r.s = this.s;
|
||||
}
|
||||
|
||||
// (protected) r = this >> n*DB
|
||||
function bnpDRShiftTo(n,r) {
|
||||
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
|
||||
r.t = Math.max(this.t-n,0);
|
||||
r.s = this.s;
|
||||
}
|
||||
|
||||
// (protected) r = this << n
|
||||
function bnpLShiftTo(n,r) {
|
||||
var bs = n%this.DB;
|
||||
var cbs = this.DB-bs;
|
||||
var bm = (1<<cbs)-1;
|
||||
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
|
||||
for(i = this.t-1; i >= 0; --i) {
|
||||
r[i+ds+1] = (this[i]>>cbs)|c;
|
||||
c = (this[i]&bm)<<bs;
|
||||
}
|
||||
for(i = ds-1; i >= 0; --i) r[i] = 0;
|
||||
r[ds] = c;
|
||||
r.t = this.t+ds+1;
|
||||
r.s = this.s;
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (protected) r = this >> n
|
||||
function bnpRShiftTo(n,r) {
|
||||
r.s = this.s;
|
||||
var ds = Math.floor(n/this.DB);
|
||||
if(ds >= this.t) { r.t = 0; return; }
|
||||
var bs = n%this.DB;
|
||||
var cbs = this.DB-bs;
|
||||
var bm = (1<<bs)-1;
|
||||
r[0] = this[ds]>>bs;
|
||||
for(var i = ds+1; i < this.t; ++i) {
|
||||
r[i-ds-1] |= (this[i]&bm)<<cbs;
|
||||
r[i-ds] = this[i]>>bs;
|
||||
}
|
||||
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
|
||||
r.t = this.t-ds;
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (protected) r = this - a
|
||||
function bnpSubTo(a,r) {
|
||||
var i = 0, c = 0, m = Math.min(a.t,this.t);
|
||||
while(i < m) {
|
||||
c += this[i]-a[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
if(a.t < this.t) {
|
||||
c -= a.s;
|
||||
while(i < this.t) {
|
||||
c += this[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
c += this.s;
|
||||
}
|
||||
else {
|
||||
c += this.s;
|
||||
while(i < a.t) {
|
||||
c -= a[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
c -= a.s;
|
||||
}
|
||||
r.s = (c<0)?-1:0;
|
||||
if(c < -1) r[i++] = this.DV+c;
|
||||
else if(c > 0) r[i++] = c;
|
||||
r.t = i;
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (protected) r = this * a, r != this,a (HAC 14.12)
|
||||
// "this" should be the larger one if appropriate.
|
||||
function bnpMultiplyTo(a,r) {
|
||||
var x = this.abs(), y = a.abs();
|
||||
var i = x.t;
|
||||
r.t = i+y.t;
|
||||
while(--i >= 0) r[i] = 0;
|
||||
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
|
||||
r.s = 0;
|
||||
r.clamp();
|
||||
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
|
||||
}
|
||||
|
||||
// (protected) r = this^2, r != this (HAC 14.16)
|
||||
function bnpSquareTo(r) {
|
||||
var x = this.abs();
|
||||
var i = r.t = 2*x.t;
|
||||
while(--i >= 0) r[i] = 0;
|
||||
for(i = 0; i < x.t-1; ++i) {
|
||||
var c = x.am(i,x[i],r,2*i,0,1);
|
||||
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
|
||||
r[i+x.t] -= x.DV;
|
||||
r[i+x.t+1] = 1;
|
||||
}
|
||||
}
|
||||
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
|
||||
r.s = 0;
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
||||
// r != q, this != m. q or r may be null.
|
||||
function bnpDivRemTo(m,q,r) {
|
||||
var pm = m.abs();
|
||||
if(pm.t <= 0) return;
|
||||
var pt = this.abs();
|
||||
if(pt.t < pm.t) {
|
||||
if(q != null) q.fromInt(0);
|
||||
if(r != null) this.copyTo(r);
|
||||
return;
|
||||
}
|
||||
if(r == null) r = nbi();
|
||||
var y = nbi(), ts = this.s, ms = m.s;
|
||||
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
|
||||
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
|
||||
else { pm.copyTo(y); pt.copyTo(r); }
|
||||
var ys = y.t;
|
||||
var y0 = y[ys-1];
|
||||
if(y0 == 0) return;
|
||||
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
|
||||
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
|
||||
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
|
||||
y.dlShiftTo(j,t);
|
||||
if(r.compareTo(t) >= 0) {
|
||||
r[r.t++] = 1;
|
||||
r.subTo(t,r);
|
||||
}
|
||||
BigInteger.ONE.dlShiftTo(ys,t);
|
||||
t.subTo(y,y); // "negative" y so we can replace sub with am later
|
||||
while(y.t < ys) y[y.t++] = 0;
|
||||
while(--j >= 0) {
|
||||
// Estimate quotient digit
|
||||
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
|
||||
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
|
||||
y.dlShiftTo(j,t);
|
||||
r.subTo(t,r);
|
||||
while(r[i] < --qd) r.subTo(t,r);
|
||||
}
|
||||
}
|
||||
if(q != null) {
|
||||
r.drShiftTo(ys,q);
|
||||
if(ts != ms) BigInteger.ZERO.subTo(q,q);
|
||||
}
|
||||
r.t = ys;
|
||||
r.clamp();
|
||||
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
|
||||
if(ts < 0) BigInteger.ZERO.subTo(r,r);
|
||||
}
|
||||
|
||||
// (public) this mod a
|
||||
function bnMod(a) {
|
||||
var r = nbi();
|
||||
this.abs().divRemTo(a,null,r);
|
||||
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// Modular reduction using "classic" algorithm
|
||||
function Classic(m) { this.m = m; }
|
||||
function cConvert(x) {
|
||||
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
||||
else return x;
|
||||
}
|
||||
function cRevert(x) { return x; }
|
||||
function cReduce(x) { x.divRemTo(this.m,null,x); }
|
||||
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
||||
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
||||
|
||||
Classic.prototype.convert = cConvert;
|
||||
Classic.prototype.revert = cRevert;
|
||||
Classic.prototype.reduce = cReduce;
|
||||
Classic.prototype.mulTo = cMulTo;
|
||||
Classic.prototype.sqrTo = cSqrTo;
|
||||
|
||||
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
||||
// justification:
|
||||
// xy == 1 (mod m)
|
||||
// xy = 1+km
|
||||
// xy(2-xy) = (1+km)(1-km)
|
||||
// x[y(2-xy)] = 1-k^2m^2
|
||||
// x[y(2-xy)] == 1 (mod m^2)
|
||||
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
||||
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
||||
// JS multiply "overflows" differently from C/C++, so care is needed here.
|
||||
function bnpInvDigit() {
|
||||
if(this.t < 1) return 0;
|
||||
var x = this[0];
|
||||
if((x&1) == 0) return 0;
|
||||
var y = x&3; // y == 1/x mod 2^2
|
||||
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
|
||||
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
|
||||
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
|
||||
// last step - calculate inverse mod DV directly;
|
||||
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
||||
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
|
||||
// we really want the negative inverse, and -DV < y < DV
|
||||
return (y>0)?this.DV-y:-y;
|
||||
}
|
||||
|
||||
// Montgomery reduction
|
||||
function Montgomery(m) {
|
||||
this.m = m;
|
||||
this.mp = m.invDigit();
|
||||
this.mpl = this.mp&0x7fff;
|
||||
this.mph = this.mp>>15;
|
||||
this.um = (1<<(m.DB-15))-1;
|
||||
this.mt2 = 2*m.t;
|
||||
}
|
||||
|
||||
// xR mod m
|
||||
function montConvert(x) {
|
||||
var r = nbi();
|
||||
x.abs().dlShiftTo(this.m.t,r);
|
||||
r.divRemTo(this.m,null,r);
|
||||
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// x/R mod m
|
||||
function montRevert(x) {
|
||||
var r = nbi();
|
||||
x.copyTo(r);
|
||||
this.reduce(r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// x = x/R mod m (HAC 14.32)
|
||||
function montReduce(x) {
|
||||
while(x.t <= this.mt2) // pad x so am has enough room later
|
||||
x[x.t++] = 0;
|
||||
for(var i = 0; i < this.m.t; ++i) {
|
||||
// faster way of calculating u0 = x[i]*mp mod DV
|
||||
var j = x[i]&0x7fff;
|
||||
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
|
||||
// use am to combine the multiply-shift-add into one call
|
||||
j = i+this.m.t;
|
||||
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
|
||||
// propagate carry
|
||||
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
|
||||
}
|
||||
x.clamp();
|
||||
x.drShiftTo(this.m.t,x);
|
||||
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
||||
}
|
||||
|
||||
// r = "x^2/R mod m"; x != r
|
||||
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
||||
|
||||
// r = "xy/R mod m"; x,y != r
|
||||
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
||||
|
||||
Montgomery.prototype.convert = montConvert;
|
||||
Montgomery.prototype.revert = montRevert;
|
||||
Montgomery.prototype.reduce = montReduce;
|
||||
Montgomery.prototype.mulTo = montMulTo;
|
||||
Montgomery.prototype.sqrTo = montSqrTo;
|
||||
|
||||
// (protected) true iff this is even
|
||||
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
|
||||
|
||||
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
||||
function bnpExp(e,z) {
|
||||
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
|
||||
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
|
||||
g.copyTo(r);
|
||||
while(--i >= 0) {
|
||||
z.sqrTo(r,r2);
|
||||
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
|
||||
else { var t = r; r = r2; r2 = t; }
|
||||
}
|
||||
return z.revert(r);
|
||||
}
|
||||
|
||||
// (public) this^e % m, 0 <= e < 2^32
|
||||
function bnModPowInt(e,m) {
|
||||
var z;
|
||||
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
|
||||
return this.exp(e,z);
|
||||
}
|
||||
|
||||
// protected
|
||||
BigInteger.prototype.copyTo = bnpCopyTo;
|
||||
BigInteger.prototype.fromInt = bnpFromInt;
|
||||
BigInteger.prototype.fromString = bnpFromString;
|
||||
BigInteger.prototype.clamp = bnpClamp;
|
||||
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
|
||||
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
|
||||
BigInteger.prototype.lShiftTo = bnpLShiftTo;
|
||||
BigInteger.prototype.rShiftTo = bnpRShiftTo;
|
||||
BigInteger.prototype.subTo = bnpSubTo;
|
||||
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
|
||||
BigInteger.prototype.squareTo = bnpSquareTo;
|
||||
BigInteger.prototype.divRemTo = bnpDivRemTo;
|
||||
BigInteger.prototype.invDigit = bnpInvDigit;
|
||||
BigInteger.prototype.isEven = bnpIsEven;
|
||||
BigInteger.prototype.exp = bnpExp;
|
||||
|
||||
// public
|
||||
BigInteger.prototype.toString = bnToString;
|
||||
BigInteger.prototype.negate = bnNegate;
|
||||
BigInteger.prototype.abs = bnAbs;
|
||||
BigInteger.prototype.compareTo = bnCompareTo;
|
||||
BigInteger.prototype.bitLength = bnBitLength;
|
||||
BigInteger.prototype.mod = bnMod;
|
||||
BigInteger.prototype.modPowInt = bnModPowInt;
|
||||
|
||||
// "constants"
|
||||
BigInteger.ZERO = nbv(0);
|
||||
BigInteger.ONE = nbv(1);
|
@ -1,656 +0,0 @@
|
||||
// Copyright (c) 2005-2009 Tom Wu
|
||||
// All Rights Reserved.
|
||||
// See "LICENSE" for details.
|
||||
|
||||
// Extended JavaScript BN functions, required for RSA private ops.
|
||||
|
||||
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
|
||||
// Version 1.2: square() API, isProbablePrime fix
|
||||
|
||||
// (public)
|
||||
function bnClone() { var r = nbi(); this.copyTo(r); return r; }
|
||||
|
||||
// (public) return value as integer
|
||||
function bnIntValue() {
|
||||
if(this.s < 0) {
|
||||
if(this.t == 1) return this[0]-this.DV;
|
||||
else if(this.t == 0) return -1;
|
||||
}
|
||||
else if(this.t == 1) return this[0];
|
||||
else if(this.t == 0) return 0;
|
||||
// assumes 16 < DB < 32
|
||||
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
|
||||
}
|
||||
|
||||
// (public) return value as byte
|
||||
function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
|
||||
|
||||
// (public) return value as short (assumes DB>=16)
|
||||
function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
|
||||
|
||||
// (protected) return x s.t. r^x < DV
|
||||
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
|
||||
|
||||
// (public) 0 if this == 0, 1 if this > 0
|
||||
function bnSigNum() {
|
||||
if(this.s < 0) return -1;
|
||||
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
// (protected) convert to radix string
|
||||
function bnpToRadix(b) {
|
||||
if(b == null) b = 10;
|
||||
if(this.signum() == 0 || b < 2 || b > 36) return "0";
|
||||
var cs = this.chunkSize(b);
|
||||
var a = Math.pow(b,cs);
|
||||
var d = nbv(a), y = nbi(), z = nbi(), r = "";
|
||||
this.divRemTo(d,y,z);
|
||||
while(y.signum() > 0) {
|
||||
r = (a+z.intValue()).toString(b).substr(1) + r;
|
||||
y.divRemTo(d,y,z);
|
||||
}
|
||||
return z.intValue().toString(b) + r;
|
||||
}
|
||||
|
||||
// (protected) convert from radix string
|
||||
function bnpFromRadix(s,b) {
|
||||
this.fromInt(0);
|
||||
if(b == null) b = 10;
|
||||
var cs = this.chunkSize(b);
|
||||
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
|
||||
for(var i = 0; i < s.length; ++i) {
|
||||
var x = intAt(s,i);
|
||||
if(x < 0) {
|
||||
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
|
||||
continue;
|
||||
}
|
||||
w = b*w+x;
|
||||
if(++j >= cs) {
|
||||
this.dMultiply(d);
|
||||
this.dAddOffset(w,0);
|
||||
j = 0;
|
||||
w = 0;
|
||||
}
|
||||
}
|
||||
if(j > 0) {
|
||||
this.dMultiply(Math.pow(b,j));
|
||||
this.dAddOffset(w,0);
|
||||
}
|
||||
if(mi) BigInteger.ZERO.subTo(this,this);
|
||||
}
|
||||
|
||||
// (protected) alternate constructor
|
||||
function bnpFromNumber(a,b,c) {
|
||||
if("number" == typeof b) {
|
||||
// new BigInteger(int,int,RNG)
|
||||
if(a < 2) this.fromInt(1);
|
||||
else {
|
||||
this.fromNumber(a,c);
|
||||
if(!this.testBit(a-1)) // force MSB set
|
||||
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
|
||||
if(this.isEven()) this.dAddOffset(1,0); // force odd
|
||||
while(!this.isProbablePrime(b)) {
|
||||
this.dAddOffset(2,0);
|
||||
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
// new BigInteger(int,RNG)
|
||||
var x = new Array(), t = a&7;
|
||||
x.length = (a>>3)+1;
|
||||
b.nextBytes(x);
|
||||
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
|
||||
this.fromString(x,256);
|
||||
}
|
||||
}
|
||||
|
||||
// (public) convert to bigendian byte array
|
||||
function bnToByteArray() {
|
||||
var i = this.t, r = new Array();
|
||||
r[0] = this.s;
|
||||
var p = this.DB-(i*this.DB)%8, d, k = 0;
|
||||
if(i-- > 0) {
|
||||
if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
|
||||
r[k++] = d|(this.s<<(this.DB-p));
|
||||
while(i >= 0) {
|
||||
if(p < 8) {
|
||||
d = (this[i]&((1<<p)-1))<<(8-p);
|
||||
d |= this[--i]>>(p+=this.DB-8);
|
||||
}
|
||||
else {
|
||||
d = (this[i]>>(p-=8))&0xff;
|
||||
if(p <= 0) { p += this.DB; --i; }
|
||||
}
|
||||
if((d&0x80) != 0) d |= -256;
|
||||
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
|
||||
if(k > 0 || d != this.s) r[k++] = d;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
function bnEquals(a) { return(this.compareTo(a)==0); }
|
||||
function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
|
||||
function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
|
||||
|
||||
// (protected) r = this op a (bitwise)
|
||||
function bnpBitwiseTo(a,op,r) {
|
||||
var i, f, m = Math.min(a.t,this.t);
|
||||
for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
|
||||
if(a.t < this.t) {
|
||||
f = a.s&this.DM;
|
||||
for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
|
||||
r.t = this.t;
|
||||
}
|
||||
else {
|
||||
f = this.s&this.DM;
|
||||
for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
|
||||
r.t = a.t;
|
||||
}
|
||||
r.s = op(this.s,a.s);
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (public) this & a
|
||||
function op_and(x,y) { return x&y; }
|
||||
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
|
||||
|
||||
// (public) this | a
|
||||
function op_or(x,y) { return x|y; }
|
||||
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
|
||||
|
||||
// (public) this ^ a
|
||||
function op_xor(x,y) { return x^y; }
|
||||
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
|
||||
|
||||
// (public) this & ~a
|
||||
function op_andnot(x,y) { return x&~y; }
|
||||
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
|
||||
|
||||
// (public) ~this
|
||||
function bnNot() {
|
||||
var r = nbi();
|
||||
for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
|
||||
r.t = this.t;
|
||||
r.s = ~this.s;
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) this << n
|
||||
function bnShiftLeft(n) {
|
||||
var r = nbi();
|
||||
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) this >> n
|
||||
function bnShiftRight(n) {
|
||||
var r = nbi();
|
||||
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// return index of lowest 1-bit in x, x < 2^31
|
||||
function lbit(x) {
|
||||
if(x == 0) return -1;
|
||||
var r = 0;
|
||||
if((x&0xffff) == 0) { x >>= 16; r += 16; }
|
||||
if((x&0xff) == 0) { x >>= 8; r += 8; }
|
||||
if((x&0xf) == 0) { x >>= 4; r += 4; }
|
||||
if((x&3) == 0) { x >>= 2; r += 2; }
|
||||
if((x&1) == 0) ++r;
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) returns index of lowest 1-bit (or -1 if none)
|
||||
function bnGetLowestSetBit() {
|
||||
for(var i = 0; i < this.t; ++i)
|
||||
if(this[i] != 0) return i*this.DB+lbit(this[i]);
|
||||
if(this.s < 0) return this.t*this.DB;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// return number of 1 bits in x
|
||||
function cbit(x) {
|
||||
var r = 0;
|
||||
while(x != 0) { x &= x-1; ++r; }
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) return number of set bits
|
||||
function bnBitCount() {
|
||||
var r = 0, x = this.s&this.DM;
|
||||
for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) true iff nth bit is set
|
||||
function bnTestBit(n) {
|
||||
var j = Math.floor(n/this.DB);
|
||||
if(j >= this.t) return(this.s!=0);
|
||||
return((this[j]&(1<<(n%this.DB)))!=0);
|
||||
}
|
||||
|
||||
// (protected) this op (1<<n)
|
||||
function bnpChangeBit(n,op) {
|
||||
var r = BigInteger.ONE.shiftLeft(n);
|
||||
this.bitwiseTo(r,op,r);
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) this | (1<<n)
|
||||
function bnSetBit(n) { return this.changeBit(n,op_or); }
|
||||
|
||||
// (public) this & ~(1<<n)
|
||||
function bnClearBit(n) { return this.changeBit(n,op_andnot); }
|
||||
|
||||
// (public) this ^ (1<<n)
|
||||
function bnFlipBit(n) { return this.changeBit(n,op_xor); }
|
||||
|
||||
// (protected) r = this + a
|
||||
function bnpAddTo(a,r) {
|
||||
var i = 0, c = 0, m = Math.min(a.t,this.t);
|
||||
while(i < m) {
|
||||
c += this[i]+a[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
if(a.t < this.t) {
|
||||
c += a.s;
|
||||
while(i < this.t) {
|
||||
c += this[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
c += this.s;
|
||||
}
|
||||
else {
|
||||
c += this.s;
|
||||
while(i < a.t) {
|
||||
c += a[i];
|
||||
r[i++] = c&this.DM;
|
||||
c >>= this.DB;
|
||||
}
|
||||
c += a.s;
|
||||
}
|
||||
r.s = (c<0)?-1:0;
|
||||
if(c > 0) r[i++] = c;
|
||||
else if(c < -1) r[i++] = this.DV+c;
|
||||
r.t = i;
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (public) this + a
|
||||
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
|
||||
|
||||
// (public) this - a
|
||||
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
|
||||
|
||||
// (public) this * a
|
||||
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
|
||||
|
||||
// (public) this^2
|
||||
function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
|
||||
|
||||
// (public) this / a
|
||||
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
|
||||
|
||||
// (public) this % a
|
||||
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
|
||||
|
||||
// (public) [this/a,this%a]
|
||||
function bnDivideAndRemainder(a) {
|
||||
var q = nbi(), r = nbi();
|
||||
this.divRemTo(a,q,r);
|
||||
return new Array(q,r);
|
||||
}
|
||||
|
||||
// (protected) this *= n, this >= 0, 1 < n < DV
|
||||
function bnpDMultiply(n) {
|
||||
this[this.t] = this.am(0,n-1,this,0,0,this.t);
|
||||
++this.t;
|
||||
this.clamp();
|
||||
}
|
||||
|
||||
// (protected) this += n << w words, this >= 0
|
||||
function bnpDAddOffset(n,w) {
|
||||
if(n == 0) return;
|
||||
while(this.t <= w) this[this.t++] = 0;
|
||||
this[w] += n;
|
||||
while(this[w] >= this.DV) {
|
||||
this[w] -= this.DV;
|
||||
if(++w >= this.t) this[this.t++] = 0;
|
||||
++this[w];
|
||||
}
|
||||
}
|
||||
|
||||
// A "null" reducer
|
||||
function NullExp() {}
|
||||
function nNop(x) { return x; }
|
||||
function nMulTo(x,y,r) { x.multiplyTo(y,r); }
|
||||
function nSqrTo(x,r) { x.squareTo(r); }
|
||||
|
||||
NullExp.prototype.convert = nNop;
|
||||
NullExp.prototype.revert = nNop;
|
||||
NullExp.prototype.mulTo = nMulTo;
|
||||
NullExp.prototype.sqrTo = nSqrTo;
|
||||
|
||||
// (public) this^e
|
||||
function bnPow(e) { return this.exp(e,new NullExp()); }
|
||||
|
||||
// (protected) r = lower n words of "this * a", a.t <= n
|
||||
// "this" should be the larger one if appropriate.
|
||||
function bnpMultiplyLowerTo(a,n,r) {
|
||||
var i = Math.min(this.t+a.t,n);
|
||||
r.s = 0; // assumes a,this >= 0
|
||||
r.t = i;
|
||||
while(i > 0) r[--i] = 0;
|
||||
var j;
|
||||
for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
|
||||
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
|
||||
r.clamp();
|
||||
}
|
||||
|
||||
// (protected) r = "this * a" without lower n words, n > 0
|
||||
// "this" should be the larger one if appropriate.
|
||||
function bnpMultiplyUpperTo(a,n,r) {
|
||||
--n;
|
||||
var i = r.t = this.t+a.t-n;
|
||||
r.s = 0; // assumes a,this >= 0
|
||||
while(--i >= 0) r[i] = 0;
|
||||
for(i = Math.max(n-this.t,0); i < a.t; ++i)
|
||||
r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
|
||||
r.clamp();
|
||||
r.drShiftTo(1,r);
|
||||
}
|
||||
|
||||
// Barrett modular reduction
|
||||
function Barrett(m) {
|
||||
// setup Barrett
|
||||
this.r2 = nbi();
|
||||
this.q3 = nbi();
|
||||
BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
|
||||
this.mu = this.r2.divide(m);
|
||||
this.m = m;
|
||||
}
|
||||
|
||||
function barrettConvert(x) {
|
||||
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
|
||||
else if(x.compareTo(this.m) < 0) return x;
|
||||
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
|
||||
}
|
||||
|
||||
function barrettRevert(x) { return x; }
|
||||
|
||||
// x = x mod m (HAC 14.42)
|
||||
function barrettReduce(x) {
|
||||
x.drShiftTo(this.m.t-1,this.r2);
|
||||
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
|
||||
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
|
||||
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
|
||||
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
|
||||
x.subTo(this.r2,x);
|
||||
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
|
||||
}
|
||||
|
||||
// r = x^2 mod m; x != r
|
||||
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
|
||||
|
||||
// r = x*y mod m; x,y != r
|
||||
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
|
||||
|
||||
Barrett.prototype.convert = barrettConvert;
|
||||
Barrett.prototype.revert = barrettRevert;
|
||||
Barrett.prototype.reduce = barrettReduce;
|
||||
Barrett.prototype.mulTo = barrettMulTo;
|
||||
Barrett.prototype.sqrTo = barrettSqrTo;
|
||||
|
||||
// (public) this^e % m (HAC 14.85)
|
||||
function bnModPow(e,m) {
|
||||
var i = e.bitLength(), k, r = nbv(1), z;
|
||||
if(i <= 0) return r;
|
||||
else if(i < 18) k = 1;
|
||||
else if(i < 48) k = 3;
|
||||
else if(i < 144) k = 4;
|
||||
else if(i < 768) k = 5;
|
||||
else k = 6;
|
||||
if(i < 8)
|
||||
z = new Classic(m);
|
||||
else if(m.isEven())
|
||||
z = new Barrett(m);
|
||||
else
|
||||
z = new Montgomery(m);
|
||||
|
||||
// precomputation
|
||||
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
|
||||
g[1] = z.convert(this);
|
||||
if(k > 1) {
|
||||
var g2 = nbi();
|
||||
z.sqrTo(g[1],g2);
|
||||
while(n <= km) {
|
||||
g[n] = nbi();
|
||||
z.mulTo(g2,g[n-2],g[n]);
|
||||
n += 2;
|
||||
}
|
||||
}
|
||||
|
||||
var j = e.t-1, w, is1 = true, r2 = nbi(), t;
|
||||
i = nbits(e[j])-1;
|
||||
while(j >= 0) {
|
||||
if(i >= k1) w = (e[j]>>(i-k1))&km;
|
||||
else {
|
||||
w = (e[j]&((1<<(i+1))-1))<<(k1-i);
|
||||
if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
|
||||
}
|
||||
|
||||
n = k;
|
||||
while((w&1) == 0) { w >>= 1; --n; }
|
||||
if((i -= n) < 0) { i += this.DB; --j; }
|
||||
if(is1) { // ret == 1, don't bother squaring or multiplying it
|
||||
g[w].copyTo(r);
|
||||
is1 = false;
|
||||
}
|
||||
else {
|
||||
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
|
||||
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
|
||||
z.mulTo(r2,g[w],r);
|
||||
}
|
||||
|
||||
while(j >= 0 && (e[j]&(1<<i)) == 0) {
|
||||
z.sqrTo(r,r2); t = r; r = r2; r2 = t;
|
||||
if(--i < 0) { i = this.DB-1; --j; }
|
||||
}
|
||||
}
|
||||
return z.revert(r);
|
||||
}
|
||||
|
||||
// (public) gcd(this,a) (HAC 14.54)
|
||||
function bnGCD(a) {
|
||||
var x = (this.s<0)?this.negate():this.clone();
|
||||
var y = (a.s<0)?a.negate():a.clone();
|
||||
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
|
||||
var i = x.getLowestSetBit(), g = y.getLowestSetBit();
|
||||
if(g < 0) return x;
|
||||
if(i < g) g = i;
|
||||
if(g > 0) {
|
||||
x.rShiftTo(g,x);
|
||||
y.rShiftTo(g,y);
|
||||
}
|
||||
while(x.signum() > 0) {
|
||||
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
|
||||
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
|
||||
if(x.compareTo(y) >= 0) {
|
||||
x.subTo(y,x);
|
||||
x.rShiftTo(1,x);
|
||||
}
|
||||
else {
|
||||
y.subTo(x,y);
|
||||
y.rShiftTo(1,y);
|
||||
}
|
||||
}
|
||||
if(g > 0) y.lShiftTo(g,y);
|
||||
return y;
|
||||
}
|
||||
|
||||
// (protected) this % n, n < 2^26
|
||||
function bnpModInt(n) {
|
||||
if(n <= 0) return 0;
|
||||
var d = this.DV%n, r = (this.s<0)?n-1:0;
|
||||
if(this.t > 0)
|
||||
if(d == 0) r = this[0]%n;
|
||||
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
|
||||
return r;
|
||||
}
|
||||
|
||||
// (public) 1/this % m (HAC 14.61)
|
||||
function bnModInverse(m) {
|
||||
var ac = m.isEven();
|
||||
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
|
||||
var u = m.clone(), v = this.clone();
|
||||
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
|
||||
while(u.signum() != 0) {
|
||||
while(u.isEven()) {
|
||||
u.rShiftTo(1,u);
|
||||
if(ac) {
|
||||
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
|
||||
a.rShiftTo(1,a);
|
||||
}
|
||||
else if(!b.isEven()) b.subTo(m,b);
|
||||
b.rShiftTo(1,b);
|
||||
}
|
||||
while(v.isEven()) {
|
||||
v.rShiftTo(1,v);
|
||||
if(ac) {
|
||||
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
|
||||
c.rShiftTo(1,c);
|
||||
}
|
||||
else if(!d.isEven()) d.subTo(m,d);
|
||||
d.rShiftTo(1,d);
|
||||
}
|
||||
if(u.compareTo(v) >= 0) {
|
||||
u.subTo(v,u);
|
||||
if(ac) a.subTo(c,a);
|
||||
b.subTo(d,b);
|
||||
}
|
||||
else {
|
||||
v.subTo(u,v);
|
||||
if(ac) c.subTo(a,c);
|
||||
d.subTo(b,d);
|
||||
}
|
||||
}
|
||||
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
|
||||
if(d.compareTo(m) >= 0) return d.subtract(m);
|
||||
if(d.signum() < 0) d.addTo(m,d); else return d;
|
||||
if(d.signum() < 0) return d.add(m); else return d;
|
||||
}
|
||||
|
||||
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
|
||||
var lplim = (1<<26)/lowprimes[lowprimes.length-1];
|
||||
|
||||
// (public) test primality with certainty >= 1-.5^t
|
||||
function bnIsProbablePrime(t) {
|
||||
var i, x = this.abs();
|
||||
if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
|
||||
for(i = 0; i < lowprimes.length; ++i)
|
||||
if(x[0] == lowprimes[i]) return true;
|
||||
return false;
|
||||
}
|
||||
if(x.isEven()) return false;
|
||||
i = 1;
|
||||
while(i < lowprimes.length) {
|
||||
var m = lowprimes[i], j = i+1;
|
||||
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
|
||||
m = x.modInt(m);
|
||||
while(i < j) if(m%lowprimes[i++] == 0) return false;
|
||||
}
|
||||
return x.millerRabin(t);
|
||||
}
|
||||
|
||||
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
|
||||
function bnpMillerRabin(t) {
|
||||
var n1 = this.subtract(BigInteger.ONE);
|
||||
var k = n1.getLowestSetBit();
|
||||
if(k <= 0) return false;
|
||||
var r = n1.shiftRight(k);
|
||||
t = (t+1)>>1;
|
||||
if(t > lowprimes.length) t = lowprimes.length;
|
||||
var a = nbi();
|
||||
for(var i = 0; i < t; ++i) {
|
||||
//Pick bases at random, instead of starting at 2
|
||||
a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
|
||||
var y = a.modPow(r,this);
|
||||
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
|
||||
var j = 1;
|
||||
while(j++ < k && y.compareTo(n1) != 0) {
|
||||
y = y.modPowInt(2,this);
|
||||
if(y.compareTo(BigInteger.ONE) == 0) return false;
|
||||
}
|
||||
if(y.compareTo(n1) != 0) return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// protected
|
||||
BigInteger.prototype.chunkSize = bnpChunkSize;
|
||||
BigInteger.prototype.toRadix = bnpToRadix;
|
||||
BigInteger.prototype.fromRadix = bnpFromRadix;
|
||||
BigInteger.prototype.fromNumber = bnpFromNumber;
|
||||
BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
|
||||
BigInteger.prototype.changeBit = bnpChangeBit;
|
||||
BigInteger.prototype.addTo = bnpAddTo;
|
||||
BigInteger.prototype.dMultiply = bnpDMultiply;
|
||||
BigInteger.prototype.dAddOffset = bnpDAddOffset;
|
||||
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
|
||||
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
|
||||
BigInteger.prototype.modInt = bnpModInt;
|
||||
BigInteger.prototype.millerRabin = bnpMillerRabin;
|
||||
|
||||
// public
|
||||
BigInteger.prototype.clone = bnClone;
|
||||
BigInteger.prototype.intValue = bnIntValue;
|
||||
BigInteger.prototype.byteValue = bnByteValue;
|
||||
BigInteger.prototype.shortValue = bnShortValue;
|
||||
BigInteger.prototype.signum = bnSigNum;
|
||||
BigInteger.prototype.toByteArray = bnToByteArray;
|
||||
BigInteger.prototype.equals = bnEquals;
|
||||
BigInteger.prototype.min = bnMin;
|
||||
BigInteger.prototype.max = bnMax;
|
||||
BigInteger.prototype.and = bnAnd;
|
||||
BigInteger.prototype.or = bnOr;
|
||||
BigInteger.prototype.xor = bnXor;
|
||||
BigInteger.prototype.andNot = bnAndNot;
|
||||
BigInteger.prototype.not = bnNot;
|
||||
BigInteger.prototype.shiftLeft = bnShiftLeft;
|
||||
BigInteger.prototype.shiftRight = bnShiftRight;
|
||||
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
|
||||
BigInteger.prototype.bitCount = bnBitCount;
|
||||
BigInteger.prototype.testBit = bnTestBit;
|
||||
BigInteger.prototype.setBit = bnSetBit;
|
||||
BigInteger.prototype.clearBit = bnClearBit;
|
||||
BigInteger.prototype.flipBit = bnFlipBit;
|
||||
BigInteger.prototype.add = bnAdd;
|
||||
BigInteger.prototype.subtract = bnSubtract;
|
||||
BigInteger.prototype.multiply = bnMultiply;
|
||||
BigInteger.prototype.divide = bnDivide;
|
||||
BigInteger.prototype.remainder = bnRemainder;
|
||||
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
|
||||
BigInteger.prototype.modPow = bnModPow;
|
||||
BigInteger.prototype.modInverse = bnModInverse;
|
||||
BigInteger.prototype.pow = bnPow;
|
||||
BigInteger.prototype.gcd = bnGCD;
|
||||
BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
|
||||
|
||||
// JSBN-specific extension
|
||||
BigInteger.prototype.square = bnSquare;
|
||||
|
||||
// BigInteger interfaces not implemented in jsbn:
|
||||
|
||||
// BigInteger(int signum, byte[] magnitude)
|
||||
// double doubleValue()
|
||||
// float floatValue()
|
||||
// int hashCode()
|
||||
// long longValue()
|
||||
// static BigInteger valueOf(long val)
|
@ -1,45 +0,0 @@
|
||||
// prng4.js - uses Arcfour as a PRNG
|
||||
|
||||
function Arcfour() {
|
||||
this.i = 0;
|
||||
this.j = 0;
|
||||
this.S = new Array();
|
||||
}
|
||||
|
||||
// Initialize arcfour context from key, an array of ints, each from [0..255]
|
||||
function ARC4init(key) {
|
||||
var i, j, t;
|
||||
for(i = 0; i < 256; ++i)
|
||||
this.S[i] = i;
|
||||
j = 0;
|
||||
for(i = 0; i < 256; ++i) {
|
||||
j = (j + this.S[i] + key[i % key.length]) & 255;
|
||||
t = this.S[i];
|
||||
this.S[i] = this.S[j];
|
||||
this.S[j] = t;
|
||||
}
|
||||
this.i = 0;
|
||||
this.j = 0;
|
||||
}
|
||||
|
||||
function ARC4next() {
|
||||
var t;
|
||||
this.i = (this.i + 1) & 255;
|
||||
this.j = (this.j + this.S[this.i]) & 255;
|
||||
t = this.S[this.i];
|
||||
this.S[this.i] = this.S[this.j];
|
||||
this.S[this.j] = t;
|
||||
return this.S[(t + this.S[this.i]) & 255];
|
||||
}
|
||||
|
||||
Arcfour.prototype.init = ARC4init;
|
||||
Arcfour.prototype.next = ARC4next;
|
||||
|
||||
// Plug in your RNG constructor here
|
||||
function prng_newstate() {
|
||||
return new Arcfour();
|
||||
}
|
||||
|
||||
// Pool size must be a multiple of 4 and greater than 32.
|
||||
// An array of bytes the size of the pool will be passed to init()
|
||||
var rng_psize = 256;
|
@ -1,68 +0,0 @@
|
||||
// Random number generator - requires a PRNG backend, e.g. prng4.js
|
||||
|
||||
// For best results, put code like
|
||||
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
|
||||
// in your main HTML document.
|
||||
|
||||
var rng_state;
|
||||
var rng_pool;
|
||||
var rng_pptr;
|
||||
|
||||
// Mix in a 32-bit integer into the pool
|
||||
function rng_seed_int(x) {
|
||||
rng_pool[rng_pptr++] ^= x & 255;
|
||||
rng_pool[rng_pptr++] ^= (x >> 8) & 255;
|
||||
rng_pool[rng_pptr++] ^= (x >> 16) & 255;
|
||||
rng_pool[rng_pptr++] ^= (x >> 24) & 255;
|
||||
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
|
||||
}
|
||||
|
||||
// Mix in the current time (w/milliseconds) into the pool
|
||||
function rng_seed_time() {
|
||||
rng_seed_int(new Date().getTime());
|
||||
}
|
||||
|
||||
// Initialize the pool with junk if needed.
|
||||
if(rng_pool == null) {
|
||||
rng_pool = new Array();
|
||||
rng_pptr = 0;
|
||||
var t;
|
||||
if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) {
|
||||
// Extract entropy (256 bits) from NS4 RNG if available
|
||||
var z = window.crypto.random(32);
|
||||
for(t = 0; t < z.length; ++t)
|
||||
rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
|
||||
}
|
||||
while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
|
||||
t = Math.floor(65536 * Math.random());
|
||||
rng_pool[rng_pptr++] = t >>> 8;
|
||||
rng_pool[rng_pptr++] = t & 255;
|
||||
}
|
||||
rng_pptr = 0;
|
||||
rng_seed_time();
|
||||
//rng_seed_int(window.screenX);
|
||||
//rng_seed_int(window.screenY);
|
||||
}
|
||||
|
||||
function rng_get_byte() {
|
||||
if(rng_state == null) {
|
||||
rng_seed_time();
|
||||
rng_state = prng_newstate();
|
||||
rng_state.init(rng_pool);
|
||||
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
|
||||
rng_pool[rng_pptr] = 0;
|
||||
rng_pptr = 0;
|
||||
//rng_pool = null;
|
||||
}
|
||||
// TODO: allow reseeding after first request
|
||||
return rng_state.next();
|
||||
}
|
||||
|
||||
function rng_get_bytes(ba) {
|
||||
var i;
|
||||
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
|
||||
}
|
||||
|
||||
function SecureRandom() {}
|
||||
|
||||
SecureRandom.prototype.nextBytes = rng_get_bytes;
|
@ -1,112 +0,0 @@
|
||||
// Depends on jsbn.js and rng.js
|
||||
|
||||
// Version 1.1: support utf-8 encoding in pkcs1pad2
|
||||
|
||||
// convert a (hex) string to a bignum object
|
||||
function parseBigInt(str,r) {
|
||||
return new BigInteger(str,r);
|
||||
}
|
||||
|
||||
function linebrk(s,n) {
|
||||
var ret = "";
|
||||
var i = 0;
|
||||
while(i + n < s.length) {
|
||||
ret += s.substring(i,i+n) + "\n";
|
||||
i += n;
|
||||
}
|
||||
return ret + s.substring(i,s.length);
|
||||
}
|
||||
|
||||
function byte2Hex(b) {
|
||||
if(b < 0x10)
|
||||
return "0" + b.toString(16);
|
||||
else
|
||||
return b.toString(16);
|
||||
}
|
||||
|
||||
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
|
||||
function pkcs1pad2(s,n) {
|
||||
if(n < s.length + 11) { // TODO: fix for utf-8
|
||||
alert("Message too long for RSA");
|
||||
return null;
|
||||
}
|
||||
var ba = new Array();
|
||||
var i = s.length - 1;
|
||||
while(i >= 0 && n > 0) {
|
||||
var c = s.charCodeAt(i--);
|
||||
if(c < 128) { // encode using utf-8
|
||||
ba[--n] = c;
|
||||
}
|
||||
else if((c > 127) && (c < 2048)) {
|
||||
ba[--n] = (c & 63) | 128;
|
||||
ba[--n] = (c >> 6) | 192;
|
||||
}
|
||||
else {
|
||||
ba[--n] = (c & 63) | 128;
|
||||
ba[--n] = ((c >> 6) & 63) | 128;
|
||||
ba[--n] = (c >> 12) | 224;
|
||||
}
|
||||
}
|
||||
ba[--n] = 0;
|
||||
var rng = new SecureRandom();
|
||||
var x = new Array();
|
||||
while(n > 2) { // random non-zero pad
|
||||
x[0] = 0;
|
||||
while(x[0] == 0) rng.nextBytes(x);
|
||||
ba[--n] = x[0];
|
||||
}
|
||||
ba[--n] = 2;
|
||||
ba[--n] = 0;
|
||||
return new BigInteger(ba);
|
||||
}
|
||||
|
||||
// "empty" RSA key constructor
|
||||
function RSAKey() {
|
||||
this.n = null;
|
||||
this.e = 0;
|
||||
this.d = null;
|
||||
this.p = null;
|
||||
this.q = null;
|
||||
this.dmp1 = null;
|
||||
this.dmq1 = null;
|
||||
this.coeff = null;
|
||||
}
|
||||
|
||||
// Set the public key fields N and e from hex strings
|
||||
function RSASetPublic(N,E) {
|
||||
if(N != null && E != null && N.length > 0 && E.length > 0) {
|
||||
this.n = parseBigInt(N,16);
|
||||
this.e = parseInt(E,16);
|
||||
}
|
||||
else
|
||||
alert("Invalid RSA public key");
|
||||
}
|
||||
|
||||
// Perform raw public operation on "x": return x^e (mod n)
|
||||
function RSADoPublic(x) {
|
||||
return x.modPowInt(this.e, this.n);
|
||||
}
|
||||
|
||||
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
|
||||
function RSAEncrypt(text) {
|
||||
var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
|
||||
if(m == null) return null;
|
||||
var c = this.doPublic(m);
|
||||
if(c == null) return null;
|
||||
var h = c.toString(16);
|
||||
if((h.length & 1) == 0) return h; else return "0" + h;
|
||||
}
|
||||
|
||||
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
|
||||
//function RSAEncryptB64(text) {
|
||||
// var h = this.encrypt(text);
|
||||
// if(h) return hex2b64(h); else return null;
|
||||
//}
|
||||
|
||||
// protected
|
||||
RSAKey.prototype.doPublic = RSADoPublic;
|
||||
|
||||
// public
|
||||
RSAKey.prototype.setPublic = RSASetPublic;
|
||||
RSAKey.prototype.encrypt = RSAEncrypt;
|
||||
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
|
@ -1,132 +0,0 @@
|
||||
// Depends on rsa.js and jsbn2.js
|
||||
|
||||
// Version 1.1: support utf-8 decoding in pkcs1unpad2
|
||||
|
||||
// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
|
||||
function pkcs1unpad2(d,n) {
|
||||
var b = d.toByteArray();
|
||||
var i = 0;
|
||||
while(i < b.length && b[i] == 0) ++i;
|
||||
if(b.length-i != n-1 || b[i] != 2)
|
||||
return null;
|
||||
++i;
|
||||
while(b[i] != 0)
|
||||
if(++i >= b.length) return null;
|
||||
var ret = "";
|
||||
while(++i < b.length) {
|
||||
var c = b[i] & 255;
|
||||
if(c < 128) { // utf-8 decode
|
||||
ret += String.fromCharCode(c);
|
||||
}
|
||||
else if((c > 191) && (c < 224)) {
|
||||
ret += String.fromCharCode(((c & 31) << 6) | (b[i+1] & 63));
|
||||
++i;
|
||||
}
|
||||
else {
|
||||
ret += String.fromCharCode(((c & 15) << 12) | ((b[i+1] & 63) << 6) | (b[i+2] & 63));
|
||||
i += 2;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Set the private key fields N, e, and d from hex strings
|
||||
function RSASetPrivate(N,E,D) {
|
||||
if(N != null && E != null && N.length > 0 && E.length > 0) {
|
||||
this.n = parseBigInt(N,16);
|
||||
this.e = parseInt(E,16);
|
||||
this.d = parseBigInt(D,16);
|
||||
}
|
||||
else
|
||||
alert("Invalid RSA private key");
|
||||
}
|
||||
|
||||
// Set the private key fields N, e, d and CRT params from hex strings
|
||||
function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
|
||||
if(N != null && E != null && N.length > 0 && E.length > 0) {
|
||||
this.n = parseBigInt(N,16);
|
||||
this.e = parseInt(E,16);
|
||||
this.d = parseBigInt(D,16);
|
||||
this.p = parseBigInt(P,16);
|
||||
this.q = parseBigInt(Q,16);
|
||||
this.dmp1 = parseBigInt(DP,16);
|
||||
this.dmq1 = parseBigInt(DQ,16);
|
||||
this.coeff = parseBigInt(C,16);
|
||||
}
|
||||
else
|
||||
alert("Invalid RSA private key");
|
||||
}
|
||||
|
||||
// Generate a new random private key B bits long, using public expt E
|
||||
function RSAGenerate(B,E) {
|
||||
var rng = new SecureRandom();
|
||||
var qs = B>>1;
|
||||
this.e = parseInt(E,16);
|
||||
var ee = new BigInteger(E,16);
|
||||
for(;;) {
|
||||
for(;;) {
|
||||
this.p = new BigInteger(B-qs,1,rng);
|
||||
if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
|
||||
}
|
||||
for(;;) {
|
||||
this.q = new BigInteger(qs,1,rng);
|
||||
if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
|
||||
}
|
||||
if(this.p.compareTo(this.q) <= 0) {
|
||||
var t = this.p;
|
||||
this.p = this.q;
|
||||
this.q = t;
|
||||
}
|
||||
var p1 = this.p.subtract(BigInteger.ONE);
|
||||
var q1 = this.q.subtract(BigInteger.ONE);
|
||||
var phi = p1.multiply(q1);
|
||||
if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
|
||||
this.n = this.p.multiply(this.q);
|
||||
this.d = ee.modInverse(phi);
|
||||
this.dmp1 = this.d.mod(p1);
|
||||
this.dmq1 = this.d.mod(q1);
|
||||
this.coeff = this.q.modInverse(this.p);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform raw private operation on "x": return x^d (mod n)
|
||||
function RSADoPrivate(x) {
|
||||
if(this.p == null || this.q == null)
|
||||
return x.modPow(this.d, this.n);
|
||||
|
||||
// TODO: re-calculate any missing CRT params
|
||||
var xp = x.mod(this.p).modPow(this.dmp1, this.p);
|
||||
var xq = x.mod(this.q).modPow(this.dmq1, this.q);
|
||||
|
||||
while(xp.compareTo(xq) < 0)
|
||||
xp = xp.add(this.p);
|
||||
return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
|
||||
}
|
||||
|
||||
// Return the PKCS#1 RSA decryption of "ctext".
|
||||
// "ctext" is an even-length hex string and the output is a plain string.
|
||||
function RSADecrypt(ctext) {
|
||||
var c = parseBigInt(ctext, 16);
|
||||
var m = this.doPrivate(c);
|
||||
if(m == null) return null;
|
||||
return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
|
||||
}
|
||||
|
||||
// Return the PKCS#1 RSA decryption of "ctext".
|
||||
// "ctext" is a Base64-encoded string and the output is a plain string.
|
||||
//function RSAB64Decrypt(ctext) {
|
||||
// var h = b64tohex(ctext);
|
||||
// if(h) return this.decrypt(h); else return null;
|
||||
//}
|
||||
|
||||
// protected
|
||||
RSAKey.prototype.doPrivate = RSADoPrivate;
|
||||
|
||||
// public
|
||||
RSAKey.prototype.setPrivate = RSASetPrivate;
|
||||
RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
|
||||
RSAKey.prototype.generate = RSAGenerate;
|
||||
RSAKey.prototype.decrypt = RSADecrypt;
|
||||
//RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
|
@ -1,157 +0,0 @@
|
||||
// Named EC curves
|
||||
|
||||
// Requires ec.js, jsbn.js, and jsbn2.js
|
||||
|
||||
// ----------------
|
||||
// X9ECParameters
|
||||
|
||||
// constructor
|
||||
function X9ECParameters(curve,g,n,h) {
|
||||
this.curve = curve;
|
||||
this.g = g;
|
||||
this.n = n;
|
||||
this.h = h;
|
||||
}
|
||||
|
||||
function x9getCurve() {
|
||||
return this.curve;
|
||||
}
|
||||
|
||||
function x9getG() {
|
||||
return this.g;
|
||||
}
|
||||
|
||||
function x9getN() {
|
||||
return this.n;
|
||||
}
|
||||
|
||||
function x9getH() {
|
||||
return this.h;
|
||||
}
|
||||
|
||||
X9ECParameters.prototype.getCurve = x9getCurve;
|
||||
X9ECParameters.prototype.getG = x9getG;
|
||||
X9ECParameters.prototype.getN = x9getN;
|
||||
X9ECParameters.prototype.getH = x9getH;
|
||||
|
||||
// ----------------
|
||||
// SECNamedCurves
|
||||
|
||||
function fromHex(s) { return new BigInteger(s, 16); }
|
||||
|
||||
function secp128r1() {
|
||||
// p = 2^128 - 2^97 - 1
|
||||
var p = fromHex("FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("E87579C11079F43DD824993C2CEE5ED3");
|
||||
//byte[] S = Hex.decode("000E0D4D696E6768756151750CC03A4473D03679");
|
||||
var n = fromHex("FFFFFFFE0000000075A30D1B9038A115");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "161FF7528B899B2D0C28607CA52C5B86"
|
||||
+ "CF5AC8395BAFEB13C02DA292DDED7A83");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp160k1() {
|
||||
// p = 2^160 - 2^32 - 2^14 - 2^12 - 2^9 - 2^8 - 2^7 - 2^3 - 2^2 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73");
|
||||
var a = BigInteger.ZERO;
|
||||
var b = fromHex("7");
|
||||
//byte[] S = null;
|
||||
var n = fromHex("0100000000000000000001B8FA16DFAB9ACA16B6B3");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "3B4C382CE37AA192A4019E763036F4F5DD4D7EBB"
|
||||
+ "938CF935318FDCED6BC28286531733C3F03C4FEE");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp160r1() {
|
||||
// p = 2^160 - 2^31 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC");
|
||||
var b = fromHex("1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45");
|
||||
//byte[] S = Hex.decode("1053CDE42C14D696E67687561517533BF3F83345");
|
||||
var n = fromHex("0100000000000000000001F4C8F927AED3CA752257");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "4A96B5688EF573284664698968C38BB913CBFC82"
|
||||
+ "23A628553168947D59DCC912042351377AC5FB32");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp192k1() {
|
||||
// p = 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37");
|
||||
var a = BigInteger.ZERO;
|
||||
var b = fromHex("3");
|
||||
//byte[] S = null;
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D"
|
||||
+ "9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp192r1() {
|
||||
// p = 2^192 - 2^64 - 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1");
|
||||
//byte[] S = Hex.decode("3045AE6FC8422F64ED579528D38120EAE12196D5");
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
|
||||
+ "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp224r1() {
|
||||
// p = 2^224 - 2^96 + 1
|
||||
var p = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001");
|
||||
var a = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE");
|
||||
var b = fromHex("B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4");
|
||||
//byte[] S = Hex.decode("BD71344799D5C7FCDC45B59FA3B9AB8F6A948BC5");
|
||||
var n = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
|
||||
+ "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
function secp256r1() {
|
||||
// p = 2^224 (2^32 - 1) + 2^192 + 2^96 - 1
|
||||
var p = fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF");
|
||||
var a = fromHex("FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC");
|
||||
var b = fromHex("5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B");
|
||||
//byte[] S = Hex.decode("C49D360886E704936A6678E1139D26B7819F7E90");
|
||||
var n = fromHex("FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551");
|
||||
var h = BigInteger.ONE;
|
||||
var curve = new ECCurveFp(p, a, b);
|
||||
var G = curve.decodePointHex("04"
|
||||
+ "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
|
||||
+ "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5");
|
||||
return new X9ECParameters(curve, G, n, h);
|
||||
}
|
||||
|
||||
// TODO: make this into a proper hashtable
|
||||
function getSECCurveByName(name) {
|
||||
if(name == "secp128r1") return secp128r1();
|
||||
if(name == "secp160k1") return secp160k1();
|
||||
if(name == "secp160r1") return secp160r1();
|
||||
if(name == "secp192k1") return secp192k1();
|
||||
if(name == "secp192r1") return secp192r1();
|
||||
if(name == "secp224r1") return secp224r1();
|
||||
if(name == "secp256r1") return secp256r1();
|
||||
return null;
|
||||
}
|
@ -24,14 +24,6 @@
|
||||
<script src="../lib/lawnchair/lawnchair-adapter-indexed-db-git.js"></script>
|
||||
<script src="../lib/lawnchair/lawnchair-adapter-webkit-sqlite-git.js"></script>
|
||||
|
||||
<script src="../lib/crypto-js/core.js"></script>
|
||||
<script src="../lib/crypto-js/enc-base64.js"></script>
|
||||
<script src="../lib/crypto-js/cipher-core.js"></script>
|
||||
<script src="../lib/crypto-js/aes.js"></script>
|
||||
<script src="../lib/crypto-js/sha1.js"></script>
|
||||
<script src="../lib/crypto-js/hmac.js"></script>
|
||||
<script src="../lib/crypto-js/pbkdf2.js"></script>
|
||||
|
||||
<script src="../lib/sjcl/sjcl.js"></script>
|
||||
<script src="../lib/sjcl/sha256.js"></script>
|
||||
<script src="../lib/sjcl/random.js"></script>
|
||||
|
@ -19,7 +19,7 @@ test("CBC mode with HMAC-SHA-256", 4, function() {
|
||||
var key = aes_test.util.random(aes_test.keySize);
|
||||
var iv = aes_test.util.random(aes_test.keySize);
|
||||
ok(key, 'Key: ' + key);
|
||||
equal(CryptoJS.enc.Base64.parse(key).sigBytes * 8, aes_test.keySize, 'Keysize ' + aes_test.keySize);
|
||||
equal(aes_test.util.base642Str(key).length * 8, aes_test.keySize, 'Keysize ' + aes_test.keySize);
|
||||
|
||||
var ct = aes.encrypt(plaintext, key, iv);
|
||||
ok(ct.ciphertext, 'Ciphertext lenght: ' + ct.ciphertext.length);
|
||||
|
@ -7,108 +7,108 @@ var crypto_test = {
|
||||
ivSize: 104
|
||||
};
|
||||
|
||||
asyncTest("Init", 2, function() {
|
||||
asyncTest("Init", 2, function() {
|
||||
// init dependencies
|
||||
crypto_test.util = new app.crypto.Util(window, uuid);
|
||||
crypto_test.crypto = new app.crypto.Crypto(window, crypto_test.util);
|
||||
ok(crypto_test.crypto, 'Crypto');
|
||||
|
||||
ok(crypto_test.crypto, 'Crypto');
|
||||
|
||||
crypto_test.crypto.init(crypto_test.user, crypto_test.password, crypto_test.keySize, crypto_test.ivSize, function() {
|
||||
ok(true, 'Init crypto');
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("PBKDF2 (Async/Worker)", 1, function() {
|
||||
crypto_test.crypto.deriveKey(crypto_test.password, crypto_test.keySize, function(key) {
|
||||
equal(CryptoJS.enc.Base64.parse(key).sigBytes * 8, crypto_test.keySize, 'Keysize ' + crypto_test.keySize);
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("En/Decrypt for User", 4, function() {
|
||||
asyncTest("PBKDF2 (Async/Worker)", 1, function() {
|
||||
crypto_test.crypto.deriveKey(crypto_test.password, crypto_test.keySize, function(key) {
|
||||
equal(crypto_test.util.base642Str(key).length * 8, crypto_test.keySize, 'Keysize ' + crypto_test.keySize);
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("En/Decrypt for User", 4, function() {
|
||||
var secret = "Secret stuff";
|
||||
|
||||
|
||||
var itemKey = crypto_test.util.random(crypto_test.keySize);
|
||||
var itemIV = crypto_test.util.random(crypto_test.ivSize);
|
||||
var keyIV = crypto_test.util.random(crypto_test.ivSize);
|
||||
|
||||
|
||||
crypto_test.crypto.aesEncrypt(secret, itemKey, itemIV, function(ciphertext) {
|
||||
ok(ciphertext, 'Encrypt item');
|
||||
|
||||
|
||||
crypto_test.crypto.aesEncryptForUser(itemKey, keyIV, function(encryptedKey) {
|
||||
ok(encryptedKey, 'Encrypt item key');
|
||||
|
||||
|
||||
crypto_test.crypto.aesDecryptForUser(encryptedKey, keyIV, function(decryptedKey) {
|
||||
equal(decryptedKey, itemKey, 'Decrypt item key');
|
||||
|
||||
|
||||
crypto_test.crypto.aesDecrypt(ciphertext, decryptedKey, itemIV, function(decrypted) {
|
||||
equal(decrypted, secret, 'Decrypt item');
|
||||
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("CCM mode (Async/Worker)", 2, function() {
|
||||
asyncTest("CCM mode (Async/Worker)", 2, function() {
|
||||
var secret = 'Big secret';
|
||||
|
||||
|
||||
var key = crypto_test.util.random(crypto_test.keySize);
|
||||
var iv = crypto_test.util.random(crypto_test.ivSize);
|
||||
|
||||
|
||||
crypto_test.crypto.aesEncrypt(secret, key, iv, function(ciphertext) {
|
||||
ok(ciphertext, 'Encrypt item');
|
||||
|
||||
|
||||
crypto_test.crypto.aesDecrypt(ciphertext, key, iv, function(decrypted) {
|
||||
equal(decrypted, secret, 'Decrypt item');
|
||||
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("CCM batch mode (Async/Worker)", 5, function() {
|
||||
asyncTest("CCM batch mode (Async/Worker)", 5, function() {
|
||||
// generate test data
|
||||
var collection, list, td = new TestData();
|
||||
|
||||
|
||||
collection = td.getEmailCollection(100);
|
||||
list = td.packageCollectionForEncryption(collection, crypto_test.keySize, crypto_test.ivSize);
|
||||
|
||||
|
||||
crypto_test.crypto.aesEncryptList(list, function(encryptedList) {
|
||||
ok(encryptedList, 'Encrypt list');
|
||||
equal(encryptedList.length, list.length, 'Length of list');
|
||||
|
||||
|
||||
crypto_test.crypto.aesDecryptList(encryptedList, function(decryptedList) {
|
||||
ok(decryptedList, 'Decrypt list');
|
||||
equal(decryptedList.length, list.length, 'Length of list');
|
||||
deepEqual(decryptedList, list, 'Decrypted list is correct');
|
||||
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
asyncTest("CCM batch mode for User (Async/Worker)", 5, function() {
|
||||
asyncTest("CCM batch mode for User (Async/Worker)", 5, function() {
|
||||
// generate test data
|
||||
var collection, list, td = new TestData();
|
||||
|
||||
|
||||
collection = td.getEmailCollection(100);
|
||||
list = collection.toJSON();
|
||||
|
||||
|
||||
crypto_test.crypto.aesEncryptListForUser(list, function(encryptedList) {
|
||||
ok(encryptedList, 'Encrypt list for user');
|
||||
equal(encryptedList.length, list.length, 'Length of list');
|
||||
|
||||
|
||||
crypto_test.crypto.aesDecryptListForUser(encryptedList, function(decryptedList) {
|
||||
ok(decryptedList, 'Decrypt list');
|
||||
equal(decryptedList.length, list.length, 'Length of list');
|
||||
deepEqual(decryptedList, list, 'Decrypted list is correct');
|
||||
|
||||
|
||||
start();
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
@ -24,14 +24,6 @@
|
||||
<script src="../lib/lawnchair/lawnchair-adapter-indexed-db-git.js"></script>
|
||||
<script src="../lib/lawnchair/lawnchair-adapter-webkit-sqlite-git.js"></script>
|
||||
|
||||
<script src="../lib/crypto-js/core.js"></script>
|
||||
<script src="../lib/crypto-js/enc-base64.js"></script>
|
||||
<script src="../lib/crypto-js/cipher-core.js"></script>
|
||||
<script src="../lib/crypto-js/aes.js"></script>
|
||||
<script src="../lib/crypto-js/sha1.js"></script>
|
||||
<script src="../lib/crypto-js/hmac.js"></script>
|
||||
<script src="../lib/crypto-js/pbkdf2.js"></script>
|
||||
|
||||
<script src="../lib/sjcl/sjcl.js"></script>
|
||||
<script src="../lib/sjcl/sha256.js"></script>
|
||||
<script src="../lib/sjcl/random.js"></script>
|
||||
|
Loading…
Reference in New Issue
Block a user