1
0
mirror of https://github.com/moparisthebest/mail synced 2024-11-22 08:52:15 -05:00

removed unnecessary scripts and dependecies for sjcl and nacl

This commit is contained in:
Tankred Hase 2013-06-01 11:19:18 +02:00
parent 03a60c2546
commit 558ac6153d
29 changed files with 0 additions and 5115 deletions

View File

@ -1,56 +0,0 @@
/**
* A Wrapper for SJCL's authenticated AES-CCM encryption
*/
var AesCCM = function(sjcl) {
'use strict';
var adata = []; // authenticated data (empty by default)
var tlen = 64; // The tag length in bits
/**
* Encrypt a String using AES-CCM using the provided keysize (e.g. 128, 256)
* @param plaintext [String] The input string in UTF8
* @param key [String] The base64 encoded key
* @param iv [String] The base64 encoded IV
* @return [String] The base64 encoded ciphertext
*/
this.encrypt = function(plaintext, key, iv) {
// convert parameters to WordArrays
var keyWords = sjcl.codec.base64.toBits(key);
var ivWords = sjcl.codec.base64.toBits(iv);
var plaintextWords = sjcl.codec.utf8String.toBits(plaintext);
var blockCipher = new sjcl.cipher.aes(keyWords);
var ciphertext = sjcl.mode.ccm.encrypt(blockCipher, plaintextWords, ivWords, adata, tlen);
var ctBase64 = sjcl.codec.base64.fromBits(ciphertext);
return ctBase64;
};
/**
* Decrypt a String using AES-CCM using the provided keysize (e.g. 128, 256)
* @param ciphertext [String] The base64 encoded ciphertext
* @param key [String] The base64 encoded key
* @param iv [String] The base64 encoded IV
* @return [String] The decrypted plaintext in UTF8
*/
this.decrypt = function(ciphertext, key, iv) {
// convert parameters to WordArrays
var keyWords = sjcl.codec.base64.toBits(key);
var ivWords = sjcl.codec.base64.toBits(iv);
var ciphertextWords = sjcl.codec.base64.toBits(ciphertext);
var blockCipher = new sjcl.cipher.aes(keyWords);
var decrypted = sjcl.mode.ccm.decrypt(blockCipher, ciphertextWords, ivWords, adata, tlen);
var pt = sjcl.codec.utf8String.fromBits(decrypted);
return pt;
};
};
if (typeof module !== 'undefined' && module.exports) {
module.exports = AesCCM;
} else {
app.crypto.AesCCM = AesCCM;
}

View File

@ -1,50 +0,0 @@
/**
* A Wrapper for SJCL's authenticated AES-GCM encryption
*/
app.crypto.AesGCM = function() {
'use strict';
var adata = []; // authenticated data (empty by default)
var tlen = 128; // The tag length in bits
/**
* Encrypt a String using AES-GCM using the provided keysize (e.g. 128, 256)
* @param plaintext [String] The input string in UTF8
* @param key [String] The base64 encoded key
* @param iv [String] The base64 encoded IV
* @return [String] The base64 encoded ciphertext
*/
this.encrypt = function(plaintext, key, iv) {
// convert parameters to WordArrays
var keyWords = sjcl.codec.base64.toBits(key);
var ivWords = sjcl.codec.base64.toBits(iv);
var plaintextWords = sjcl.codec.utf8String.toBits(plaintext);
var blockCipher = new sjcl.cipher.aes(keyWords);
var ciphertext = sjcl.mode.gcm.encrypt(blockCipher, plaintextWords, ivWords, adata, tlen);
var ctBase64 = sjcl.codec.base64.fromBits(ciphertext);
return ctBase64;
};
/**
* Decrypt a String using AES-GCM using the provided keysize (e.g. 128, 256)
* @param ciphertext [String] The base64 encoded ciphertext
* @param key [String] The base64 encoded key
* @param iv [String] The base64 encoded IV
* @return [String] The decrypted plaintext in UTF8
*/
this.decrypt = function(ciphertext, key, iv) {
// convert parameters to WordArrays
var keyWords = sjcl.codec.base64.toBits(key);
var ivWords = sjcl.codec.base64.toBits(iv);
var ciphertextWords = sjcl.codec.base64.toBits(ciphertext);
var blockCipher = new sjcl.cipher.aes(keyWords);
var decrypted = sjcl.mode.gcm.decrypt(blockCipher, ciphertextWords, ivWords, adata, tlen);
var pt = sjcl.codec.utf8String.fromBits(decrypted);
return pt;
};
};

View File

@ -1,193 +0,0 @@
/**
* A Wrapper for NaCl's asymmetric/symmetric crypto
*/
var NaclCrypto = function(nacl, util) {
'use strict';
/**
* Generates a baes64 encoded keypair for use with NaCl
* @param seed [String] A base64 encoded (pseudo) random seed e.g. PBKDF2
*/
this.generateKeypair = function(seed, callback) {
var keys, seedBuf;
if (seed) {
// do key deterministic derivation from pseudo random seed
seedBuf = nacl.encode_latin1(util.base642Str(seed));
if (Worker) {
var worker = new Worker(app.config.workerPath + '/crypto/nacl-worker.js');
worker.onmessage = function(e) {
callback({
id: util.UUID(),
boxPk: util.str2Base64(nacl.decode_latin1(e.data.boxPk)),
boxSk: util.str2Base64(nacl.decode_latin1(e.data.boxSk))
});
};
worker.postMessage({
type: 'keygen',
seed: seedBuf
});
} else {
// no web worker support
keys = nacl.crypto_box_keypair_from_seed(seedBuf);
callback({
id: util.UUID(),
boxPk: util.str2Base64(nacl.decode_latin1(keys.boxPk)),
boxSk: util.str2Base64(nacl.decode_latin1(keys.boxSk))
});
}
} else {
// generate keypiar from random values
keys = nacl.crypto_box_keypair();
callback({
id: util.UUID(),
boxPk: util.str2Base64(nacl.decode_latin1(keys.boxPk)),
boxSk: util.str2Base64(nacl.decode_latin1(keys.boxSk))
});
}
};
/**
* Generates a random nonce and returns it base64 encoded
*/
this.generateNonce = function() {
// generate nonce
var nonce = nacl.crypto_secretbox_random_nonce();
var nonceBase64 = util.str2Base64(nacl.decode_latin1(nonce));
return nonceBase64;
};
/**
* Asymmetrically encrypt a String
* @param plaintext [String] The input string in UTF8
* @param nonce [String] The base64 encoded nonce
* @param recipientPk [String] The receiver's base64 encoded public key
* @param senderSk [String] The sender's base64 encoded private key
* @return [String] The base64 encoded ciphertext
*/
this.asymEncrypt = function(plaintext, nonce, recipientPk, senderSk, callback) {
// convert to Uint8Array
var ptBuf = nacl.encode_utf8(plaintext);
var recipientPkBuf = nacl.encode_latin1(util.base642Str(recipientPk));
var senderSkBuf = nacl.encode_latin1(util.base642Str(senderSk));
var nonceBuf = nacl.encode_latin1(util.base642Str(nonce));
if (Worker) {
var worker = new Worker(app.config.workerPath + '/crypto/nacl-worker.js');
worker.onmessage = function(e) {
// encode to base64
callback(util.str2Base64(nacl.decode_latin1(e.data)));
};
worker.postMessage({
type: 'encrypt',
plaintext: ptBuf,
nonce: nonceBuf,
recipientPk: recipientPkBuf,
senderSk: senderSkBuf
});
} else {
// encrypt
var ct = nacl.crypto_box(ptBuf, nonceBuf, recipientPkBuf, senderSkBuf);
// encode to base64
callback(util.str2Base64(nacl.decode_latin1(ct)));
}
};
/**
* Asymmetrically decrypt a String
* @param ciphertext [String] The base64 encoded ciphertext
* @param nonce [String] The base64 encoded nonce
* @param senderPk [String] The sender's base64 encoded public key
* @param recipientSk [String] The receiver's base64 encoded private key
* @return [String] The decrypted plaintext in UTF8
*/
this.asymDecrypt = function(ciphertext, nonce, senderPk, recipientSk, callback) {
// convert to Uint8Array
var ctBuf = nacl.encode_latin1(util.base642Str(ciphertext));
var nonceBuf = nacl.encode_latin1(util.base642Str(nonce));
var senderPkBuf = nacl.encode_latin1(util.base642Str(senderPk));
var recipientSkBuf = nacl.encode_latin1(util.base642Str(recipientSk));
if (Worker) {
var worker = new Worker(app.config.workerPath + '/crypto/nacl-worker.js');
worker.onmessage = function(e) {
// decode to string
callback(nacl.decode_utf8(e.data));
};
worker.postMessage({
type: 'decrypt',
ciphertext: ctBuf,
nonce: nonceBuf,
senderPk: senderPkBuf,
recipienSk: recipientSkBuf
});
} else {
// decrypt
var pt = nacl.crypto_box_open(ctBuf, nonceBuf, senderPkBuf, recipientSkBuf);
// decode to string
callback(nacl.decode_utf8(pt));
}
};
/**
* Asymmetrically encrypt a String
* @param plaintext [String] The input string in UTF8
* @param nonce [String] The base64 encoded nonce
* @param recipientPk [String] The receiver's base64 encoded public key
* @param senderSk [String] The sender's base64 encoded private key
* @return [String] The base64 encoded ciphertext
*/
this.asymEncryptSync = function(plaintext, nonce, recipientPk, senderSk) {
// convert to Uint8Array
var ptBuf = nacl.encode_utf8(plaintext);
var recipientPkBuf = nacl.encode_latin1(util.base642Str(recipientPk));
var senderSkBuf = nacl.encode_latin1(util.base642Str(senderSk));
var nonceBuf = nacl.encode_latin1(util.base642Str(nonce));
// encrypt
var ct = nacl.crypto_box(ptBuf, nonceBuf, recipientPkBuf, senderSkBuf);
// encode to base64
var ctBase64 = util.str2Base64(nacl.decode_latin1(ct));
return ctBase64;
};
/**
* Asymmetrically decrypt a String
* @param ciphertext [String] The base64 encoded ciphertext
* @param nonce [String] The base64 encoded nonce
* @param senderPk [String] The sender's base64 encoded public key
* @param recipientSk [String] The receiver's base64 encoded private key
* @return [String] The decrypted plaintext in UTF8
*/
this.asymDecryptSync = function(ciphertext, nonce, senderPk, recipientSk) {
// convert to Uint8Array
var ctBuf = nacl.encode_latin1(util.base642Str(ciphertext));
var nonceBuf = nacl.encode_latin1(util.base642Str(nonce));
var senderPkBuf = nacl.encode_latin1(util.base642Str(senderPk));
var recipientSkBuf = nacl.encode_latin1(util.base642Str(recipientSk));
// decrypt
var pt = nacl.crypto_box_open(ctBuf, nonceBuf, senderPkBuf, recipientSkBuf);
// decode to string
var ptStr = nacl.decode_utf8(pt);
return ptStr;
};
};
if (typeof module !== 'undefined' && module.exports) {
module.exports = NaclCrypto;
} else {
app.crypto.NaclCrypto = NaclCrypto;
}

View File

@ -1,40 +0,0 @@
(function() {
'use strict';
// import web worker dependencies
importScripts('../../lib/nacl.js');
/**
* In the web worker thread context, 'this' and 'self' can be used as a global
* variable namespace similar to the 'window' object in the main thread
*/
self.onmessage = function(e) {
var i = e.data,
output = null;
if (i.type === 'keygen') {
// generate keypair
if (i.seed) {
output = nacl.crypto_box_keypair_from_seed(i.seed);
} else {
output = nacl.crypto_box_keypair();
}
} else if (i.type === 'encrypt' && i.plaintext && i.nonce && i.recipientPk && i.senderSk) {
// start encryption
output = nacl.crypto_box(i.plaintext, i.nonce, i.recipientPk, i.senderSk);
} else if (i.type === 'decrypt' && i.ciphertext && i.nonce && i.senderPk && i.recipienSk) {
// start decryption
output = nacl.crypto_box_open(i.ciphertext, i.nonce, i.senderPk, i.recipienSk);
} else {
throw 'Not all arguments for web worker crypto are defined!';
}
// pass output back to main thread
self.postMessage(output);
};
}());

View File

@ -1,309 +0,0 @@
// SQLitePlugin.js: originally written in CoffeeScript,
// Copyright (C) 2011 Joe Noon <joenoon@gmail.com>
//
// To regenerate from CoffeeScript:
// coffee -p SQLitePlugin-orig.coffee > SQLitePlugin.js
// (and try to keep the comments by hand)
//
// NOTE: this Javascript version is now leading, however
// SQLitePlugin-orig.coffee is still available for review.
//
// To convert back to CoffeeScript:
// js2coffee SQLitePlugin.js > SQLitePlugin-new.coffee
// (will lose the comments)
if (!window.Cordova) window.Cordova = window.cordova;
(function() {
var SQLitePlugin, SQLitePluginTransaction, callbacks, cbref, counter, getOptions, root, exec;
root = this;
callbacks = {};
counter = 0;
cbref = function(hash) {
var f;
f = "cb" + (counter += 1);
callbacks[f] = hash;
return f;
};
exec = function(s, o){
if (root.sqlitePlugin.DEBUG){
console.log(s + ": " + JSON.stringify(o));
}
Cordova.exec(s, o);
};
getOptions = function(opts, success, error) {
var cb, has_cbs;
cb = {};
has_cbs = false;
if (typeof success === "function") {
has_cbs = true;
cb.success = success;
}
if (typeof error === "function") {
has_cbs = true;
cb.error = error;
}
if (has_cbs) opts.callback = cbref(cb);
return opts;
};
SQLitePlugin = function(dbargs, openSuccess, openError) {
if (!dbargs || !dbargs['name']) {
throw new Error("Cannot create a SQLitePlugin instance without a db name");
}
this.dbargs = dbargs;
this.dbname = dbargs.name;
this.openSuccess = openSuccess;
this.openError = openError;
this.openSuccess || (this.openSuccess = function() {
console.log("DB opened: " + this.dbname);
});
this.openError || (this.openError = function(e) {
console.log(e.message);
});
this.open(this.openSuccess, this.openError);
};
SQLitePlugin.prototype.openDBs = {};
SQLitePlugin.prototype.txQueue = [];
SQLitePlugin.prototype.features = { isSQLitePlugin: true };
SQLitePlugin.handleCallback = function(ref, type, obj) {
if (root.sqlitePlugin.DEBUG){
console.log("handle callback: " + ref + ", " + type + ", " + JSON.stringify(obj));
}
var _ref;
if ((_ref = callbacks[ref]) != null) {
if (typeof _ref[type] === "function") _ref[type](obj);
}
callbacks[ref] = null;
delete callbacks[ref];
};
SQLitePlugin.prototype.executePragmaStatement = function(sql, success, error) {
var opts;
if (!sql) throw new Error("Cannot executeSql without a query");
var cbsave = success;
var mysuccesscb = function(res) {
cbsave(res.rows);
};
opts = getOptions({
query: [sql],
path: this.dbname
}, mysuccesscb, error);
exec("SQLitePlugin.backgroundExecuteSql", opts);
};
SQLitePlugin.prototype.executeSql = function(sql, values, success, error) {
var opts;
if (!sql) throw new Error("Cannot executeSql without a query");
opts = getOptions({
query: [sql].concat(values || []),
path: this.dbname
}, success, error);
exec("SQLitePlugin.backgroundExecuteSql", opts);
};
SQLitePlugin.prototype.transaction = function(fn, error, success) {
var t = new SQLitePluginTransaction(this, fn, error, success);
this.txQueue.push(t);
if (this.txQueue.length == 1){
t.start();
}
};
SQLitePlugin.prototype.startNextTransaction = function(){
this.txQueue.shift();
if (this.txQueue[0]){
this.txQueue[0].start();
}
};
SQLitePlugin.prototype.open = function(success, error) {
var opts;
if (!(this.dbname in this.openDBs)) {
this.openDBs[this.dbname] = true;
opts = getOptions(this.dbargs, success, error);
exec("SQLitePlugin.open", opts);
}
};
SQLitePlugin.prototype.close = function(success, error) {
var opts;
if (this.dbname in this.openDBs) {
delete this.openDBs[this.dbname];
opts = getOptions({
path: this.dbname
}, success, error);
exec("SQLitePlugin.close", opts);
}
};
SQLitePluginTransaction = function(db, fn, error, success) {
if (typeof(fn) != 'function'){
// This is consistent with the implementation in Chrome -- it
// throws if you pass anything other than a function. This also
// prevents us from stalling our txQueue if somebody passes a
// false value for fn.
throw new Error("transaction expected a function")
}
this.db = db;
this.fn = fn;
this.error = error;
this.success = success;
this.executes = [];
this.executeSql('BEGIN', [], null, function(tx, err){ throw new Error("unable to begin transaction: " + err.message) });
};
SQLitePluginTransaction.prototype.start = function(){
try {
if (!this.fn) { return }
this.fn(this);
this.fn = null;
this.run();
}
catch(err){
// If "fn" throws, we must report the whole transaction as failed.
this.db.startNextTransaction();
if (this.error){
this.error(err);
}
}
};
SQLitePluginTransaction.prototype.executeSql = function(sql, values, success, error) {
this.executes.push({
query: [sql].concat(values || []),
success: success,
error: error
});
};
SQLitePluginTransaction.prototype.handleStatementSuccess = function(handler, response) {
if (!handler)
return;
var payload = {
rows: {item: function(i){ return response.rows[i] }, length: response.rows.length},
rowsAffected: response.rowsAffected,
insertId: response.insertId || null
};
handler(this, payload);
};
SQLitePluginTransaction.prototype.handleStatementFailure = function(handler, response) {
if (!handler){
throw new Error("a statement with no error handler failed: " + response.message)
}
if (handler(this, response)){
throw new Error("a statement error callback did not return false");
}
};
SQLitePluginTransaction.prototype.run = function() {
var batchExecutes, waiting, txFailure, tx, opts=[];
batchExecutes = this.executes;
waiting = batchExecutes.length;
this.executes = [];
tx = this;
function handlerFor(index, didSucceed){
return function (response){
try {
if (didSucceed){
tx.handleStatementSuccess(batchExecutes[index].success, response);
} else {
tx.handleStatementFailure(batchExecutes[index].error, response);
}
}
catch (err) {
if (!txFailure)
txFailure = err;
}
if (--waiting == 0){
if (txFailure){
tx.rollBack(txFailure);
} else if (tx.executes.length > 0){
// new requests have been issued by the callback
// handlers, so run another batch.
tx.run();
} else {
tx.commit();
}
}
}
}
for (var i=0; i<batchExecutes.length; i++){
var request = batchExecutes[i];
opts.push(getOptions({
query: request.query,
path: this.db.dbname
}, handlerFor(i, true), handlerFor(i, false)));
}
exec("SQLitePlugin.backgroundExecuteSqlBatch", {executes: opts});
};
SQLitePluginTransaction.prototype.rollBack = function(txFailure) {
if (this.finalized)
return;
this.finalized = true;
tx = this;
function succeeded(){
tx.db.startNextTransaction();
if (tx.error){
tx.error(txFailure)
}
}
function failed(tx, err){
tx.db.startNextTransaction();
if (tx.error){
tx.error(new Error("error while trying to roll back: " + err.message))
}
}
this.executeSql('ROLLBACK', [], succeeded, failed);
this.run();
};
SQLitePluginTransaction.prototype.commit = function() {
if (this.finalized)
return;
this.finalized = true;
tx = this;
function succeeded(){
tx.db.startNextTransaction();
if (tx.success){
tx.success()
}
}
function failed(tx, err){
tx.db.startNextTransaction();
if (tx.error){
tx.error(new Error("error while trying to commit: " + err.message))
}
}
this.executeSql('COMMIT', [], succeeded, failed);
this.run();
};
SQLiteFactory = {
opendb: function() {
var errorcb, first, okcb, openargs;
if (arguments.length < 1) return null;
first = arguments[0];
openargs = null;
okcb = null;
errorcb = null;
if (first.constructor === String) {
openargs = {
name: first
};
if (arguments.length >= 5) {
okcb = arguments[4];
if (arguments.length > 5) errorcb = arguments[5];
}
} else {
openargs = first;
if (arguments.length >= 2) {
okcb = arguments[1];
if (arguments.length > 2) errorcb = arguments[2];
}
}
return new SQLitePlugin(openargs, okcb, errorcb);
}
};
root.sqlitePlugin = {
openDatabase: SQLiteFactory.opendb,
handleCallback: SQLitePlugin.handleCallback
};
})();

File diff suppressed because one or more lines are too long

View File

@ -1,208 +0,0 @@
/** @fileOverview Low-level AES implementation.
*
* This file contains a low-level implementation of AES, optimized for
* size and for efficiency on several browsers. It is based on
* OpenSSL's aes_core.c, a public-domain implementation by Vincent
* Rijmen, Antoon Bosselaers and Paulo Barreto.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Schedule out an AES key for both encryption and decryption. This
* is a low-level class. Use a cipher mode to do bulk encryption.
*
* @constructor
* @param {Array} key The key as an array of 4, 6 or 8 words.
*
* @class Advanced Encryption Standard (low-level interface)
*/
sjcl.cipher.aes = function (key) {
if (!this._tables[0][0][0]) {
this._precompute();
}
var i, j, tmp,
encKey, decKey,
sbox = this._tables[0][4], decTable = this._tables[1],
keyLen = key.length, rcon = 1;
if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
throw new sjcl.exception.invalid("invalid aes key size");
}
this._key = [encKey = key.slice(0), decKey = []];
// schedule encryption keys
for (i = keyLen; i < 4 * keyLen + 28; i++) {
tmp = encKey[i-1];
// apply sbox
if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
// shift rows and add rcon
if (i%keyLen === 0) {
tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
rcon = rcon<<1 ^ (rcon>>7)*283;
}
}
encKey[i] = encKey[i-keyLen] ^ tmp;
}
// schedule decryption keys
for (j = 0; i; j++, i--) {
tmp = encKey[j&3 ? i : i - 4];
if (i<=4 || j<4) {
decKey[j] = tmp;
} else {
decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
decTable[1][sbox[tmp>>16 & 255]] ^
decTable[2][sbox[tmp>>8 & 255]] ^
decTable[3][sbox[tmp & 255]];
}
}
};
sjcl.cipher.aes.prototype = {
// public
/* Something like this might appear here eventually
name: "AES",
blockSize: 4,
keySizes: [4,6,8],
*/
/**
* Encrypt an array of 4 big-endian words.
* @param {Array} data The plaintext.
* @return {Array} The ciphertext.
*/
encrypt:function (data) { return this._crypt(data,0); },
/**
* Decrypt an array of 4 big-endian words.
* @param {Array} data The ciphertext.
* @return {Array} The plaintext.
*/
decrypt:function (data) { return this._crypt(data,1); },
/**
* The expanded S-box and inverse S-box tables. These will be computed
* on the client so that we don't have to send them down the wire.
*
* There are two tables, _tables[0] is for encryption and
* _tables[1] is for decryption.
*
* The first 4 sub-tables are the expanded S-box with MixColumns. The
* last (_tables[01][4]) is the S-box itself.
*
* @private
*/
_tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
/**
* Expand the S-box tables.
*
* @private
*/
_precompute: function () {
var encTable = this._tables[0], decTable = this._tables[1],
sbox = encTable[4], sboxInv = decTable[4],
i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
// Compute double and third tables
for (i = 0; i < 256; i++) {
th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
}
for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
// Compute sbox
s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
s = s>>8 ^ s&255 ^ 99;
sbox[x] = s;
sboxInv[s] = x;
// Compute MixColumns
x8 = d[x4 = d[x2 = d[x]]];
tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
tEnc = d[s]*0x101 ^ s*0x1010100;
for (i = 0; i < 4; i++) {
encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
}
}
// Compactify. Considerable speedup on Firefox.
for (i = 0; i < 5; i++) {
encTable[i] = encTable[i].slice(0);
decTable[i] = decTable[i].slice(0);
}
},
/**
* Encryption and decryption core.
* @param {Array} input Four words to be encrypted or decrypted.
* @param dir The direction, 0 for encrypt and 1 for decrypt.
* @return {Array} The four encrypted or decrypted words.
* @private
*/
_crypt:function (input, dir) {
if (input.length !== 4) {
throw new sjcl.exception.invalid("invalid aes block size");
}
var key = this._key[dir],
// state variables a,b,c,d are loaded with pre-whitened data
a = input[0] ^ key[0],
b = input[dir ? 3 : 1] ^ key[1],
c = input[2] ^ key[2],
d = input[dir ? 1 : 3] ^ key[3],
a2, b2, c2,
nInnerRounds = key.length/4 - 2,
i,
kIndex = 4,
out = [0,0,0,0],
table = this._tables[dir],
// load up the tables
t0 = table[0],
t1 = table[1],
t2 = table[2],
t3 = table[3],
sbox = table[4];
// Inner rounds. Cribbed from OpenSSL.
for (i = 0; i < nInnerRounds; i++) {
a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
kIndex += 4;
a=a2; b=b2; c=c2;
}
// Last round.
for (i = 0; i < 4; i++) {
out[dir ? 3&-i : i] =
sbox[a>>>24 ]<<24 ^
sbox[b>>16 & 255]<<16 ^
sbox[c>>8 & 255]<<8 ^
sbox[d & 255] ^
key[kIndex++];
a2=a; a=b; b=c; c=d; d=a2;
}
return out;
}
};

View File

@ -1,187 +0,0 @@
/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bits, encoded as arrays of Numbers.
*
* @description
* <p>
* These objects are the currency accepted by SJCL's crypto functions.
* </p>
*
* <p>
* Most of our crypto primitives operate on arrays of 4-byte words internally,
* but many of them can take arguments that are not a multiple of 4 bytes.
* This library encodes arrays of bits (whose size need not be a multiple of 8
* bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
* array of words, 32 bits at a time. Since the words are double-precision
* floating point numbers, they fit some extra data. We use this (in a private,
* possibly-changing manner) to encode the number of bits actually present
* in the last word of the array.
* </p>
*
* <p>
* Because bitwise ops clear this out-of-band data, these arrays can be passed
* to ciphers like AES which want arrays of words.
* </p>
*/
sjcl.bitArray = {
/**
* Array slices in units of bits.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
* slice until the end of the array.
* @return {bitArray} The requested slice.
*/
bitSlice: function (a, bstart, bend) {
a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
},
/**
* Extract a number packed into a bit array.
* @param {bitArray} a The array to slice.
* @param {Number} bstart The offset to the start of the slice, in bits.
* @param {Number} length The length of the number to extract.
* @return {Number} The requested slice.
*/
extract: function(a, bstart, blength) {
// FIXME: this Math.floor is not necessary at all, but for some reason
// seems to suppress a bug in the Chromium JIT.
var x, sh = Math.floor((-bstart-blength) & 31);
if ((bstart + blength - 1 ^ bstart) & -32) {
// it crosses a boundary
x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh);
} else {
// within a single word
x = a[bstart/32|0] >>> sh;
}
return x & ((1<<blength) - 1);
},
/**
* Concatenate two bit arrays.
* @param {bitArray} a1 The first array.
* @param {bitArray} a2 The second array.
* @return {bitArray} The concatenation of a1 and a2.
*/
concat: function (a1, a2) {
if (a1.length === 0 || a2.length === 0) {
return a1.concat(a2);
}
var out, i, last = a1[a1.length-1], shift = sjcl.bitArray.getPartial(last);
if (shift === 32) {
return a1.concat(a2);
} else {
return sjcl.bitArray._shiftRight(a2, shift, last|0, a1.slice(0,a1.length-1));
}
},
/**
* Find the length of an array of bits.
* @param {bitArray} a The array.
* @return {Number} The length of a, in bits.
*/
bitLength: function (a) {
var l = a.length, x;
if (l === 0) { return 0; }
x = a[l - 1];
return (l-1) * 32 + sjcl.bitArray.getPartial(x);
},
/**
* Truncate an array.
* @param {bitArray} a The array.
* @param {Number} len The length to truncate to, in bits.
* @return {bitArray} A new array, truncated to len bits.
*/
clamp: function (a, len) {
if (a.length * 32 < len) { return a; }
a = a.slice(0, Math.ceil(len / 32));
var l = a.length;
len = len & 31;
if (l > 0 && len) {
a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
}
return a;
},
/**
* Make a partial word for a bit array.
* @param {Number} len The number of bits in the word.
* @param {Number} x The bits.
* @param {Number} [0] _end Pass 1 if x has already been shifted to the high side.
* @return {Number} The partial word.
*/
partial: function (len, x, _end) {
if (len === 32) { return x; }
return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
},
/**
* Get the number of bits used by a partial word.
* @param {Number} x The partial word.
* @return {Number} The number of bits used by the partial word.
*/
getPartial: function (x) {
return Math.round(x/0x10000000000) || 32;
},
/**
* Compare two arrays for equality in a predictable amount of time.
* @param {bitArray} a The first array.
* @param {bitArray} b The second array.
* @return {boolean} true if a == b; false otherwise.
*/
equal: function (a, b) {
if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
return false;
}
var x = 0, i;
for (i=0; i<a.length; i++) {
x |= a[i]^b[i];
}
return (x === 0);
},
/** Shift an array right.
* @param {bitArray} a The array to shift.
* @param {Number} shift The number of bits to shift.
* @param {Number} [carry=0] A byte to carry in
* @param {bitArray} [out=[]] An array to prepend to the output.
* @private
*/
_shiftRight: function (a, shift, carry, out) {
var i, last2=0, shift2;
if (out === undefined) { out = []; }
for (; shift >= 32; shift -= 32) {
out.push(carry);
carry = 0;
}
if (shift === 0) {
return out.concat(a);
}
for (i=0; i<a.length; i++) {
out.push(carry | a[i]>>>shift);
carry = a[i] << (32-shift);
}
last2 = a.length ? a[a.length-1] : 0;
shift2 = sjcl.bitArray.getPartial(last2);
out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
return out;
},
/** xor a block of 4 words together.
* @private
*/
_xor4: function(x,y) {
return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
}
};

View File

@ -1,552 +0,0 @@
/**
* @constructor
* Constructs a new bignum from another bignum, a number or a hex string.
*/
sjcl.bn = function(it) {
this.initWith(it);
};
sjcl.bn.prototype = {
radix: 24,
maxMul: 8,
_class: sjcl.bn,
copy: function() {
return new this._class(this);
},
/**
* Initializes this with it, either as a bn, a number, or a hex string.
*/
initWith: function(it) {
var i=0, k, n, l;
switch(typeof it) {
case "object":
this.limbs = it.limbs.slice(0);
break;
case "number":
this.limbs = [it];
this.normalize();
break;
case "string":
it = it.replace(/^0x/, '');
this.limbs = [];
// hack
k = this.radix / 4;
for (i=0; i < it.length; i+=k) {
this.limbs.push(parseInt(it.substring(Math.max(it.length - i - k, 0), it.length - i),16));
}
break;
default:
this.limbs = [0];
}
return this;
},
/**
* Returns true if "this" and "that" are equal. Calls fullReduce().
* Equality test is in constant time.
*/
equals: function(that) {
if (typeof that === "number") { that = new this._class(that); }
var difference = 0, i;
this.fullReduce();
that.fullReduce();
for (i = 0; i < this.limbs.length || i < that.limbs.length; i++) {
difference |= this.getLimb(i) ^ that.getLimb(i);
}
return (difference === 0);
},
/**
* Get the i'th limb of this, zero if i is too large.
*/
getLimb: function(i) {
return (i >= this.limbs.length) ? 0 : this.limbs[i];
},
/**
* Constant time comparison function.
* Returns 1 if this >= that, or zero otherwise.
*/
greaterEquals: function(that) {
if (typeof that === "number") { that = new this._class(that); }
var less = 0, greater = 0, i, a, b;
i = Math.max(this.limbs.length, that.limbs.length) - 1;
for (; i>= 0; i--) {
a = this.getLimb(i);
b = that.getLimb(i);
greater |= (b - a) & ~less;
less |= (a - b) & ~greater;
}
return (greater | ~less) >>> 31;
},
/**
* Convert to a hex string.
*/
toString: function() {
this.fullReduce();
var out="", i, s, l = this.limbs;
for (i=0; i < this.limbs.length; i++) {
s = l[i].toString(16);
while (i < this.limbs.length - 1 && s.length < 6) {
s = "0" + s;
}
out = s + out;
}
return "0x"+out;
},
/** this += that. Does not normalize. */
addM: function(that) {
if (typeof(that) !== "object") { that = new this._class(that); }
var i, l=this.limbs, ll=that.limbs;
for (i=l.length; i<ll.length; i++) {
l[i] = 0;
}
for (i=0; i<ll.length; i++) {
l[i] += ll[i];
}
return this;
},
/** this *= 2. Requires normalized; ends up normalized. */
doubleM: function() {
var i, carry=0, tmp, r=this.radix, m=this.radixMask, l=this.limbs;
for (i=0; i<l.length; i++) {
tmp = l[i];
tmp = tmp+tmp+carry;
l[i] = tmp & m;
carry = tmp >> r;
}
if (carry) {
l.push(carry);
}
return this;
},
/** this /= 2, rounded down. Requires normalized; ends up normalized. */
halveM: function() {
var i, carry=0, tmp, r=this.radix, l=this.limbs;
for (i=l.length-1; i>=0; i--) {
tmp = l[i];
l[i] = (tmp+carry)>>1;
carry = (tmp&1) << r;
}
if (!l[l.length-1]) {
l.pop();
}
return this;
},
/** this -= that. Does not normalize. */
subM: function(that) {
if (typeof(that) !== "object") { that = new this._class(that); }
var i, l=this.limbs, ll=that.limbs;
for (i=l.length; i<ll.length; i++) {
l[i] = 0;
}
for (i=0; i<ll.length; i++) {
l[i] -= ll[i];
}
return this;
},
mod: function(that) {
var neg = !this.greaterEquals(new sjcl.bn(0));
that = new sjcl.bn(that).normalize(); // copy before we begin
var out = new sjcl.bn(this).normalize(), ci=0;
if (neg) out = (new sjcl.bn(0)).subM(out).normalize();
for (; out.greaterEquals(that); ci++) {
that.doubleM();
}
if (neg) out = that.sub(out).normalize();
for (; ci > 0; ci--) {
that.halveM();
if (out.greaterEquals(that)) {
out.subM(that).normalize();
}
}
return out.trim();
},
/** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */
inverseMod: function(p) {
var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1;
if (!(p.limbs[0] & 1)) {
throw (new sjcl.exception.invalid("inverseMod: p must be odd"));
}
// invariant: y is odd
do {
if (x.limbs[0] & 1) {
if (!x.greaterEquals(y)) {
// x < y; swap everything
tmp = x; x = y; y = tmp;
tmp = a; a = b; b = tmp;
}
x.subM(y);
x.normalize();
if (!a.greaterEquals(b)) {
a.addM(p);
}
a.subM(b);
}
// cut everything in half
x.halveM();
if (a.limbs[0] & 1) {
a.addM(p);
}
a.normalize();
a.halveM();
// check for termination: x ?= 0
for (i=nz=0; i<x.limbs.length; i++) {
nz |= x.limbs[i];
}
} while(nz);
if (!y.equals(1)) {
throw (new sjcl.exception.invalid("inverseMod: p and x must be relatively prime"));
}
return b;
},
/** this + that. Does not normalize. */
add: function(that) {
return this.copy().addM(that);
},
/** this - that. Does not normalize. */
sub: function(that) {
return this.copy().subM(that);
},
/** this * that. Normalizes and reduces. */
mul: function(that) {
if (typeof(that) === "number") { that = new this._class(that); }
var i, j, a = this.limbs, b = that.limbs, al = a.length, bl = b.length, out = new this._class(), c = out.limbs, ai, ii=this.maxMul;
for (i=0; i < this.limbs.length + that.limbs.length + 1; i++) {
c[i] = 0;
}
for (i=0; i<al; i++) {
ai = a[i];
for (j=0; j<bl; j++) {
c[i+j] += ai * b[j];
}
if (!--ii) {
ii = this.maxMul;
out.cnormalize();
}
}
return out.cnormalize().reduce();
},
/** this ^ 2. Normalizes and reduces. */
square: function() {
return this.mul(this);
},
/** this ^ n. Uses square-and-multiply. Normalizes and reduces. */
power: function(l) {
if (typeof(l) === "number") {
l = [l];
} else if (l.limbs !== undefined) {
l = l.normalize().limbs;
}
var i, j, out = new this._class(1), pow = this;
for (i=0; i<l.length; i++) {
for (j=0; j<this.radix; j++) {
if (l[i] & (1<<j)) {
out = out.mul(pow);
}
pow = pow.square();
}
}
return out;
},
/** this * that mod N */
mulmod: function(that, N) {
return this.mod(N).mul(that.mod(N)).mod(N);
},
/** this ^ x mod N */
powermod: function(x, N) {
var result = new sjcl.bn(1), a = new sjcl.bn(this), k = new sjcl.bn(x);
while (true) {
if (k.limbs[0] & 1) { result = result.mulmod(a, N); }
k.halveM();
if (k.equals(0)) { break; }
a = a.mulmod(a, N);
}
return result.normalize().reduce();
},
trim: function() {
var l = this.limbs, p;
do {
p = l.pop();
} while (l.length && p === 0);
l.push(p);
return this;
},
/** Reduce mod a modulus. Stubbed for subclassing. */
reduce: function() {
return this;
},
/** Reduce and normalize. */
fullReduce: function() {
return this.normalize();
},
/** Propagate carries. */
normalize: function() {
var carry=0, i, pv = this.placeVal, ipv = this.ipv, l, m, limbs = this.limbs, ll = limbs.length, mask = this.radixMask;
for (i=0; i < ll || (carry !== 0 && carry !== -1); i++) {
l = (limbs[i]||0) + carry;
m = limbs[i] = l & mask;
carry = (l-m)*ipv;
}
if (carry === -1) {
limbs[i-1] -= this.placeVal;
}
return this;
},
/** Constant-time normalize. Does not allocate additional space. */
cnormalize: function() {
var carry=0, i, ipv = this.ipv, l, m, limbs = this.limbs, ll = limbs.length, mask = this.radixMask;
for (i=0; i < ll-1; i++) {
l = limbs[i] + carry;
m = limbs[i] = l & mask;
carry = (l-m)*ipv;
}
limbs[i] += carry;
return this;
},
/** Serialize to a bit array */
toBits: function(len) {
this.fullReduce();
len = len || this.exponent || this.bitLength();
var i = Math.floor((len-1)/24), w=sjcl.bitArray, e = (len + 7 & -8) % this.radix || this.radix,
out = [w.partial(e, this.getLimb(i))];
for (i--; i >= 0; i--) {
out = w.concat(out, [w.partial(Math.min(this.radix,len), this.getLimb(i))]);
len -= this.radix;
}
return out;
},
/** Return the length in bits, rounded up to the nearest byte. */
bitLength: function() {
this.fullReduce();
var out = this.radix * (this.limbs.length - 1),
b = this.limbs[this.limbs.length - 1];
for (; b; b >>>= 1) {
out ++;
}
return out+7 & -8;
}
};
/** @this { sjcl.bn } */
sjcl.bn.fromBits = function(bits) {
var Class = this, out = new Class(), words=[], w=sjcl.bitArray, t = this.prototype,
l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix;
words[0] = w.extract(bits, 0, e);
for (; e < l; e += t.radix) {
words.unshift(w.extract(bits, e, t.radix));
}
out.limbs = words;
return out;
};
sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix));
sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1;
/**
* Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime,
* i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse.
*/
sjcl.bn.pseudoMersennePrime = function(exponent, coeff) {
/** @constructor */
function p(it) {
this.initWith(it);
/*if (this.limbs[this.modOffset]) {
this.reduce();
}*/
}
var ppr = p.prototype = new sjcl.bn(), i, tmp, mo;
mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix);
ppr.exponent = exponent;
ppr.offset = [];
ppr.factor = [];
ppr.minOffset = mo;
ppr.fullMask = 0;
ppr.fullOffset = [];
ppr.fullFactor = [];
ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent));
ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix);
for (i=0; i<coeff.length; i++) {
ppr.offset[i] = Math.floor(coeff[i][0] / ppr.radix - tmp);
ppr.fullOffset[i] = Math.ceil(coeff[i][0] / ppr.radix - tmp);
ppr.factor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.offset[i] * ppr.radix);
ppr.fullFactor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.fullOffset[i] * ppr.radix);
ppr.modulus.addM(new sjcl.bn(Math.pow(2,coeff[i][0])*coeff[i][1]));
ppr.minOffset = Math.min(ppr.minOffset, -ppr.offset[i]); // conservative
}
ppr._class = p;
ppr.modulus.cnormalize();
/** Approximate reduction mod p. May leave a number which is negative or slightly larger than p.
* @this {sjcl.bn}
*/
ppr.reduce = function() {
var i, k, l, mo = this.modOffset, limbs = this.limbs, aff, off = this.offset, ol = this.offset.length, fac = this.factor, ll;
i = this.minOffset;
while (limbs.length > mo) {
l = limbs.pop();
ll = limbs.length;
for (k=0; k<ol; k++) {
limbs[ll+off[k]] -= fac[k] * l;
}
i--;
if (!i) {
limbs.push(0);
this.cnormalize();
i = this.minOffset;
}
}
this.cnormalize();
return this;
};
/** @this {sjcl.bn} */
ppr._strongReduce = (ppr.fullMask === -1) ? ppr.reduce : function() {
var limbs = this.limbs, i = limbs.length - 1, k, l;
this.reduce();
if (i === this.modOffset - 1) {
l = limbs[i] & this.fullMask;
limbs[i] -= l;
for (k=0; k<this.fullOffset.length; k++) {
limbs[i+this.fullOffset[k]] -= this.fullFactor[k] * l;
}
this.normalize();
}
};
/** mostly constant-time, very expensive full reduction.
* @this {sjcl.bn}
*/
ppr.fullReduce = function() {
var greater, i;
// massively above the modulus, may be negative
this._strongReduce();
// less than twice the modulus, may be negative
this.addM(this.modulus);
this.addM(this.modulus);
this.normalize();
// probably 2-3x the modulus
this._strongReduce();
// less than the power of 2. still may be more than
// the modulus
// HACK: pad out to this length
for (i=this.limbs.length; i<this.modOffset; i++) {
this.limbs[i] = 0;
}
// constant-time subtract modulus
greater = this.greaterEquals(this.modulus);
for (i=0; i<this.limbs.length; i++) {
this.limbs[i] -= this.modulus.limbs[i] * greater;
}
this.cnormalize();
return this;
};
/** @this {sjcl.bn} */
ppr.inverse = function() {
return (this.power(this.modulus.sub(2)));
};
p.fromBits = sjcl.bn.fromBits;
return p;
};
// a small Mersenne prime
sjcl.bn.prime = {
p127: sjcl.bn.pseudoMersennePrime(127, [[0,-1]]),
// Bernstein's prime for Curve25519
p25519: sjcl.bn.pseudoMersennePrime(255, [[0,-19]]),
// NIST primes
p192: sjcl.bn.pseudoMersennePrime(192, [[0,-1],[64,-1]]),
p224: sjcl.bn.pseudoMersennePrime(224, [[0,1],[96,-1]]),
p256: sjcl.bn.pseudoMersennePrime(256, [[0,-1],[96,1],[192,1],[224,-1]]),
p384: sjcl.bn.pseudoMersennePrime(384, [[0,-1],[32,1],[96,-1],[128,-1]]),
p521: sjcl.bn.pseudoMersennePrime(521, [[0,-1]])
};
sjcl.bn.random = function(modulus, paranoia) {
if (typeof modulus !== "object") { modulus = new sjcl.bn(modulus); }
var words, i, l = modulus.limbs.length, m = modulus.limbs[l-1]+1, out = new sjcl.bn();
while (true) {
// get a sequence whose first digits make sense
do {
words = sjcl.random.randomWords(l, paranoia);
if (words[l-1] < 0) { words[l-1] += 0x100000000; }
} while (Math.floor(words[l-1] / m) === Math.floor(0x100000000 / m));
words[l-1] %= m;
// mask off all the limbs
for (i=0; i<l-1; i++) {
words[i] &= modulus.radixMask;
}
// check the rest of the digitssj
out.limbs = words;
if (!out.greaterEquals(modulus)) {
return out;
}
}
};

View File

@ -1,115 +0,0 @@
/** @fileOverview CBC mode implementation
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace
* Dangerous: CBC mode with PKCS#5 padding.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
if (sjcl.beware === undefined) {
sjcl.beware = {};
}
sjcl.beware["CBC mode is dangerous because it doesn't protect message integrity."
] = function() {
sjcl.mode.cbc = {
/** The name of the mode.
* @constant
*/
name: "cbc",
/** Encrypt in CBC mode with PKCS#5 padding.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data. Must be empty.
* @return The encrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits, or if any adata is specified.
*/
encrypt: function(prp, plaintext, iv, adata) {
if (adata && adata.length) {
throw new sjcl.exception.invalid("cbc can't authenticate data");
}
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("cbc iv must be 128 bits");
}
var i,
w = sjcl.bitArray,
xor = w._xor4,
bl = w.bitLength(plaintext),
bp = 0,
output = [];
if (bl&7) {
throw new sjcl.exception.invalid("pkcs#5 padding only works for multiples of a byte");
}
for (i=0; bp+128 <= bl; i+=4, bp+=128) {
/* Encrypt a non-final block */
iv = prp.encrypt(xor(iv, plaintext.slice(i,i+4)));
output.splice(i,0,iv[0],iv[1],iv[2],iv[3]);
}
/* Construct the pad. */
bl = (16 - ((bl >> 3) & 15)) * 0x1010101;
/* Pad and encrypt. */
iv = prp.encrypt(xor(iv,w.concat(plaintext,[bl,bl,bl,bl]).slice(i,i+4)));
output.splice(i,0,iv[0],iv[1],iv[2],iv[3]);
return output;
},
/** Decrypt in CBC mode.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data. It must be empty.
* @return The decrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits, or if any adata is specified.
* @throws {sjcl.exception.corrupt} if if the message is corrupt.
*/
decrypt: function(prp, ciphertext, iv, adata) {
if (adata && adata.length) {
throw new sjcl.exception.invalid("cbc can't authenticate data");
}
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("cbc iv must be 128 bits");
}
if ((sjcl.bitArray.bitLength(ciphertext) & 127) || !ciphertext.length) {
throw new sjcl.exception.corrupt("cbc ciphertext must be a positive multiple of the block size");
}
var i,
w = sjcl.bitArray,
xor = w._xor4,
bi, bo,
output = [];
adata = adata || [];
for (i=0; i<ciphertext.length; i+=4) {
bi = ciphertext.slice(i,i+4);
bo = xor(iv,prp.decrypt(bi));
output.splice(i,0,bo[0],bo[1],bo[2],bo[3]);
iv = bi;
}
/* check and remove the pad */
bi = output[i-1] & 255;
if (bi == 0 || bi > 16) {
throw new sjcl.exception.corrupt("pkcs#5 padding corrupt");
}
bo = bi * 0x1010101;
if (!w.equal(w.bitSlice([bo,bo,bo,bo], 0, bi*8),
w.bitSlice(output, output.length*32 - bi*8, output.length*32))) {
throw new sjcl.exception.corrupt("pkcs#5 padding corrupt");
}
return w.bitSlice(output, 0, output.length*32 - bi*8);
}
};
};

View File

@ -1,185 +0,0 @@
/** @fileOverview CCM mode implementation.
*
* Special thanks to Roy Nicholson for pointing out a bug in our
* implementation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace CTR mode with CBC MAC. */
sjcl.mode.ccm = {
/** The name of the mode.
* @constant
*/
name: "ccm",
/** Encrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @return {bitArray} The encrypted data, an array of bytes.
*/
encrypt: function(prf, plaintext, iv, adata, tlen) {
var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8;
tlen = tlen || 64;
adata = adata || [];
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// compute the tag
tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L);
// encrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
return w.concat(out.data, out.tag);
},
/** Decrypt in CCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [[]] adata The authenticated data.
* @param {Number} [64] tlen the desired tag length, in bits.
* @return {bitArray} The decrypted data.
*/
decrypt: function(prf, ciphertext, iv, adata, tlen) {
tlen = tlen || 64;
adata = adata || [];
var L, i,
w=sjcl.bitArray,
ivl = w.bitLength(iv) / 8,
ol = w.bitLength(ciphertext),
out = w.clamp(ciphertext, ol - tlen),
tag = w.bitSlice(ciphertext, ol - tlen), tag2;
ol = (ol - tlen) / 8;
if (ivl < 7) {
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
}
// compute the length of the length
for (L=2; L<4 && ol >>> 8*L; L++) {}
if (L < 15 - ivl) { L = 15-ivl; }
iv = w.clamp(iv,8*(15-L));
// decrypt
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
// check the tag
tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L);
if (!w.equal(out.tag, tag2)) {
throw new sjcl.exception.corrupt("ccm: tag doesn't match");
}
return out.data;
},
/* Compute the (unencrypted) authentication tag, according to the CCM specification
* @param {Object} prf The pseudorandom function.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} adata The authenticated data.
* @param {Number} tlen the desired tag length, in bits.
* @return {bitArray} The tag, but not yet encrypted.
* @private
*/
_computeTag: function(prf, plaintext, iv, adata, tlen, L) {
// compute B[0]
var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4;
tlen /= 8;
// check tag length and message length
if (tlen % 2 || tlen < 4 || tlen > 16) {
throw new sjcl.exception.invalid("ccm: invalid tag length");
}
if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) {
// I don't want to deal with extracting high words from doubles.
throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data");
}
// mac the flags
mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)];
// mac the iv and length
mac = w.concat(mac, iv);
mac[3] |= w.bitLength(plaintext)/8;
mac = prf.encrypt(mac);
if (adata.length) {
// mac the associated data. start with its length...
tmp = w.bitLength(adata)/8;
if (tmp <= 0xFEFF) {
macData = [w.partial(16, tmp)];
} else if (tmp <= 0xFFFFFFFF) {
macData = w.concat([w.partial(16,0xFFFE)], [tmp]);
} // else ...
// mac the data itself
macData = w.concat(macData, adata);
for (i=0; i<macData.length; i += 4) {
mac = prf.encrypt(xor(mac, macData.slice(i,i+4).concat([0,0,0])));
}
}
// mac the plaintext
for (i=0; i<plaintext.length; i+=4) {
mac = prf.encrypt(xor(mac, plaintext.slice(i,i+4).concat([0,0,0])));
}
return w.clamp(mac, tlen * 8);
},
/** CCM CTR mode.
* Encrypt or decrypt data and tag with the prf in CCM-style CTR mode.
* May mutate its arguments.
* @param {Object} prf The PRF.
* @param {bitArray} data The data to be encrypted or decrypted.
* @param {bitArray} iv The initialization vector.
* @param {bitArray} tag The authentication tag.
* @param {Number} tlen The length of th etag, in bits.
* @param {Number} L The CCM L value.
* @return {Object} An object with data and tag, the en/decryption of data and tag values.
* @private
*/
_ctrMode: function(prf, data, iv, tag, tlen, L) {
var enc, i, w=sjcl.bitArray, xor = w._xor4, ctr, b, l = data.length, bl=w.bitLength(data);
// start the ctr
ctr = w.concat([w.partial(8,L-1)],iv).concat([0,0,0]).slice(0,4);
// en/decrypt the tag
tag = w.bitSlice(xor(tag,prf.encrypt(ctr)), 0, tlen);
// en/decrypt the data
if (!l) { return {tag:tag, data:[]}; }
for (i=0; i<l; i+=4) {
ctr[3]++;
enc = prf.encrypt(ctr);
data[i] ^= enc[0];
data[i+1] ^= enc[1];
data[i+2] ^= enc[2];
data[i+3] ^= enc[3];
}
return { tag:tag, data:w.clamp(data,bl) };
}
};

View File

@ -1,63 +0,0 @@
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Base64 encoding/decoding */
sjcl.codec.base64 = {
/** The base64 alphabet.
* @private
*/
_chars: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",
/** Convert from a bitArray to a base64 string. */
fromBits: function (arr, _noEquals, _url) {
var out = "", i, bits=0, c = sjcl.codec.base64._chars, ta=0, bl = sjcl.bitArray.bitLength(arr);
if (_url) c = c.substr(0,62) + '-_';
for (i=0; out.length * 6 < bl; ) {
out += c.charAt((ta ^ arr[i]>>>bits) >>> 26);
if (bits < 6) {
ta = arr[i] << (6-bits);
bits += 26;
i++;
} else {
ta <<= 6;
bits -= 6;
}
}
while ((out.length & 3) && !_noEquals) { out += "="; }
return out;
},
/** Convert from a base64 string to a bitArray */
toBits: function(str, _url) {
str = str.replace(/\s|=/g,'');
var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x;
if (_url) c = c.substr(0,62) + '-_';
for (i=0; i<str.length; i++) {
x = c.indexOf(str.charAt(i));
if (x < 0) {
throw new sjcl.exception.invalid("this isn't base64!");
}
if (bits > 26) {
bits -= 26;
out.push(ta ^ x>>>bits);
ta = x << (32-bits);
} else {
bits += 6;
ta ^= x << (32-bits);
}
}
if (bits&56) {
out.push(sjcl.bitArray.partial(bits&56, ta, 1));
}
return out;
}
};
sjcl.codec.base64url = {
fromBits: function (arr) { return sjcl.codec.base64.fromBits(arr,1,1); },
toBits: function (str) { return sjcl.codec.base64.toBits(str,1); }
};

View File

@ -1,37 +0,0 @@
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Arrays of bytes */
sjcl.codec.bytes = {
/** Convert from a bitArray to an array of bytes. */
fromBits: function (arr) {
var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out.push(tmp >>> 24);
tmp <<= 8;
}
return out;
},
/** Convert from an array of bytes to a bitArray. */
toBits: function (bytes) {
var out = [], i, tmp=0;
for (i=0; i<bytes.length; i++) {
tmp = tmp << 8 | bytes[i];
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};

View File

@ -1,30 +0,0 @@
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace Hexadecimal */
sjcl.codec.hex = {
/** Convert from a bitArray to a hex string. */
fromBits: function (arr) {
var out = "", i, x;
for (i=0; i<arr.length; i++) {
out += ((arr[i]|0)+0xF00000000000).toString(16).substr(4);
}
return out.substr(0, sjcl.bitArray.bitLength(arr)/4);//.replace(/(.{8})/g, "$1 ");
},
/** Convert from a hex string to a bitArray. */
toBits: function (str) {
var i, out=[], len;
str = str.replace(/\s|0x/g, "");
len = str.length;
str = str + "00000000";
for (i=0; i<str.length; i+=8) {
out.push(parseInt(str.substr(i,8),16)^0);
}
return sjcl.bitArray.clamp(out, len*4);
}
};

View File

@ -1,39 +0,0 @@
/** @fileOverview Bit array codec implementations.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace UTF-8 strings */
sjcl.codec.utf8String = {
/** Convert from a bitArray to a UTF-8 string. */
fromBits: function (arr) {
var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
for (i=0; i<bl/8; i++) {
if ((i&3) === 0) {
tmp = arr[i/4];
}
out += String.fromCharCode(tmp >>> 24);
tmp <<= 8;
}
return decodeURIComponent(escape(out));
},
/** Convert from a UTF-8 string to a bitArray. */
toBits: function (str) {
str = unescape(encodeURIComponent(str));
var out = [], i, tmp=0;
for (i=0; i<str.length; i++) {
tmp = tmp << 8 | str.charCodeAt(i);
if ((i&3) === 3) {
out.push(tmp);
tmp = 0;
}
}
if (i&3) {
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
}
return out;
}
};

View File

@ -1,285 +0,0 @@
/** @fileOverview Convenince functions centered around JSON encapsulation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace JSON encapsulation */
sjcl.json = {
/** Default values for encryption */
defaults: { v:1, iter:1000, ks:128, ts:64, mode:"ccm", adata:"", cipher:"aes" },
/** Simple encryption function.
* @param {String|bitArray} password The password or key.
* @param {String} plaintext The data to encrypt.
* @param {Object} [params] The parameters including tag, iv and salt.
* @param {Object} [rp] A returned version with filled-in parameters.
* @return {String} The ciphertext.
* @throws {sjcl.exception.invalid} if a parameter is invalid.
*/
encrypt: function (password, plaintext, params, rp) {
params = params || {};
rp = rp || {};
var j = sjcl.json, p = j._add({ iv: sjcl.random.randomWords(4,0) },
j.defaults), tmp, prp, adata;
j._add(p, params);
adata = p.adata;
if (typeof p.salt === "string") {
p.salt = sjcl.codec.base64.toBits(p.salt);
}
if (typeof p.iv === "string") {
p.iv = sjcl.codec.base64.toBits(p.iv);
}
if (!sjcl.mode[p.mode] ||
!sjcl.cipher[p.cipher] ||
(typeof password === "string" && p.iter <= 100) ||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
(p.iv.length < 2 || p.iv.length > 4)) {
throw new sjcl.exception.invalid("json encrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.publicKey) {
tmp = password.kem();
p.kemtag = tmp.tag;
password = tmp.key.slice(0,p.ks/32);
}
if (typeof plaintext === "string") {
plaintext = sjcl.codec.utf8String.toBits(plaintext);
}
if (typeof adata === "string") {
adata = sjcl.codec.utf8String.toBits(adata);
}
prp = new sjcl.cipher[p.cipher](password);
/* return the json data */
j._add(rp, p);
rp.key = password;
/* do the encryption */
p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, adata, p.ts);
//return j.encode(j._subtract(p, j.defaults));
return j.encode(p);
},
/** Simple decryption function.
* @param {String|bitArray} password The password or key.
* @param {String} ciphertext The ciphertext to decrypt.
* @param {Object} [params] Additional non-default parameters.
* @param {Object} [rp] A returned object with filled parameters.
* @return {String} The plaintext.
* @throws {sjcl.exception.invalid} if a parameter is invalid.
* @throws {sjcl.exception.corrupt} if the ciphertext is corrupt.
*/
decrypt: function (password, ciphertext, params, rp) {
params = params || {};
rp = rp || {};
var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp, adata=p.adata;
if (typeof p.salt === "string") {
p.salt = sjcl.codec.base64.toBits(p.salt);
}
if (typeof p.iv === "string") {
p.iv = sjcl.codec.base64.toBits(p.iv);
}
if (!sjcl.mode[p.mode] ||
!sjcl.cipher[p.cipher] ||
(typeof password === "string" && p.iter <= 100) ||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
(!p.iv) ||
(p.iv.length < 2 || p.iv.length > 4)) {
throw new sjcl.exception.invalid("json decrypt: invalid parameters");
}
if (typeof password === "string") {
tmp = sjcl.misc.cachedPbkdf2(password, p);
password = tmp.key.slice(0,p.ks/32);
p.salt = tmp.salt;
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.secretKey) {
password = password.unkem(sjcl.codec.base64.toBits(p.kemtag)).slice(0,p.ks/32);
}
if (typeof adata === "string") {
adata = sjcl.codec.utf8String.toBits(adata);
}
prp = new sjcl.cipher[p.cipher](password);
/* do the decryption */
ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, adata, p.ts);
/* return the json data */
j._add(rp, p);
rp.key = password;
return sjcl.codec.utf8String.fromBits(ct);
},
/** Encode a flat structure into a JSON string.
* @param {Object} obj The structure to encode.
* @return {String} A JSON string.
* @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property.
* @throws {sjcl.exception.bug} if a parameter has an unsupported type.
*/
encode: function (obj) {
var i, out='{', comma='';
for (i in obj) {
if (obj.hasOwnProperty(i)) {
if (!i.match(/^[a-z0-9]+$/i)) {
throw new sjcl.exception.invalid("json encode: invalid property name");
}
out += comma + '"' + i + '":';
comma = ',';
switch (typeof obj[i]) {
case 'number':
case 'boolean':
out += obj[i];
break;
case 'string':
out += '"' + escape(obj[i]) + '"';
break;
case 'object':
out += '"' + sjcl.codec.base64.fromBits(obj[i],0) + '"';
break;
default:
throw new sjcl.exception.bug("json encode: unsupported type");
}
}
}
return out+'}';
},
/** Decode a simple (flat) JSON string into a structure. The ciphertext,
* adata, salt and iv will be base64-decoded.
* @param {String} str The string.
* @return {Object} The decoded structure.
* @throws {sjcl.exception.invalid} if str isn't (simple) JSON.
*/
decode: function (str) {
str = str.replace(/\s/g,'');
if (!str.match(/^\{.*\}$/)) {
throw new sjcl.exception.invalid("json decode: this isn't json!");
}
var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m;
for (i=0; i<a.length; i++) {
if (!(m=a[i].match(/^(?:(["']?)([a-z][a-z0-9]*)\1):(?:(\d+)|"([a-z0-9+\/%*_.@=\-]*)")$/i))) {
throw new sjcl.exception.invalid("json decode: this isn't json!");
}
if (m[3]) {
out[m[2]] = parseInt(m[3],10);
} else {
out[m[2]] = m[2].match(/^(ct|salt|iv)$/) ? sjcl.codec.base64.toBits(m[4]) : unescape(m[4]);
}
}
return out;
},
/** Insert all elements of src into target, modifying and returning target.
* @param {Object} target The object to be modified.
* @param {Object} src The object to pull data from.
* @param {boolean} [requireSame=false] If true, throw an exception if any field of target differs from corresponding field of src.
* @return {Object} target.
* @private
*/
_add: function (target, src, requireSame) {
if (target === undefined) { target = {}; }
if (src === undefined) { return target; }
var i;
for (i in src) {
if (src.hasOwnProperty(i)) {
if (requireSame && target[i] !== undefined && target[i] !== src[i]) {
throw new sjcl.exception.invalid("required parameter overridden");
}
target[i] = src[i];
}
}
return target;
},
/** Remove all elements of minus from plus. Does not modify plus.
* @private
*/
_subtract: function (plus, minus) {
var out = {}, i;
for (i in plus) {
if (plus.hasOwnProperty(i) && plus[i] !== minus[i]) {
out[i] = plus[i];
}
}
return out;
},
/** Return only the specified elements of src.
* @private
*/
_filter: function (src, filter) {
var out = {}, i;
for (i=0; i<filter.length; i++) {
if (src[filter[i]] !== undefined) {
out[filter[i]] = src[filter[i]];
}
}
return out;
}
};
/** Simple encryption function; convenient shorthand for sjcl.json.encrypt.
* @param {String|bitArray} password The password or key.
* @param {String} plaintext The data to encrypt.
* @param {Object} [params] The parameters including tag, iv and salt.
* @param {Object} [rp] A returned version with filled-in parameters.
* @return {String} The ciphertext.
*/
sjcl.encrypt = sjcl.json.encrypt;
/** Simple decryption function; convenient shorthand for sjcl.json.decrypt.
* @param {String|bitArray} password The password or key.
* @param {String} ciphertext The ciphertext to decrypt.
* @param {Object} [params] Additional non-default parameters.
* @param {Object} [rp] A returned object with filled parameters.
* @return {String} The plaintext.
*/
sjcl.decrypt = sjcl.json.decrypt;
/** The cache for cachedPbkdf2.
* @private
*/
sjcl.misc._pbkdf2Cache = {};
/** Cached PBKDF2 key derivation.
* @param {String} password The password.
* @param {Object} [params] The derivation params (iteration count and optional salt).
* @return {Object} The derived data in key, the salt in salt.
*/
sjcl.misc.cachedPbkdf2 = function (password, obj) {
var cache = sjcl.misc._pbkdf2Cache, c, cp, str, salt, iter;
obj = obj || {};
iter = obj.iter || 1000;
/* open the cache for this password and iteration count */
cp = cache[password] = cache[password] || {};
c = cp[iter] = cp[iter] || { firstSalt: (obj.salt && obj.salt.length) ?
obj.salt.slice(0) : sjcl.random.randomWords(2,0) };
salt = (obj.salt === undefined) ? c.firstSalt : obj.salt;
c[salt] = c[salt] || sjcl.misc.pbkdf2(password, salt, obj.iter);
return { key: c[salt].slice(0), salt:salt.slice(0) };
};

View File

@ -1,412 +0,0 @@
sjcl.ecc = {};
/**
* Represents a point on a curve in affine coordinates.
* @constructor
* @param {sjcl.ecc.curve} curve The curve that this point lies on.
* @param {bigInt} x The x coordinate.
* @param {bigInt} y The y coordinate.
*/
sjcl.ecc.point = function(curve,x,y) {
if (x === undefined) {
this.isIdentity = true;
} else {
this.x = x;
this.y = y;
this.isIdentity = false;
}
this.curve = curve;
};
sjcl.ecc.point.prototype = {
toJac: function() {
return new sjcl.ecc.pointJac(this.curve, this.x, this.y, new this.curve.field(1));
},
mult: function(k) {
return this.toJac().mult(k, this).toAffine();
},
/**
* Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
* @param {bigInt} k The coefficient to multiply this by.
* @param {bigInt} k2 The coefficient to multiply affine2 this by.
* @param {sjcl.ecc.point} affine The other point in affine coordinates.
* @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
*/
mult2: function(k, k2, affine2) {
return this.toJac().mult2(k, this, k2, affine2).toAffine();
},
multiples: function() {
var m, i, j;
if (this._multiples === undefined) {
j = this.toJac().doubl();
m = this._multiples = [new sjcl.ecc.point(this.curve), this, j.toAffine()];
for (i=3; i<16; i++) {
j = j.add(this);
m.push(j.toAffine());
}
}
return this._multiples;
},
isValid: function() {
return this.y.square().equals(this.curve.b.add(this.x.mul(this.curve.a.add(this.x.square()))));
},
toBits: function() {
return sjcl.bitArray.concat(this.x.toBits(), this.y.toBits());
}
};
/**
* Represents a point on a curve in Jacobian coordinates. Coordinates can be specified as bigInts or strings (which
* will be converted to bigInts).
*
* @constructor
* @param {bigInt/string} x The x coordinate.
* @param {bigInt/string} y The y coordinate.
* @param {bigInt/string} z The z coordinate.
* @param {sjcl.ecc.curve} curve The curve that this point lies on.
*/
sjcl.ecc.pointJac = function(curve, x, y, z) {
if (x === undefined) {
this.isIdentity = true;
} else {
this.x = x;
this.y = y;
this.z = z;
this.isIdentity = false;
}
this.curve = curve;
};
sjcl.ecc.pointJac.prototype = {
/**
* Adds S and T and returns the result in Jacobian coordinates. Note that S must be in Jacobian coordinates and T must be in affine coordinates.
* @param {sjcl.ecc.pointJac} S One of the points to add, in Jacobian coordinates.
* @param {sjcl.ecc.point} T The other point to add, in affine coordinates.
* @return {sjcl.ecc.pointJac} The sum of the two points, in Jacobian coordinates.
*/
add: function(T) {
var S = this, sz2, c, d, c2, x1, x2, x, y1, y2, y, z;
if (S.curve !== T.curve) {
throw("sjcl.ecc.add(): Points must be on the same curve to add them!");
}
if (S.isIdentity) {
return T.toJac();
} else if (T.isIdentity) {
return S;
}
sz2 = S.z.square();
c = T.x.mul(sz2).subM(S.x);
if (c.equals(0)) {
if (S.y.equals(T.y.mul(sz2.mul(S.z)))) {
// same point
return S.doubl();
} else {
// inverses
return new sjcl.ecc.pointJac(S.curve);
}
}
d = T.y.mul(sz2.mul(S.z)).subM(S.y);
c2 = c.square();
x1 = d.square();
x2 = c.square().mul(c).addM( S.x.add(S.x).mul(c2) );
x = x1.subM(x2);
y1 = S.x.mul(c2).subM(x).mul(d);
y2 = S.y.mul(c.square().mul(c));
y = y1.subM(y2);
z = S.z.mul(c);
return new sjcl.ecc.pointJac(this.curve,x,y,z);
},
/**
* doubles this point.
* @return {sjcl.ecc.pointJac} The doubled point.
*/
doubl: function() {
if (this.isIdentity) { return this; }
var
y2 = this.y.square(),
a = y2.mul(this.x.mul(4)),
b = y2.square().mul(8),
z2 = this.z.square(),
c = this.x.sub(z2).mul(3).mul(this.x.add(z2)),
x = c.square().subM(a).subM(a),
y = a.sub(x).mul(c).subM(b),
z = this.y.add(this.y).mul(this.z);
return new sjcl.ecc.pointJac(this.curve, x, y, z);
},
/**
* Returns a copy of this point converted to affine coordinates.
* @return {sjcl.ecc.point} The converted point.
*/
toAffine: function() {
if (this.isIdentity || this.z.equals(0)) {
return new sjcl.ecc.point(this.curve);
}
var zi = this.z.inverse(), zi2 = zi.square();
return new sjcl.ecc.point(this.curve, this.x.mul(zi2).fullReduce(), this.y.mul(zi2.mul(zi)).fullReduce());
},
/**
* Multiply this point by k and return the answer in Jacobian coordinates.
* @param {bigInt} k The coefficient to multiply by.
* @param {sjcl.ecc.point} affine This point in affine coordinates.
* @return {sjcl.ecc.pointJac} The result of the multiplication, in Jacobian coordinates.
*/
mult: function(k, affine) {
if (typeof(k) === "number") {
k = [k];
} else if (k.limbs !== undefined) {
k = k.normalize().limbs;
}
var i, j, out = new sjcl.ecc.point(this.curve).toJac(), multiples = affine.multiples();
for (i=k.length-1; i>=0; i--) {
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
out = out.doubl().doubl().doubl().doubl().add(multiples[k[i]>>j & 0xF]);
}
}
return out;
},
/**
* Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
* @param {bigInt} k The coefficient to multiply this by.
* @param {sjcl.ecc.point} affine This point in affine coordinates.
* @param {bigInt} k2 The coefficient to multiply affine2 this by.
* @param {sjcl.ecc.point} affine The other point in affine coordinates.
* @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
*/
mult2: function(k1, affine, k2, affine2) {
if (typeof(k1) === "number") {
k1 = [k1];
} else if (k1.limbs !== undefined) {
k1 = k1.normalize().limbs;
}
if (typeof(k2) === "number") {
k2 = [k2];
} else if (k2.limbs !== undefined) {
k2 = k2.normalize().limbs;
}
var i, j, out = new sjcl.ecc.point(this.curve).toJac(), m1 = affine.multiples(),
m2 = affine2.multiples(), l1, l2;
for (i=Math.max(k1.length,k2.length)-1; i>=0; i--) {
l1 = k1[i] | 0;
l2 = k2[i] | 0;
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
out = out.doubl().doubl().doubl().doubl().add(m1[l1>>j & 0xF]).add(m2[l2>>j & 0xF]);
}
}
return out;
},
isValid: function() {
var z2 = this.z.square(), z4 = z2.square(), z6 = z4.mul(z2);
return this.y.square().equals(
this.curve.b.mul(z6).add(this.x.mul(
this.curve.a.mul(z4).add(this.x.square()))));
}
};
/**
* Construct an elliptic curve. Most users will not use this and instead start with one of the NIST curves defined below.
*
* @constructor
* @param {bigInt} p The prime modulus.
* @param {bigInt} r The prime order of the curve.
* @param {bigInt} a The constant a in the equation of the curve y^2 = x^3 + ax + b (for NIST curves, a is always -3).
* @param {bigInt} x The x coordinate of a base point of the curve.
* @param {bigInt} y The y coordinate of a base point of the curve.
*/
sjcl.ecc.curve = function(Field, r, a, b, x, y) {
this.field = Field;
this.r = Field.prototype.modulus.sub(r);
this.a = new Field(a);
this.b = new Field(b);
this.G = new sjcl.ecc.point(this, new Field(x), new Field(y));
};
sjcl.ecc.curve.prototype.fromBits = function (bits) {
var w = sjcl.bitArray, l = this.field.prototype.exponent + 7 & -8,
p = new sjcl.ecc.point(this, this.field.fromBits(w.bitSlice(bits, 0, l)),
this.field.fromBits(w.bitSlice(bits, l, 2*l)));
if (!p.isValid()) {
throw new sjcl.exception.corrupt("not on the curve!");
}
return p;
};
sjcl.ecc.curves = {
c192: new sjcl.ecc.curve(
sjcl.bn.prime.p192,
"0x662107c8eb94364e4b2dd7ce",
-3,
"0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
"0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
"0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811"),
c224: new sjcl.ecc.curve(
sjcl.bn.prime.p224,
"0xe95c1f470fc1ec22d6baa3a3d5c4",
-3,
"0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
"0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
"0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
c256: new sjcl.ecc.curve(
sjcl.bn.prime.p256,
"0x4319055358e8617b0c46353d039cdaae",
-3,
"0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
"0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
"0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"),
c384: new sjcl.ecc.curve(
sjcl.bn.prime.p384,
"0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c",
-3,
"0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
"0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
"0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
};
/* Diffie-Hellman-like public-key system */
sjcl.ecc._dh = function(cn) {
sjcl.ecc[cn] = {
/** @constructor */
publicKey: function(curve, point) {
this._curve = curve;
this._curveBitLength = curve.r.bitLength();
if (point instanceof Array) {
this._point = curve.fromBits(point);
} else {
this._point = point;
}
this.get = function() {
var pointbits = this._point.toBits();
var len = sjcl.bitArray.bitLength(pointbits);
var x = sjcl.bitArray.bitSlice(pointbits, 0, len/2);
var y = sjcl.bitArray.bitSlice(pointbits, len/2);
return { x: x, y: y };
}
},
/** @constructor */
secretKey: function(curve, exponent) {
this._curve = curve;
this._curveBitLength = curve.r.bitLength();
this._exponent = exponent;
this.get = function() {
return this._exponent.toBits();
}
},
/** @constructor */
generateKeys: function(curve, paranoia, sec) {
if (curve === undefined) {
curve = 256;
}
if (typeof curve === "number") {
curve = sjcl.ecc.curves['c'+curve];
if (curve === undefined) {
throw new sjcl.exception.invalid("no such curve");
}
}
if (sec === undefined) {
var sec = sjcl.bn.random(curve.r, paranoia);
}
var pub = curve.G.mult(sec);
return { pub: new sjcl.ecc[cn].publicKey(curve, pub),
sec: new sjcl.ecc[cn].secretKey(curve, sec) };
}
};
};
sjcl.ecc._dh("elGamal");
sjcl.ecc.elGamal.publicKey.prototype = {
kem: function(paranoia) {
var sec = sjcl.bn.random(this._curve.r, paranoia),
tag = this._curve.G.mult(sec).toBits(),
key = sjcl.hash.sha256.hash(this._point.mult(sec).toBits());
return { key: key, tag: tag };
}
};
sjcl.ecc.elGamal.secretKey.prototype = {
unkem: function(tag) {
return sjcl.hash.sha256.hash(this._curve.fromBits(tag).mult(this._exponent).toBits());
},
dh: function(pk) {
return sjcl.hash.sha256.hash(pk._point.mult(this._exponent).toBits());
}
};
sjcl.ecc._dh("ecdsa");
sjcl.ecc.ecdsa.secretKey.prototype = {
sign: function(hash, paranoia, fakeLegacyVersion, fixedKForTesting) {
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
}
var R = this._curve.r,
l = R.bitLength(),
k = fixedKForTesting || sjcl.bn.random(R.sub(1), paranoia).add(1),
r = this._curve.G.mult(k).x.mod(R),
ss = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)),
s = fakeLegacyVersion ? ss.inverseMod(R).mul(k).mod(R)
: ss.mul(k.inverseMod(R)).mod(R);
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
}
};
sjcl.ecc.ecdsa.publicKey.prototype = {
verify: function(hash, rs, fakeLegacyVersion) {
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
}
var w = sjcl.bitArray,
R = this._curve.r,
l = this._curveBitLength,
r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
ss = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
s = fakeLegacyVersion ? ss : ss.inverseMod(R),
hG = sjcl.bn.fromBits(hash).mul(s).mod(R),
hA = r.mul(s).mod(R),
r2 = this._curve.G.mult2(hG, hA, this._point).x;
if (r.equals(0) || ss.equals(0) || r.greaterEquals(R) || ss.greaterEquals(R) || !r2.equals(r)) {
if (fakeLegacyVersion === undefined) {
return this.verify(hash, rs, true);
} else {
throw (new sjcl.exception.corrupt("signature didn't check out"));
}
}
return true;
}
};

View File

@ -1,183 +0,0 @@
/** @fileOverview GCM mode implementation.
*
* @author Juho Vähä-Herttua
*/
/** @namespace Galois/Counter mode. */
sjcl.mode.gcm = {
/** The name of the mode.
* @constant
*/
name: "gcm",
/** Encrypt in GCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=128] The desired tag length, in bits.
* @return {bitArray} The encrypted data, an array of bytes.
*/
encrypt: function (prf, plaintext, iv, adata, tlen) {
var out, data = plaintext.slice(0), w=sjcl.bitArray;
tlen = tlen || 128;
adata = adata || [];
// encrypt and tag
out = sjcl.mode.gcm._ctrMode(true, prf, data, adata, iv, tlen);
return w.concat(out.data, out.tag);
},
/** Decrypt in GCM mode.
* @static
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=128] The desired tag length, in bits.
* @return {bitArray} The decrypted data.
*/
decrypt: function (prf, ciphertext, iv, adata, tlen) {
var out, data = ciphertext.slice(0), tag, w=sjcl.bitArray, l=w.bitLength(data);
tlen = tlen || 128;
adata = adata || [];
// Slice tag out of data
if (tlen <= l) {
tag = w.bitSlice(data, l-tlen);
data = w.bitSlice(data, 0, l-tlen);
} else {
tag = data;
data = [];
}
// decrypt and tag
out = sjcl.mode.gcm._ctrMode(false, prf, data, adata, iv, tlen);
if (!w.equal(out.tag, tag)) {
throw new sjcl.exception.corrupt("gcm: tag doesn't match");
}
return out.data;
},
/* Compute the galois multiplication of X and Y
* @private
*/
_galoisMultiply: function (x, y) {
var i, j, xi, Zi, Vi, lsb_Vi, w=sjcl.bitArray, xor=w._xor4;
Zi = [0,0,0,0];
Vi = y.slice(0);
// Block size is 128 bits, run 128 times to get Z_128
for (i=0; i<128; i++) {
xi = (x[Math.floor(i/32)] & (1 << (31-i%32))) !== 0;
if (xi) {
// Z_i+1 = Z_i ^ V_i
Zi = xor(Zi, Vi);
}
// Store the value of LSB(V_i)
lsb_Vi = (Vi[3] & 1) !== 0;
// V_i+1 = V_i >> 1
for (j=3; j>0; j--) {
Vi[j] = (Vi[j] >>> 1) | ((Vi[j-1]&1) << 31);
}
Vi[0] = Vi[0] >>> 1;
// If LSB(V_i) is 1, V_i+1 = (V_i >> 1) ^ R
if (lsb_Vi) {
Vi[0] = Vi[0] ^ (0xe1 << 24);
}
}
return Zi;
},
_ghash: function(H, Y0, data) {
var Yi, i, l = data.length;
Yi = Y0.slice(0);
for (i=0; i<l; i+=4) {
Yi[0] ^= 0xffffffff&data[i];
Yi[1] ^= 0xffffffff&data[i+1];
Yi[2] ^= 0xffffffff&data[i+2];
Yi[3] ^= 0xffffffff&data[i+3];
Yi = sjcl.mode.gcm._galoisMultiply(Yi, H);
}
return Yi;
},
/** GCM CTR mode.
* Encrypt or decrypt data and tag with the prf in GCM-style CTR mode.
* @param {Boolean} encrypt True if encrypt, false if decrypt.
* @param {Object} prf The PRF.
* @param {bitArray} data The data to be encrypted or decrypted.
* @param {bitArray} iv The initialization vector.
* @param {bitArray} adata The associated data to be tagged.
* @param {Number} tlen The length of the tag, in bits.
*/
_ctrMode: function(encrypt, prf, data, adata, iv, tlen) {
var H, J0, S0, enc, i, ctr, tag, last, l, bl, abl, ivbl, w=sjcl.bitArray, xor=w._xor4;
// Calculate data lengths
l = data.length;
bl = w.bitLength(data);
abl = w.bitLength(adata);
ivbl = w.bitLength(iv);
// Calculate the parameters
H = prf.encrypt([0,0,0,0]);
if (ivbl === 96) {
J0 = iv.slice(0);
J0 = w.concat(J0, [1]);
} else {
J0 = sjcl.mode.gcm._ghash(H, [0,0,0,0], iv);
J0 = sjcl.mode.gcm._ghash(H, J0, [0,0,Math.floor(ivbl/0x100000000),ivbl&0xffffffff]);
}
S0 = sjcl.mode.gcm._ghash(H, [0,0,0,0], adata);
// Initialize ctr and tag
ctr = J0.slice(0);
tag = S0.slice(0);
// If decrypting, calculate hash
if (!encrypt) {
tag = sjcl.mode.gcm._ghash(H, S0, data);
}
// Encrypt all the data
for (i=0; i<l; i+=4) {
ctr[3]++;
enc = prf.encrypt(ctr);
data[i] ^= enc[0];
data[i+1] ^= enc[1];
data[i+2] ^= enc[2];
data[i+3] ^= enc[3];
}
data = w.clamp(data, bl);
// If encrypting, calculate hash
if (encrypt) {
tag = sjcl.mode.gcm._ghash(H, S0, data);
}
// Calculate last block from bit lengths, ugly because bitwise operations are 32-bit
last = [
Math.floor(abl/0x100000000), abl&0xffffffff,
Math.floor(bl/0x100000000), bl&0xffffffff
];
// Calculate the final tag block
tag = sjcl.mode.gcm._ghash(H, tag, last);
enc = prf.encrypt(J0);
tag[0] ^= enc[0];
tag[1] ^= enc[1];
tag[2] ^= enc[2];
tag[3] ^= enc[3];
return { tag:w.bitSlice(tag, 0, tlen), data:data };
}
};

View File

@ -1,39 +0,0 @@
/** @fileOverview HMAC implementation.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** HMAC with the specified hash function.
* @constructor
* @param {bitArray} key the key for HMAC.
* @param {Object} [hash=sjcl.hash.sha256] The hash function to use.
*/
sjcl.misc.hmac = function (key, Hash) {
this._hash = Hash = Hash || sjcl.hash.sha256;
var exKey = [[],[]], i,
bs = Hash.prototype.blockSize / 32;
this._baseHash = [new Hash(), new Hash()];
if (key.length > bs) {
key = Hash.hash(key);
}
for (i=0; i<bs; i++) {
exKey[0][i] = key[i]^0x36363636;
exKey[1][i] = key[i]^0x5C5C5C5C;
}
this._baseHash[0].update(exKey[0]);
this._baseHash[1].update(exKey[1]);
};
/** HMAC with the specified hash function. Also called encrypt since it's a prf.
* @param {bitArray|String} data The data to mac.
*/
sjcl.misc.hmac.prototype.encrypt = sjcl.misc.hmac.prototype.mac = function (data) {
var w = new (this._hash)(this._baseHash[0]).update(data).finalize();
return new (this._hash)(this._baseHash[1]).update(w).finalize();
};

View File

@ -1,171 +0,0 @@
/** @fileOverview OCB 2.0 implementation
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @namespace
* Phil Rogaway's Offset CodeBook mode, version 2.0.
* May be covered by US and international patents.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
sjcl.mode.ocb2 = {
/** The name of the mode.
* @constant
*/
name: "ocb2",
/** Encrypt in OCB mode, version 2.0.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} plaintext The plaintext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @param [false] premac 1 if the authentication data is pre-macced with PMAC.
* @return The encrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits.
*/
encrypt: function(prp, plaintext, iv, adata, tlen, premac) {
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("ocb iv must be 128 bits");
}
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = times2(prp.encrypt(iv)),
bi, bl,
output = [],
pad;
adata = adata || [];
tlen = tlen || 64;
for (i=0; i+4 < plaintext.length; i+=4) {
/* Encrypt a non-final block */
bi = plaintext.slice(i,i+4);
checksum = xor(checksum, bi);
output = output.concat(xor(delta,prp.encrypt(xor(delta, bi))));
delta = times2(delta);
}
/* Chop out the final block */
bi = plaintext.slice(i);
bl = w.bitLength(bi);
pad = prp.encrypt(xor(delta,[0,0,0,bl]));
bi = w.clamp(xor(bi.concat([0,0,0]),pad), bl);
/* Checksum the final block, and finalize the checksum */
checksum = xor(checksum,xor(bi.concat([0,0,0]),pad));
checksum = prp.encrypt(xor(checksum,xor(delta,times2(delta))));
/* MAC the header */
if (adata.length) {
checksum = xor(checksum, premac ? adata : sjcl.mode.ocb2.pmac(prp, adata));
}
return output.concat(w.concat(bi, w.clamp(checksum, tlen)));
},
/** Decrypt in OCB mode.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} ciphertext The ciphertext data.
* @param {bitArray} iv The initialization value.
* @param {bitArray} [adata=[]] The authenticated data.
* @param {Number} [tlen=64] the desired tag length, in bits.
* @param {boolean} [premac=false] true if the authentication data is pre-macced with PMAC.
* @return The decrypted data, an array of bytes.
* @throws {sjcl.exception.invalid} if the IV isn't exactly 128 bits.
* @throws {sjcl.exception.corrupt} if if the message is corrupt.
*/
decrypt: function(prp, ciphertext, iv, adata, tlen, premac) {
if (sjcl.bitArray.bitLength(iv) !== 128) {
throw new sjcl.exception.invalid("ocb iv must be 128 bits");
}
tlen = tlen || 64;
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = times2(prp.encrypt(iv)),
bi, bl,
len = sjcl.bitArray.bitLength(ciphertext) - tlen,
output = [],
pad;
adata = adata || [];
for (i=0; i+4 < len/32; i+=4) {
/* Decrypt a non-final block */
bi = xor(delta, prp.decrypt(xor(delta, ciphertext.slice(i,i+4))));
checksum = xor(checksum, bi);
output = output.concat(bi);
delta = times2(delta);
}
/* Chop out and decrypt the final block */
bl = len-i*32;
pad = prp.encrypt(xor(delta,[0,0,0,bl]));
bi = xor(pad, w.clamp(ciphertext.slice(i),bl).concat([0,0,0]));
/* Checksum the final block, and finalize the checksum */
checksum = xor(checksum, bi);
checksum = prp.encrypt(xor(checksum, xor(delta, times2(delta))));
/* MAC the header */
if (adata.length) {
checksum = xor(checksum, premac ? adata : sjcl.mode.ocb2.pmac(prp, adata));
}
if (!w.equal(w.clamp(checksum, tlen), w.bitSlice(ciphertext, len))) {
throw new sjcl.exception.corrupt("ocb: tag doesn't match");
}
return output.concat(w.clamp(bi,bl));
},
/** PMAC authentication for OCB associated data.
* @param {Object} prp The block cipher. It must have a block size of 16 bytes.
* @param {bitArray} adata The authenticated data.
*/
pmac: function(prp, adata) {
var i,
times2 = sjcl.mode.ocb2._times2,
w = sjcl.bitArray,
xor = w._xor4,
checksum = [0,0,0,0],
delta = prp.encrypt([0,0,0,0]),
bi;
delta = xor(delta,times2(times2(delta)));
for (i=0; i+4<adata.length; i+=4) {
delta = times2(delta);
checksum = xor(checksum, prp.encrypt(xor(delta, adata.slice(i,i+4))));
}
bi = adata.slice(i);
if (w.bitLength(bi) < 128) {
delta = xor(delta,times2(delta));
bi = w.concat(bi,[0x80000000|0,0,0,0]);
}
checksum = xor(checksum, bi);
return prp.encrypt(xor(times2(xor(delta,times2(delta))), checksum));
},
/** Double a block of words, OCB style.
* @private
*/
_times2: function(x) {
return [x[0]<<1 ^ x[1]>>>31,
x[1]<<1 ^ x[2]>>>31,
x[2]<<1 ^ x[3]>>>31,
x[3]<<1 ^ (x[0]>>>31)*0x87];
}
};

View File

@ -1,54 +0,0 @@
/** @fileOverview Password-based key-derivation function, version 2.0.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** Password-Based Key-Derivation Function, version 2.0.
*
* Generate keys from passwords using PBKDF2-HMAC-SHA256.
*
* This is the method specified by RSA's PKCS #5 standard.
*
* @param {bitArray|String} password The password.
* @param {bitArray} salt The salt. Should have lots of entropy.
* @param {Number} [count=1000] The number of iterations. Higher numbers make the function slower but more secure.
* @param {Number} [length] The length of the derived key. Defaults to the
output size of the hash function.
* @param {Object} [Prff=sjcl.misc.hmac] The pseudorandom function family.
* @return {bitArray} the derived key.
*/
sjcl.misc.pbkdf2 = function (password, salt, count, length, Prff) {
count = count || 1000;
if (length < 0 || count < 0) {
throw sjcl.exception.invalid("invalid params to pbkdf2");
}
if (typeof password === "string") {
password = sjcl.codec.utf8String.toBits(password);
}
Prff = Prff || sjcl.misc.hmac;
var prf = new Prff(password),
u, ui, i, j, k, out = [], b = sjcl.bitArray;
for (k = 1; 32 * out.length < (length || 1); k++) {
u = ui = prf.encrypt(b.concat(salt,[k]));
for (i=1; i<count; i++) {
ui = prf.encrypt(ui);
for (j=0; j<ui.length; j++) {
u[j] ^= ui[j];
}
}
out = out.concat(u);
}
if (length) { out = b.clamp(out, length); }
return out;
};

View File

@ -1,406 +0,0 @@
/** @fileOverview Random number generator.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/** @constructor
* @class Random number generator
*
* @description
* <p>
* This random number generator is a derivative of Ferguson and Schneier's
* generator Fortuna. It collects entropy from various events into several
* pools, implemented by streaming SHA-256 instances. It differs from
* ordinary Fortuna in a few ways, though.
* </p>
*
* <p>
* Most importantly, it has an entropy estimator. This is present because
* there is a strong conflict here between making the generator available
* as soon as possible, and making sure that it doesn't "run on empty".
* In Fortuna, there is a saved state file, and the system is likely to have
* time to warm up.
* </p>
*
* <p>
* Second, because users are unlikely to stay on the page for very long,
* and to speed startup time, the number of pools increases logarithmically:
* a new pool is created when the previous one is actually used for a reseed.
* This gives the same asymptotic guarantees as Fortuna, but gives more
* entropy to early reseeds.
* </p>
*
* <p>
* The entire mechanism here feels pretty klunky. Furthermore, there are
* several improvements that should be made, including support for
* dedicated cryptographic functions that may be present in some browsers;
* state files in local storage; cookies containing randomness; etc. So
* look for improvements in future versions.
* </p>
*/
sjcl.prng = function(defaultParanoia) {
/* private */
this._pools = [new sjcl.hash.sha256()];
this._poolEntropy = [0];
this._reseedCount = 0;
this._robins = {};
this._eventId = 0;
this._collectorIds = {};
this._collectorIdNext = 0;
this._strength = 0;
this._poolStrength = 0;
this._nextReseed = 0;
this._key = [0,0,0,0,0,0,0,0];
this._counter = [0,0,0,0];
this._cipher = undefined;
this._defaultParanoia = defaultParanoia;
/* event listener stuff */
this._collectorsStarted = false;
this._callbacks = {progress: {}, seeded: {}};
this._callbackI = 0;
/* constants */
this._NOT_READY = 0;
this._READY = 1;
this._REQUIRES_RESEED = 2;
this._MAX_WORDS_PER_BURST = 65536;
this._PARANOIA_LEVELS = [0,48,64,96,128,192,256,384,512,768,1024];
this._MILLISECONDS_PER_RESEED = 30000;
this._BITS_PER_RESEED = 80;
}
sjcl.prng.prototype = {
/** Generate several random words, and return them in an array
* @param {Number} nwords The number of words to generate.
*/
randomWords: function (nwords, paranoia) {
var out = [], i, readiness = this.isReady(paranoia), g;
if (readiness === this._NOT_READY) {
throw new sjcl.exception.notReady("generator isn't seeded");
} else if (readiness & this._REQUIRES_RESEED) {
this._reseedFromPools(!(readiness & this._READY));
}
for (i=0; i<nwords; i+= 4) {
if ((i+1) % this._MAX_WORDS_PER_BURST === 0) {
this._gate();
}
g = this._gen4words();
out.push(g[0],g[1],g[2],g[3]);
}
this._gate();
return out.slice(0,nwords);
},
setDefaultParanoia: function (paranoia) {
this._defaultParanoia = paranoia;
},
/**
* Add entropy to the pools.
* @param data The entropic value. Should be a 32-bit integer, array of 32-bit integers, or string
* @param {Number} estimatedEntropy The estimated entropy of data, in bits
* @param {String} source The source of the entropy, eg "mouse"
*/
addEntropy: function (data, estimatedEntropy, source) {
source = source || "user";
var id,
i, tmp,
t = (new Date()).valueOf(),
robin = this._robins[source],
oldReady = this.isReady(), err = 0;
id = this._collectorIds[source];
if (id === undefined) { id = this._collectorIds[source] = this._collectorIdNext ++; }
if (robin === undefined) { robin = this._robins[source] = 0; }
this._robins[source] = ( this._robins[source] + 1 ) % this._pools.length;
switch(typeof(data)) {
case "number":
if (estimatedEntropy === undefined) {
estimatedEntropy = 1;
}
this._pools[robin].update([id,this._eventId++,1,estimatedEntropy,t,1,data|0]);
break;
case "object":
var objName = Object.prototype.toString.call(data);
if (objName === "[object Uint32Array]") {
tmp = [];
for (i = 0; i < data.length; i++) {
tmp.push(data[i]);
}
data = tmp;
} else {
if (objName !== "[object Array]") {
err = 1;
}
for (i=0; i<data.length && !err; i++) {
if (typeof(data[i]) != "number") {
err = 1;
}
}
}
if (!err) {
if (estimatedEntropy === undefined) {
/* horrible entropy estimator */
estimatedEntropy = 0;
for (i=0; i<data.length; i++) {
tmp= data[i];
while (tmp>0) {
estimatedEntropy++;
tmp = tmp >>> 1;
}
}
}
this._pools[robin].update([id,this._eventId++,2,estimatedEntropy,t,data.length].concat(data));
}
break;
case "string":
if (estimatedEntropy === undefined) {
/* English text has just over 1 bit per character of entropy.
* But this might be HTML or something, and have far less
* entropy than English... Oh well, let's just say one bit.
*/
estimatedEntropy = data.length;
}
this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]);
this._pools[robin].update(data);
break;
default:
err=1;
}
if (err) {
throw new sjcl.exception.bug("random: addEntropy only supports number, array of numbers or string");
}
/* record the new strength */
this._poolEntropy[robin] += estimatedEntropy;
this._poolStrength += estimatedEntropy;
/* fire off events */
if (oldReady === this._NOT_READY) {
if (this.isReady() !== this._NOT_READY) {
this._fireEvent("seeded", Math.max(this._strength, this._poolStrength));
}
this._fireEvent("progress", this.getProgress());
}
},
/** Is the generator ready? */
isReady: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ];
if (this._strength && this._strength >= entropyRequired) {
return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ?
this._REQUIRES_RESEED | this._READY :
this._READY;
} else {
return (this._poolStrength >= entropyRequired) ?
this._REQUIRES_RESEED | this._NOT_READY :
this._NOT_READY;
}
},
/** Get the generator's progress toward readiness, as a fraction */
getProgress: function (paranoia) {
var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ];
if (this._strength >= entropyRequired) {
return 1.0;
} else {
return (this._poolStrength > entropyRequired) ?
1.0 :
this._poolStrength / entropyRequired;
}
},
/** start the built-in entropy collectors */
startCollectors: function () {
if (this._collectorsStarted) { return; }
if (window.addEventListener) {
window.addEventListener("load", this._loadTimeCollector, false);
window.addEventListener("mousemove", this._mouseCollector, false);
} else if (document.attachEvent) {
document.attachEvent("onload", this._loadTimeCollector);
document.attachEvent("onmousemove", this._mouseCollector);
}
else {
throw new sjcl.exception.bug("can't attach event");
}
this._collectorsStarted = true;
},
/** stop the built-in entropy collectors */
stopCollectors: function () {
if (!this._collectorsStarted) { return; }
if (window.removeEventListener) {
window.removeEventListener("load", this._loadTimeCollector, false);
window.removeEventListener("mousemove", this._mouseCollector, false);
} else if (window.detachEvent) {
window.detachEvent("onload", this._loadTimeCollector);
window.detachEvent("onmousemove", this._mouseCollector);
}
this._collectorsStarted = false;
},
/* use a cookie to store entropy.
useCookie: function (all_cookies) {
throw new sjcl.exception.bug("random: useCookie is unimplemented");
},*/
/** add an event listener for progress or seeded-ness. */
addEventListener: function (name, callback) {
this._callbacks[name][this._callbackI++] = callback;
},
/** remove an event listener for progress or seeded-ness */
removeEventListener: function (name, cb) {
var i, j, cbs=this._callbacks[name], jsTemp=[];
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j) && cbs[j] === cb) {
jsTemp.push(j);
}
}
for (i=0; i<jsTemp.length; i++) {
j = jsTemp[i];
delete cbs[j];
}
},
/** Generate 4 random words, no reseed, no gate.
* @private
*/
_gen4words: function () {
for (var i=0; i<4; i++) {
this._counter[i] = this._counter[i]+1 | 0;
if (this._counter[i]) { break; }
}
return this._cipher.encrypt(this._counter);
},
/* Rekey the AES instance with itself after a request, or every _MAX_WORDS_PER_BURST words.
* @private
*/
_gate: function () {
this._key = this._gen4words().concat(this._gen4words());
this._cipher = new sjcl.cipher.aes(this._key);
},
/** Reseed the generator with the given words
* @private
*/
_reseed: function (seedWords) {
this._key = sjcl.hash.sha256.hash(this._key.concat(seedWords));
this._cipher = new sjcl.cipher.aes(this._key);
for (var i=0; i<4; i++) {
this._counter[i] = this._counter[i]+1 | 0;
if (this._counter[i]) { break; }
}
},
/** reseed the data from the entropy pools
* @param full If set, use all the entropy pools in the reseed.
*/
_reseedFromPools: function (full) {
var reseedData = [], strength = 0, i;
this._nextReseed = reseedData[0] =
(new Date()).valueOf() + this._MILLISECONDS_PER_RESEED;
for (i=0; i<16; i++) {
/* On some browsers, this is cryptographically random. So we might
* as well toss it in the pot and stir...
*/
reseedData.push(Math.random()*0x100000000|0);
}
for (i=0; i<this._pools.length; i++) {
reseedData = reseedData.concat(this._pools[i].finalize());
strength += this._poolEntropy[i];
this._poolEntropy[i] = 0;
if (!full && (this._reseedCount & (1<<i))) { break; }
}
/* if we used the last pool, push a new one onto the stack */
if (this._reseedCount >= 1 << this._pools.length) {
this._pools.push(new sjcl.hash.sha256());
this._poolEntropy.push(0);
}
/* how strong was this reseed? */
this._poolStrength -= strength;
if (strength > this._strength) {
this._strength = strength;
}
this._reseedCount ++;
this._reseed(reseedData);
},
_mouseCollector: function (ev) {
var x = ev.x || ev.clientX || ev.offsetX || 0, y = ev.y || ev.clientY || ev.offsetY || 0;
sjcl.random.addEntropy([x,y], 2, "mouse");
},
_loadTimeCollector: function (ev) {
sjcl.random.addEntropy((new Date()).valueOf(), 2, "loadtime");
},
_fireEvent: function (name, arg) {
var j, cbs=sjcl.random._callbacks[name], cbsTemp=[];
/* TODO: there is a race condition between removing collectors and firing them */
/* I'm not sure if this is necessary; in C++, iterating over a
* collection and modifying it at the same time is a no-no.
*/
for (j in cbs) {
if (cbs.hasOwnProperty(j)) {
cbsTemp.push(cbs[j]);
}
}
for (j=0; j<cbsTemp.length; j++) {
cbsTemp[j](arg);
}
}
};
sjcl.random = new sjcl.prng(6);
(function(){
try {
// get cryptographically strong entropy in Webkit
var ab = new Uint32Array(32);
crypto.getRandomValues(ab);
sjcl.random.addEntropy(ab, 1024, "crypto.getRandomValues");
} catch (e) {
// no getRandomValues :-(
}
})();

View File

@ -1,165 +0,0 @@
/** @fileOverview Javascript SHA-1 implementation.
*
* Based on the implementation in RFC 3174, method 1, and on the SJCL
* SHA-256 implementation.
*
* @author Quinn Slack
*/
/**
* Context for a SHA-1 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 160 bits.
*/
sjcl.hash.sha1 = function (hash) {
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 5 big-endian words.
*/
sjcl.hash.sha1.hash = function (data) {
return (new sjcl.hash.sha1()).update(data).finalize();
};
sjcl.hash.sha1.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = this.blockSize+ol & -this.blockSize; i <= nl;
i+= this.blockSize) {
this._block(b.splice(0,16));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 5 big-endian words. TODO
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-1 initialization vector.
* @private
*/
_init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0],
/**
* The SHA-1 hash key.
* @private
*/
_key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6],
/**
* The SHA-1 logical functions f(0), f(1), ..., f(79).
* @private
*/
_f:function(t, b, c, d) {
if (t <= 19) {
return (b & c) | (~b & d);
} else if (t <= 39) {
return b ^ c ^ d;
} else if (t <= 59) {
return (b & c) | (b & d) | (c & d);
} else if (t <= 79) {
return b ^ c ^ d;
}
},
/**
* Circular left-shift operator.
* @private
*/
_S:function(n, x) {
return (x << n) | (x >>> 32-n);
},
/**
* Perform one cycle of SHA-1.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var t, tmp, a, b, c, d, e,
w = words.slice(0),
h = this._h,
k = this._key;
a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
for (t=0; t<=79; t++) {
if (t >= 16) {
w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]);
}
tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] +
this._key[Math.floor(t/20)]) | 0;
e = d;
d = c;
c = this._S(30, b);
b = a;
a = tmp;
}
h[0] = (h[0]+a) |0;
h[1] = (h[1]+b) |0;
h[2] = (h[2]+c) |0;
h[3] = (h[3]+d) |0;
h[4] = (h[4]+e) |0;
}
};

View File

@ -1,216 +0,0 @@
/** @fileOverview Javascript SHA-256 implementation.
*
* An older version of this implementation is available in the public
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
* Stanford University 2008-2010 and BSD-licensed for liability
* reasons.
*
* Special thanks to Aldo Cortesi for pointing out several bugs in
* this code.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
/**
* Context for a SHA-256 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 256 bits.
*/
sjcl.hash.sha256 = function (hash) {
if (!this._key[0]) { this._precompute(); }
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
sjcl.hash.sha256.hash = function (data) {
return (new sjcl.hash.sha256()).update(data).finalize();
};
sjcl.hash.sha256.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 512,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = 512+ol & -512; i <= nl; i+= 512) {
this._block(b.splice(0,16));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 8 big-endian words.
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 16 words, less the 2 length words.
for (i = b.length + 2; i & 15; i++) {
b.push(0);
}
// append the length
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,16));
}
this.reset();
return h;
},
/**
* The SHA-256 initialization vector, to be precomputed.
* @private
*/
_init:[],
/*
_init:[0x6a09e667,0xbb67ae85,0x3c6ef372,0xa54ff53a,0x510e527f,0x9b05688c,0x1f83d9ab,0x5be0cd19],
*/
/**
* The SHA-256 hash key, to be precomputed.
* @private
*/
_key:[],
/*
_key:
[0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],
*/
/**
* Function to precompute _init and _key.
* @private
*/
_precompute: function () {
var i = 0, prime = 2, factor;
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
outer: for (; i<64; prime++) {
for (factor=2; factor*factor <= prime; factor++) {
if (prime % factor === 0) {
// not a prime
continue outer;
}
}
if (i<8) {
this._init[i] = frac(Math.pow(prime, 1/2));
}
this._key[i] = frac(Math.pow(prime, 1/3));
i++;
}
},
/**
* Perform one cycle of SHA-256.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var i, tmp, a, b,
w = words.slice(0),
h = this._h,
k = this._key,
h0 = h[0], h1 = h[1], h2 = h[2], h3 = h[3],
h4 = h[4], h5 = h[5], h6 = h[6], h7 = h[7];
/* Rationale for placement of |0 :
* If a value can overflow is original 32 bits by a factor of more than a few
* million (2^23 ish), there is a possibility that it might overflow the
* 53-bit mantissa and lose precision.
*
* To avoid this, we clamp back to 32 bits by |'ing with 0 on any value that
* propagates around the loop, and on the hash state h[]. I don't believe
* that the clamps on h4 and on h0 are strictly necessary, but it's close
* (for h4 anyway), and better safe than sorry.
*
* The clamps on h[] are necessary for the output to be correct even in the
* common case and for short inputs.
*/
for (i=0; i<64; i++) {
// load up the input word for this round
if (i<16) {
tmp = w[i];
} else {
a = w[(i+1 ) & 15];
b = w[(i+14) & 15];
tmp = w[i&15] = ((a>>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
(b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
w[i&15] + w[(i+9) & 15]) | 0;
}
tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
// shift register
h7 = h6; h6 = h5; h5 = h4;
h4 = h3 + tmp | 0;
h3 = h2; h2 = h1; h1 = h0;
h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
}
h[0] = h[0]+h0 | 0;
h[1] = h[1]+h1 | 0;
h[2] = h[2]+h2 | 0;
h[3] = h[3]+h3 | 0;
h[4] = h[4]+h4 | 0;
h[5] = h[5]+h5 | 0;
h[6] = h[6]+h6 | 0;
h[7] = h[7]+h7 | 0;
}
};

View File

@ -1,348 +0,0 @@
/** @fileOverview Javascript SHA-512 implementation.
*
* This implementation was written for CryptoJS by Jeff Mott and adapted for
* SJCL by Stefan Thomas.
*
* CryptoJS (c) 20092012 by Jeff Mott. All rights reserved.
* Released with New BSD License
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
* @author Jeff Mott
* @author Stefan Thomas
*/
/**
* Context for a SHA-512 operation in progress.
* @constructor
* @class Secure Hash Algorithm, 512 bits.
*/
sjcl.hash.sha512 = function (hash) {
if (!this._key[0]) { this._precompute(); }
if (hash) {
this._h = hash._h.slice(0);
this._buffer = hash._buffer.slice(0);
this._length = hash._length;
} else {
this.reset();
}
};
/**
* Hash a string or an array of words.
* @static
* @param {bitArray|String} data the data to hash.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
sjcl.hash.sha512.hash = function (data) {
return (new sjcl.hash.sha512()).update(data).finalize();
};
sjcl.hash.sha512.prototype = {
/**
* The hash's block size, in bits.
* @constant
*/
blockSize: 1024,
/**
* Reset the hash state.
* @return this
*/
reset:function () {
this._h = this._init.slice(0);
this._buffer = [];
this._length = 0;
return this;
},
/**
* Input several words to the hash.
* @param {bitArray|String} data the data to hash.
* @return this
*/
update: function (data) {
if (typeof data === "string") {
data = sjcl.codec.utf8String.toBits(data);
}
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
ol = this._length,
nl = this._length = ol + sjcl.bitArray.bitLength(data);
for (i = 1024+ol & -1024; i <= nl; i+= 1024) {
this._block(b.splice(0,32));
}
return this;
},
/**
* Complete hashing and output the hash value.
* @return {bitArray} The hash value, an array of 16 big-endian words.
*/
finalize:function () {
var i, b = this._buffer, h = this._h;
// Round out and push the buffer
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
// Round out the buffer to a multiple of 32 words, less the 4 length words.
for (i = b.length + 4; i & 31; i++) {
b.push(0);
}
// append the length
b.push(0);
b.push(0);
b.push(Math.floor(this._length / 0x100000000));
b.push(this._length | 0);
while (b.length) {
this._block(b.splice(0,32));
}
this.reset();
return h;
},
/**
* The SHA-512 initialization vector, to be precomputed.
* @private
*/
_init:[],
/**
* Least significant 24 bits of SHA512 initialization values.
*
* Javascript only has 53 bits of precision, so we compute the 40 most
* significant bits and add the remaining 24 bits as constants.
*
* @private
*/
_initr: [ 0xbcc908, 0xcaa73b, 0x94f82b, 0x1d36f1, 0xe682d1, 0x3e6c1f, 0x41bd6b, 0x7e2179 ],
/*
_init:
[0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1,
0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179],
*/
/**
* The SHA-512 hash key, to be precomputed.
* @private
*/
_key:[],
/**
* Least significant 24 bits of SHA512 key values.
* @private
*/
_keyr:
[0x28ae22, 0xef65cd, 0x4d3b2f, 0x89dbbc, 0x48b538, 0x05d019, 0x194f9b, 0x6d8118,
0x030242, 0x706fbe, 0xe4b28c, 0xffb4e2, 0x7b896f, 0x1696b1, 0xc71235, 0x692694,
0xf14ad2, 0x4f25e3, 0x8cd5b5, 0xac9c65, 0x2b0275, 0xa6e483, 0x41fbd4, 0x1153b5,
0x66dfab, 0xb43210, 0xfb213f, 0xef0ee4, 0xa88fc2, 0x0aa725, 0x03826f, 0x0e6e70,
0xd22ffc, 0x26c926, 0xc42aed, 0x95b3df, 0xaf63de, 0x77b2a8, 0xedaee6, 0x82353b,
0xf10364, 0x423001, 0xf89791, 0x54be30, 0xef5218, 0x65a910, 0x71202a, 0xbbd1b8,
0xd2d0c8, 0x41ab53, 0x8eeb99, 0x9b48a8, 0xc95a63, 0x418acb, 0x63e373, 0xb2b8a3,
0xefb2fc, 0x172f60, 0xf0ab72, 0x6439ec, 0x631e28, 0x82bde9, 0xc67915, 0x72532b,
0x26619c, 0xc0c207, 0xe0eb1e, 0x6ed178, 0x176fba, 0xc898a6, 0xf90dae, 0x1c471b,
0x047d84, 0xc72493, 0xc9bebc, 0x100d4c, 0x3e42b6, 0x657e2a, 0xd6faec, 0x475817],
/*
_key:
[0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817],
*/
/**
* Function to precompute _init and _key.
* @private
*/
_precompute: function () {
// XXX: This code is for precomputing the SHA256 constants, change for
// SHA512 and re-enable.
var i = 0, prime = 2, factor;
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
function frac2(x) { return (x-Math.floor(x)) * 0x10000000000 & 0xff; }
outer: for (; i<80; prime++) {
for (factor=2; factor*factor <= prime; factor++) {
if (prime % factor === 0) {
// not a prime
continue outer;
}
}
if (i<8) {
this._init[i*2] = frac(Math.pow(prime, 1/2));
this._init[i*2+1] = (frac2(Math.pow(prime, 1/2)) << 24) | this._initr[i];
}
this._key[i*2] = frac(Math.pow(prime, 1/3));
this._key[i*2+1] = (frac2(Math.pow(prime, 1/3)) << 24) | this._keyr[i];
i++;
}
},
/**
* Perform one cycle of SHA-512.
* @param {bitArray} words one block of words.
* @private
*/
_block:function (words) {
var i, wrh, wrl,
w = words.slice(0),
h = this._h,
k = this._key,
h0h = h[ 0], h0l = h[ 1], h1h = h[ 2], h1l = h[ 3],
h2h = h[ 4], h2l = h[ 5], h3h = h[ 6], h3l = h[ 7],
h4h = h[ 8], h4l = h[ 9], h5h = h[10], h5l = h[11],
h6h = h[12], h6l = h[13], h7h = h[14], h7l = h[15];
// Working variables
var ah = h0h, al = h0l, bh = h1h, bl = h1l,
ch = h2h, cl = h2l, dh = h3h, dl = h3l,
eh = h4h, el = h4l, fh = h5h, fl = h5l,
gh = h6h, gl = h6l, hh = h7h, hl = h7l;
for (i=0; i<80; i++) {
// load up the input word for this round
if (i<16) {
wrh = w[i * 2];
wrl = w[i * 2 + 1];
} else {
// Gamma0
var gamma0xh = w[(i-15) * 2];
var gamma0xl = w[(i-15) * 2 + 1];
var gamma0h =
((gamma0xl << 31) | (gamma0xh >>> 1)) ^
((gamma0xl << 24) | (gamma0xh >>> 8)) ^
(gamma0xh >>> 7);
var gamma0l =
((gamma0xh << 31) | (gamma0xl >>> 1)) ^
((gamma0xh << 24) | (gamma0xl >>> 8)) ^
((gamma0xh << 25) | (gamma0xl >>> 7));
// Gamma1
var gamma1xh = w[(i-2) * 2];
var gamma1xl = w[(i-2) * 2 + 1];
var gamma1h =
((gamma1xl << 13) | (gamma1xh >>> 19)) ^
((gamma1xh << 3) | (gamma1xl >>> 29)) ^
(gamma1xh >>> 6);
var gamma1l =
((gamma1xh << 13) | (gamma1xl >>> 19)) ^
((gamma1xl << 3) | (gamma1xh >>> 29)) ^
((gamma1xh << 26) | (gamma1xl >>> 6));
// Shortcuts
var wr7h = w[(i-7) * 2];
var wr7l = w[(i-7) * 2 + 1];
var wr16h = w[(i-16) * 2];
var wr16l = w[(i-16) * 2 + 1];
// W(round) = gamma0 + W(round - 7) + gamma1 + W(round - 16)
wrl = gamma0l + wr7l;
wrh = gamma0h + wr7h + ((wrl >>> 0) < (gamma0l >>> 0) ? 1 : 0);
wrl += gamma1l;
wrh += gamma1h + ((wrl >>> 0) < (gamma1l >>> 0) ? 1 : 0);
wrl += wr16l;
wrh += wr16h + ((wrl >>> 0) < (wr16l >>> 0) ? 1 : 0);
}
w[i*2] = wrh |= 0;
w[i*2 + 1] = wrl |= 0;
// Ch
var chh = (eh & fh) ^ (~eh & gh);
var chl = (el & fl) ^ (~el & gl);
// Maj
var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
// Sigma0
var sigma0h = ((al << 4) | (ah >>> 28)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
var sigma0l = ((ah << 4) | (al >>> 28)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
// Sigma1
var sigma1h = ((el << 18) | (eh >>> 14)) ^ ((el << 14) | (eh >>> 18)) ^ ((eh << 23) | (el >>> 9));
var sigma1l = ((eh << 18) | (el >>> 14)) ^ ((eh << 14) | (el >>> 18)) ^ ((el << 23) | (eh >>> 9));
// K(round)
var krh = k[i*2];
var krl = k[i*2+1];
// t1 = h + sigma1 + ch + K(round) + W(round)
var t1l = hl + sigma1l;
var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
t1l += chl;
t1h += chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
t1l += krl;
t1h += krh + ((t1l >>> 0) < (krl >>> 0) ? 1 : 0);
t1l += wrl;
t1h += wrh + ((t1l >>> 0) < (wrl >>> 0) ? 1 : 0);
// t2 = sigma0 + maj
var t2l = sigma0l + majl;
var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
// Update working variables
hh = gh;
hl = gl;
gh = fh;
gl = fl;
fh = eh;
fl = el;
el = (dl + t1l) | 0;
eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
dh = ch;
dl = cl;
ch = bh;
cl = bl;
bh = ah;
bl = al;
al = (t1l + t2l) | 0;
ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
}
// Intermediate hash
h0l = h[1] = (h0l + al) | 0;
h[0] = (h0h + ah + ((h0l >>> 0) < (al >>> 0) ? 1 : 0)) | 0;
h1l = h[3] = (h1l + bl) | 0;
h[2] = (h1h + bh + ((h1l >>> 0) < (bl >>> 0) ? 1 : 0)) | 0;
h2l = h[5] = (h2l + cl) | 0;
h[4] = (h2h + ch + ((h2l >>> 0) < (cl >>> 0) ? 1 : 0)) | 0;
h3l = h[7] = (h3l + dl) | 0;
h[6] = (h3h + dh + ((h3l >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
h4l = h[9] = (h4l + el) | 0;
h[8] = (h4h + eh + ((h4l >>> 0) < (el >>> 0) ? 1 : 0)) | 0;
h5l = h[11] = (h5l + fl) | 0;
h[10] = (h5h + fh + ((h5l >>> 0) < (fl >>> 0) ? 1 : 0)) | 0;
h6l = h[13] = (h6l + gl) | 0;
h[12] = (h6h + gh + ((h6l >>> 0) < (gl >>> 0) ? 1 : 0)) | 0;
h7l = h[15] = (h7l + hl) | 0;
h[14] = (h7h + hh + ((h7l >>> 0) < (hl >>> 0) ? 1 : 0)) | 0;
}
};

View File

@ -1,73 +0,0 @@
/** @fileOverview Javascript cryptography implementation.
*
* Crush to remove comments, shorten variable names and
* generally reduce transmission size.
*
* @author Emily Stark
* @author Mike Hamburg
* @author Dan Boneh
*/
"use strict";
/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
/*global document, window, escape, unescape */
/** @namespace The Stanford Javascript Crypto Library, top-level namespace. */
var sjcl = {
/** @namespace Symmetric ciphers. */
cipher: {},
/** @namespace Hash functions. Right now only SHA256 is implemented. */
hash: {},
/** @namespace Key exchange functions. Right now only SRP is implemented. */
keyexchange: {},
/** @namespace Block cipher modes of operation. */
mode: {},
/** @namespace Miscellaneous. HMAC and PBKDF2. */
misc: {},
/**
* @namespace Bit array encoders and decoders.
*
* @description
* The members of this namespace are functions which translate between
* SJCL's bitArrays and other objects (usually strings). Because it
* isn't always clear which direction is encoding and which is decoding,
* the method names are "fromBits" and "toBits".
*/
codec: {},
/** @namespace Exceptions. */
exception: {
/** @constructor Ciphertext is corrupt. */
corrupt: function(message) {
this.toString = function() { return "CORRUPT: "+this.message; };
this.message = message;
},
/** @constructor Invalid parameter. */
invalid: function(message) {
this.toString = function() { return "INVALID: "+this.message; };
this.message = message;
},
/** @constructor Bug or missing feature in SJCL. @constructor */
bug: function(message) {
this.toString = function() { return "BUG: "+this.message; };
this.message = message;
},
/** @constructor Something isn't ready. */
notReady: function(message) {
this.toString = function() { return "NOT READY: "+this.message; };
this.message = message;
}
}
};
if(typeof module != 'undefined' && module.exports){
module.exports = sjcl;
}

View File

@ -1,113 +0,0 @@
/** @fileOverview Javascript SRP implementation.
*
* This file contains a partial implementation of the SRP (Secure Remote
* Password) password-authenticated key exchange protocol. Given a user
* identity, salt, and SRP group, it generates the SRP verifier that may
* be sent to a remote server to establish and SRP account.
*
* For more information, see http://srp.stanford.edu/.
*
* @author Quinn Slack
*/
/**
* Compute the SRP verifier from the username, password, salt, and group.
* @class SRP
*/
sjcl.keyexchange.srp = {
/**
* Calculates SRP v, the verifier.
* v = g^x mod N [RFC 5054]
* @param {String} I The username.
* @param {String} P The password.
* @param {Object} s A bitArray of the salt.
* @param {Object} group The SRP group. Use sjcl.keyexchange.srp.knownGroup
to obtain this object.
* @return {Object} A bitArray of SRP v.
*/
makeVerifier: function(I, P, s, group) {
var x;
x = sjcl.keyexchange.srp.makeX(I, P, s);
x = sjcl.bn.fromBits(x);
return group.g.powermod(x, group.N);
},
/**
* Calculates SRP x.
* x = SHA1(<salt> | SHA(<username> | ":" | <raw password>)) [RFC 2945]
* @param {String} I The username.
* @param {String} P The password.
* @param {Object} s A bitArray of the salt.
* @return {Object} A bitArray of SRP x.
*/
makeX: function(I, P, s) {
var inner = sjcl.hash.sha1.hash(I + ':' + P);
return sjcl.hash.sha1.hash(sjcl.bitArray.concat(s, inner));
},
/**
* Returns the known SRP group with the given size (in bits).
* @param {String} i The size of the known SRP group.
* @return {Object} An object with "N" and "g" properties.
*/
knownGroup:function(i) {
if (typeof i !== "string") { i = i.toString(); }
if (!sjcl.keyexchange.srp._didInitKnownGroups) { sjcl.keyexchange.srp._initKnownGroups(); }
return sjcl.keyexchange.srp._knownGroups[i];
},
/**
* Initializes bignum objects for known group parameters.
* @private
*/
_didInitKnownGroups: false,
_initKnownGroups:function() {
var i, size, group;
for (i=0; i < sjcl.keyexchange.srp._knownGroupSizes.length; i++) {
size = sjcl.keyexchange.srp._knownGroupSizes[i].toString();
group = sjcl.keyexchange.srp._knownGroups[size];
group.N = new sjcl.bn(group.N);
group.g = new sjcl.bn(group.g);
}
sjcl.keyexchange.srp._didInitKnownGroups = true;
},
_knownGroupSizes: [1024, 1536, 2048],
_knownGroups: {
1024: {
N: "EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C" +
"9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE4" +
"8E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B29" +
"7BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9A" +
"FD5138FE8376435B9FC61D2FC0EB06E3",
g:2
},
1536: {
N: "9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA961" +
"4B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F843" +
"80B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0B" +
"E3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF5" +
"6EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734A" +
"F7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E" +
"8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB",
g: 2
},
2048: {
N: "AC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC319294" +
"3DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310D" +
"CD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FB" +
"D5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF74" +
"7359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A" +
"436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D" +
"5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E73" +
"03CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB6" +
"94B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F" +
"9E4AFF73",
g: 2
}
}
};

View File

@ -1,34 +0,0 @@
module("ECC Crypto");
var ecc_test = {
keySize: 384,
plaintext: 'Hello, World!'
};
test("Generate Keys", function() {
// generate keypair
ecc_test.keys = sjcl.ecc.elGamal.generateKeys(ecc_test.keySize, 0);
ok(ecc_test.keys);
});
test("Encrypt", function() {
// var tmp = ecc_test.keys.pub.kem(0);
// var password = tmp.key.slice(0, ecc_test.keySize / 32);
// var prp = new sjcl.cipher.ecc(password);
// var iv = aes_test.util.random(ecc_test.keySize);
// var ivWords = sjcl.codec.base64.toBits(iv);
// sjcl.mode.ecc.encrypt(prp, ecc_test.plaintext, ivWords);
sjcl.random.setDefaultParanoia(0);
ecc_test.ciphertext = sjcl.encrypt(ecc_test.keys.pub, ecc_test.plaintext);
ok(ecc_test.ciphertext);
});
test("Decrypt", function() {
var decrypted = sjcl.decrypt(ecc_test.keys.sec, ecc_test.ciphertext);
equal(ecc_test.plaintext, decrypted);
});

View File

@ -1,81 +0,0 @@
module("NaCl Crypto");
var nacl_test = {
keySize: 128,
nonceSize: 192
};
test("Init", 1, function() {
// init dependencies
nacl_test.util = new app.crypto.Util(window, uuid);
ok(nacl_test.util, 'Util');
// generate test data
nacl_test.test_message = '06a9214036b8a15b512e03d534120006';
nacl_test.crypto = new app.crypto.NaclCrypto(nacl, nacl_test.util);
});
asyncTest("Generate Keypair from seed", 1, function() {
// generate keypair from seed
var seed = nacl_test.util.random(128);
nacl_test.crypto.generateKeypair(seed, function(keys) {
ok(keys.boxSk && keys.boxPk && keys.id, "Keypair: " + JSON.stringify(keys));
start();
});
});
asyncTest("Generate Keypair", 2, function() {
// generate keypair
nacl_test.crypto.generateKeypair(null, function(senderKeypair) {
ok(senderKeypair.boxSk && senderKeypair.boxPk, "Sender keypair: " + JSON.stringify(senderKeypair));
nacl_test.crypto.generateKeypair(null, function(recipientKeypair) {
ok(recipientKeypair.boxSk && recipientKeypair.boxPk, "Receiver keypair: " + JSON.stringify(recipientKeypair));
nacl_test.senderKeypair = senderKeypair;
nacl_test.recipientKeypair = recipientKeypair;
start();
});
});
});
test("Asymmetric Encrypt (Synchronous)", 2, function() {
var plaintext = nacl_test.test_message;
var nonce = nacl_test.crypto.generateNonce();
ok(nonce, 'Nonce: ' + nonce);
nacl_test.nonce = nonce;
// encrypt
nacl_test.ct = nacl_test.crypto.asymEncryptSync(plaintext, nonce, nacl_test.recipientKeypair.boxPk, nacl_test.senderKeypair.boxSk);
ok(nacl_test.ct, 'Ciphertext length: ' + nacl_test.ct.length);
});
test("Asymmetric Decrypt (Synchronous)", 1, function() {
var plaintext = nacl_test.test_message;
var nonce = nacl_test.nonce
// decrypt
var decrypted = nacl_test.crypto.asymDecryptSync(nacl_test.ct, nonce, nacl_test.senderKeypair.boxPk, nacl_test.recipientKeypair.boxSk);
equal(decrypted, plaintext, 'Decryption correct: ' + decrypted);
});
asyncTest("Asymmetric En/Decrypt (Async/Worker)", 3, function() {
var plaintext = nacl_test.test_message;
var nonce = nacl_test.crypto.generateNonce();
ok(nonce, 'Nonce: ' + nonce);
// encrypt
nacl_test.crypto.asymEncrypt(plaintext, nonce, nacl_test.recipientKeypair.boxPk, nacl_test.senderKeypair.boxSk, function(ct) {
ok(ct, 'Ciphertext length: ' + ct.length);
// decrypt
nacl_test.crypto.asymDecrypt(ct, nonce, nacl_test.senderKeypair.boxPk, nacl_test.recipientKeypair.boxSk, function(decrypted) {
equal(decrypted, plaintext, 'Decryption correct: ' + decrypted);
start();
});
});
});