1
0
mirror of https://github.com/moparisthebest/mail synced 2024-11-15 13:45:08 -05:00
mail/src/lib/rsa.js

1108 lines
32 KiB
JavaScript
Raw Normal View History

2013-06-10 11:57:33 -04:00
/**
* Javascript implementation of a basic RSA algorithms.
*
* @author Dave Longley
*
* Copyright (c) 2010-2013 Digital Bazaar, Inc.
*/
(function() {
function initModule(forge) {
/* ########## Begin module implementation ########## */
var _nodejs = (typeof module === 'object' && module.exports);
if(typeof BigInteger === 'undefined') {
BigInteger = forge.jsbn.BigInteger;
}
// shortcut for asn.1 API
var asn1 = forge.asn1;
/*
* RSA encryption and decryption, see RFC 2313.
*/
forge.pki = forge.pki || {};
forge.pki.rsa = forge.rsa = forge.rsa || {};
var pki = forge.pki;
// for finding primes, which are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
/**
* Wrap digest in DigestInfo object.
*
* This function implements EMSA-PKCS1-v1_5-ENCODE as per RFC 3447.
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest
* }
*
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* @param md the message digest object with the hash to sign.
* @return the encoded message (ready for RSA encrytion)
*/
var emsaPkcs1v15encode = function(md) {
// get the oid for the algorithm
var oid;
if(md.algorithm in forge.pki.oids) {
oid = forge.pki.oids[md.algorithm];
}
else {
throw {
message: 'Unknown message digest algorithm.',
algorithm: md.algorithm
};
}
var oidBytes = asn1.oidToDer(oid).getBytes();
// create the digest info
var digestInfo = asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
var digestAlgorithm = asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.SEQUENCE, true, []);
digestAlgorithm.value.push(asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.OID, false, oidBytes));
digestAlgorithm.value.push(asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.NULL, false, ''));
var digest = asn1.create(
asn1.Class.UNIVERSAL, asn1.Type.OCTETSTRING,
false, md.digest().getBytes());
digestInfo.value.push(digestAlgorithm);
digestInfo.value.push(digest);
// encode digest info
return asn1.toDer(digestInfo).getBytes();
};
/**
* Performs x^c mod n (RSA encryption or decryption operation).
*
* @param x the number to raise and mod.
* @param key the key to use.
* @param pub true if the key is public, false if private.
*
* @return the result of x^c mod n.
*/
var _modPow = function(x, key, pub) {
var y;
if(pub) {
y = x.modPow(key.e, key.n);
}
else {
// pre-compute dP, dQ, and qInv if necessary
if(!key.dP) {
key.dP = key.d.mod(key.p.subtract(BigInteger.ONE));
}
if(!key.dQ) {
key.dQ = key.d.mod(key.q.subtract(BigInteger.ONE));
}
if(!key.qInv) {
key.qInv = key.q.modInverse(key.p);
}
/* Chinese remainder theorem (CRT) states:
Suppose n1, n2, ..., nk are positive integers which are pairwise
coprime (n1 and n2 have no common factors other than 1). For any
integers x1, x2, ..., xk there exists an integer x solving the
system of simultaneous congruences (where ~= means modularly
congruent so a ~= b mod n means a mod n = b mod n):
x ~= x1 mod n1
x ~= x2 mod n2
...
x ~= xk mod nk
This system of congruences has a single simultaneous solution x
between 0 and n - 1. Furthermore, each xk solution and x itself
is congruent modulo the product n = n1*n2*...*nk.
So x1 mod n = x2 mod n = xk mod n = x mod n.
The single simultaneous solution x can be solved with the following
equation:
x = sum(xi*ri*si) mod n where ri = n/ni and si = ri^-1 mod ni.
Where x is less than n, xi = x mod ni.
For RSA we are only concerned with k = 2. The modulus n = pq, where
p and q are coprime. The RSA decryption algorithm is:
y = x^d mod n
Given the above:
x1 = x^d mod p
r1 = n/p = q
s1 = q^-1 mod p
x2 = x^d mod q
r2 = n/q = p
s2 = p^-1 mod q
So y = (x1r1s1 + x2r2s2) mod n
= ((x^d mod p)q(q^-1 mod p) + (x^d mod q)p(p^-1 mod q)) mod n
According to Fermat's Little Theorem, if the modulus P is prime,
for any integer A not evenly divisible by P, A^(P-1) ~= 1 mod P.
Since A is not divisible by P it follows that if:
N ~= M mod (P - 1), then A^N mod P = A^M mod P. Therefore:
A^N mod P = A^(M mod (P - 1)) mod P. (The latter takes less effort
to calculate). In order to calculate x^d mod p more quickly the
exponent d mod (p - 1) is stored in the RSA private key (the same
is done for x^d mod q). These values are referred to as dP and dQ
respectively. Therefore we now have:
y = ((x^dP mod p)q(q^-1 mod p) + (x^dQ mod q)p(p^-1 mod q)) mod n
Since we'll be reducing x^dP by modulo p (same for q) we can also
reduce x by p (and q respectively) before hand. Therefore, let
xp = ((x mod p)^dP mod p), and
xq = ((x mod q)^dQ mod q), yielding:
y = (xp*q*(q^-1 mod p) + xq*p*(p^-1 mod q)) mod n
This can be further reduced to a simple algorithm that only
requires 1 inverse (the q inverse is used) to be used and stored.
The algorithm is called Garner's algorithm. If qInv is the
inverse of q, we simply calculate:
y = (qInv*(xp - xq) mod p) * q + xq
However, there are two further complications. First, we need to
ensure that xp > xq to prevent signed BigIntegers from being used
so we add p until this is true (since we will be mod'ing with
p anyway). Then, there is a known timing attack on algorithms
using the CRT. To mitigate this risk, "cryptographic blinding"
should be used (*Not yet implemented*). This requires simply
generating a random number r between 0 and n-1 and its inverse
and multiplying x by r^e before calculating y and then multiplying
y by r^-1 afterwards.
*/
// TODO: do cryptographic blinding
// calculate xp and xq
var xp = x.mod(key.p).modPow(key.dP, key.p);
var xq = x.mod(key.q).modPow(key.dQ, key.q);
// xp must be larger than xq to avoid signed bit usage
while(xp.compareTo(xq) < 0) {
xp = xp.add(key.p);
}
// do last step
y = xp.subtract(xq)
.multiply(key.qInv).mod(key.p)
.multiply(key.q).add(xq);
}
return y;
};
/**
* Performs RSA encryption.
*
* The parameter bt controls whether to put padding bytes before the
* message passed in. Set bt to either true or false to disable padding
* completely (in order to handle e.g. EMSA-PSS encoding seperately before),
* signaling whether the encryption operation is a public key operation
* (i.e. encrypting data) or not, i.e. private key operation (data signing).
*
* For PKCS#1 v1.5 padding pass in the block type to use, i.e. either 0x01
* (for signing) or 0x02 (for encryption). The key operation mode (private
* or public) is derived from this flag in that case).
*
* @param m the message to encrypt as a byte string.
* @param key the RSA key to use.
* @param bt for PKCS#1 v1.5 padding, the block type to use
* (0x01 for private key, 0x02 for public),
* to disable padding: true = public key, false = private key
* @return the encrypted bytes as a string.
*/
pki.rsa.encrypt = function(m, key, bt) {
var pub = bt;
var eb = forge.util.createBuffer();
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
if(bt !== false && bt !== true) {
/* use PKCS#1 v1.5 padding */
if(m.length > (k - 11)) {
throw {
message: 'Message is too long to encrypt.',
length: m.length,
max: (k - 11)
};
}
/* A block type BT, a padding string PS, and the data D shall be
formatted into an octet string EB, the encryption block:
EB = 00 || BT || PS || 00 || D
The block type BT shall be a single octet indicating the structure of
the encryption block. For this version of the document it shall have
value 00, 01, or 02. For a private-key operation, the block type
shall be 00 or 01. For a public-key operation, it shall be 02.
The padding string PS shall consist of k-3-||D|| octets. For block
type 00, the octets shall have value 00; for block type 01, they
shall have value FF; and for block type 02, they shall be
pseudorandomly generated and nonzero. This makes the length of the
encryption block EB equal to k. */
// build the encryption block
eb.putByte(0x00);
eb.putByte(bt);
// create the padding, get key type
var padNum = k - 3 - m.length;
var padByte;
if(bt === 0x00 || bt === 0x01) {
pub = false;
padByte = (bt === 0x00) ? 0x00 : 0xFF;
for(var i = 0; i < padNum; ++i) {
eb.putByte(padByte);
}
}
else {
pub = true;
for(var i = 0; i < padNum; ++i) {
padByte = Math.floor(Math.random() * 255) + 1;
eb.putByte(padByte);
}
}
// zero followed by message
eb.putByte(0x00);
}
eb.putBytes(m);
// load encryption block as big integer 'x'
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var x = new BigInteger(eb.toHex(), 16);
// do RSA encryption
var y = _modPow(x, key, pub);
// convert y into the encrypted data byte string, if y is shorter in
// bytes than k, then prepend zero bytes to fill up ed
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var yhex = y.toString(16);
var ed = forge.util.createBuffer();
var zeros = k - Math.ceil(yhex.length / 2);
while(zeros > 0) {
ed.putByte(0x00);
--zeros;
}
ed.putBytes(forge.util.hexToBytes(yhex));
return ed.getBytes();
};
/**
* Performs RSA decryption.
*
* The parameter ml controls whether to apply PKCS#1 v1.5 padding
* or not. Set ml = false to disable padding removal completely
* (in order to handle e.g. EMSA-PSS later on) and simply pass back
* the RSA encryption block.
*
* @param ed the encrypted data to decrypt in as a byte string.
* @param key the RSA key to use.
* @param pub true for a public key operation, false for private.
* @param ml the message length, if known. false to disable padding.
*
* @return the decrypted message as a byte string.
*/
pki.rsa.decrypt = function(ed, key, pub, ml) {
// get the length of the modulus in bytes
var k = Math.ceil(key.n.bitLength() / 8);
// error if the length of the encrypted data ED is not k
if(ed.length != k) {
throw {
message: 'Encrypted message length is invalid.',
length: ed.length,
expected: k
};
}
// convert encrypted data into a big integer
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var y = new BigInteger(forge.util.createBuffer(ed).toHex(), 16);
// do RSA decryption
var x = _modPow(y, key, pub);
// create the encryption block, if x is shorter in bytes than k, then
// prepend zero bytes to fill up eb
// FIXME: hex conversion inefficient, get BigInteger w/byte strings
var xhex = x.toString(16);
var eb = forge.util.createBuffer();
var zeros = k - Math.ceil(xhex.length / 2);
while(zeros > 0) {
eb.putByte(0x00);
--zeros;
}
eb.putBytes(forge.util.hexToBytes(xhex));
if(ml !== false) {
/* It is an error if any of the following conditions occurs:
1. The encryption block EB cannot be parsed unambiguously.
2. The padding string PS consists of fewer than eight octets
or is inconsisent with the block type BT.
3. The decryption process is a public-key operation and the block
type BT is not 00 or 01, or the decryption process is a
private-key operation and the block type is not 02.
*/
// parse the encryption block
var first = eb.getByte();
var bt = eb.getByte();
if(first !== 0x00 ||
(pub && bt !== 0x00 && bt !== 0x01) ||
(!pub && bt != 0x02) ||
(pub && bt === 0x00 && typeof(ml) === 'undefined')) {
throw {
message: 'Encryption block is invalid.'
};
}
var padNum = 0;
if(bt === 0x00) {
// check all padding bytes for 0x00
padNum = k - 3 - ml;
for(var i = 0; i < padNum; ++i) {
if(eb.getByte() !== 0x00) {
throw {
message: 'Encryption block is invalid.'
};
}
}
}
else if(bt === 0x01) {
// find the first byte that isn't 0xFF, should be after all padding
padNum = 0;
while(eb.length() > 1) {
if(eb.getByte() !== 0xFF) {
--eb.read;
break;
}
++padNum;
}
}
else if(bt === 0x02) {
// look for 0x00 byte
padNum = 0;
while(eb.length() > 1) {
if(eb.getByte() === 0x00) {
--eb.read;
break;
}
++padNum;
}
}
// zero must be 0x00 and padNum must be (k - 3 - message length)
var zero = eb.getByte();
if(zero !== 0x00 || padNum !== (k - 3 - eb.length())) {
throw {
message: 'Encryption block is invalid.'
};
}
}
// return message
return eb.getBytes();
};
/**
* Creates an RSA key-pair generation state object. It is used to allow
* key-generation to be performed in steps. It also allows for a UI to
* display progress updates.
*
* @param bits the size for the private key in bits, defaults to 1024.
* @param e the public exponent to use, defaults to 65537 (0x10001).
*
* @return the state object to use to generate the key-pair.
*/
pki.rsa.createKeyPairGenerationState = function(bits, e) {
// set default bits
if(typeof(bits) === 'string') {
bits = parseInt(bits, 10);
}
bits = bits || 1024;
// create prng with api that matches BigInteger secure random
var rng = {
// x is an array to fill with bytes
nextBytes: function(x) {
var b = forge.random.getBytes(x.length);
for(var i = 0; i < x.length; ++i) {
x[i] = b.charCodeAt(i);
}
}
};
var rval = {
state: 0,
bits: bits,
rng: rng,
eInt: e || 65537,
e: new BigInteger(null),
p: null,
q: null,
qBits: bits >> 1,
pBits: bits - (bits >> 1),
pqState: 0,
num: null,
keys: null
};
rval.e.fromInt(rval.eInt);
return rval;
};
/**
* Attempts to runs the key-generation algorithm for at most n seconds
* (approximately) using the given state. When key-generation has completed,
* the keys will be stored in state.keys.
*
* To use this function to update a UI while generating a key or to prevent
* causing browser lockups/warnings, set "n" to a value other than 0. A
* simple pattern for generating a key and showing a progress indicator is:
*
* var state = pki.rsa.createKeyPairGenerationState(2048);
* var step = function() {
* // step key-generation, run algorithm for 100 ms, repeat
* if(!forge.pki.rsa.stepKeyPairGenerationState(state, 100)) {
* setTimeout(step, 1);
* }
* // key-generation complete
* else {
* // TODO: turn off progress indicator here
* // TODO: use the generated key-pair in "state.keys"
* }
* };
* // TODO: turn on progress indicator here
* setTimeout(step, 0);
*
* @param state the state to use.
* @param n the maximum number of milliseconds to run the algorithm for, 0
* to run the algorithm to completion.
*
* @return true if the key-generation completed, false if not.
*/
pki.rsa.stepKeyPairGenerationState = function(state, n) {
// do key generation (based on Tom Wu's rsa.js, see jsbn.js license)
// with some minor optimizations and designed to run in steps
// local state vars
var THIRTY = new BigInteger(null);
THIRTY.fromInt(30);
var deltaIdx = 0;
var op_or = function(x,y) { return x|y; };
// keep stepping until time limit is reached or done
var t1 = +new Date();
var t2;
var total = 0;
while(state.keys === null && (n <= 0 || total < n)) {
// generate p or q
if(state.state === 0) {
/* Note: All primes are of the form:
30k+i, for i < 30 and gcd(30, i)=1, where there are 8 values for i
When we generate a random number, we always align it at 30k + 1. Each
time the number is determined not to be prime we add to get to the
next 'i', eg: if the number was at 30k + 1 we add 6. */
var bits = (state.p === null) ? state.pBits : state.qBits;
var bits1 = bits - 1;
// get a random number
if(state.pqState === 0) {
state.num = new BigInteger(bits, state.rng);
// force MSB set
if(!state.num.testBit(bits1)) {
state.num.bitwiseTo(
BigInteger.ONE.shiftLeft(bits1), op_or, state.num);
}
// align number on 30k+1 boundary
state.num.dAddOffset(31 - state.num.mod(THIRTY).byteValue(), 0);
deltaIdx = 0;
++state.pqState;
}
// try to make the number a prime
else if(state.pqState === 1) {
// overflow, try again
if(state.num.bitLength() > bits) {
state.pqState = 0;
}
// do primality test
else if(state.num.isProbablePrime(1)) {
++state.pqState;
}
else {
// get next potential prime
state.num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
}
}
// ensure number is coprime with e
else if(state.pqState === 2) {
state.pqState =
(state.num.subtract(BigInteger.ONE).gcd(state.e)
.compareTo(BigInteger.ONE) === 0) ? 3 : 0;
}
// ensure number is a probable prime
else if(state.pqState === 3) {
state.pqState = 0;
if(state.num.isProbablePrime(10)) {
if(state.p === null) {
state.p = state.num;
}
else {
state.q = state.num;
}
// advance state if both p and q are ready
if(state.p !== null && state.q !== null) {
++state.state;
}
}
state.num = null;
}
}
// ensure p is larger than q (swap them if not)
else if(state.state === 1) {
if(state.p.compareTo(state.q) < 0) {
state.num = state.p;
state.p = state.q;
state.q = state.num;
}
++state.state;
}
// compute phi: (p - 1)(q - 1) (Euler's totient function)
else if(state.state === 2) {
state.p1 = state.p.subtract(BigInteger.ONE);
state.q1 = state.q.subtract(BigInteger.ONE);
state.phi = state.p1.multiply(state.q1);
++state.state;
}
// ensure e and phi are coprime
else if(state.state === 3) {
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) === 0) {
// phi and e are coprime, advance
++state.state;
}
else {
// phi and e aren't coprime, so generate a new p and q
state.p = null;
state.q = null;
state.state = 0;
}
}
// create n, ensure n is has the right number of bits
else if(state.state === 4) {
state.n = state.p.multiply(state.q);
// ensure n is right number of bits
if(state.n.bitLength() === state.bits) {
// success, advance
++state.state;
}
else {
// failed, get new q
state.q = null;
state.state = 0;
}
}
// set keys
else if(state.state === 5) {
var d = state.e.modInverse(state.phi);
state.keys = {
privateKey: forge.pki.rsa.setPrivateKey(
state.n, state.e, d, state.p, state.q,
d.mod(state.p1), d.mod(state.q1),
state.q.modInverse(state.p)),
publicKey: forge.pki.rsa.setPublicKey(state.n, state.e)
};
}
// update timing
t2 = +new Date();
total += t2 - t1;
t1 = t2;
}
return state.keys !== null;
};
/**
* Generates an RSA public-private key pair in a single call.
*
* To generate a key-pair in steps (to allow for progress updates and to
* prevent blocking or warnings in slow browsers) then use the key-pair
* generation state functions.
*
* To generate a key-pair asynchronously (either through web-workers, if
* available, or by breaking up the work on the main thread), pass a
* callback function.
*
* @param [bits] the size for the private key in bits, defaults to 1024.
* @param [e] the public exponent to use, defaults to 65537.
* @param [options] options for key-pair generation, if given then 'bits'
* and 'e' must *not* be given:
* bits the size for the private key in bits, (default: 1024).
* e the public exponent to use, (default: 65537 (0x10001)).
* workerScript the worker script URL.
* workers the number of web workers (if supported) to use,
* (default: 2).
* workLoad the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* e the public exponent to use, defaults to 65537.
* @param [callback(err, keypair)] called once the operation completes.
*
* @return an object with privateKey and publicKey properties.
*/
pki.rsa.generateKeyPair = function(bits, e, options, callback) {
// (bits), (options), (callback)
if(arguments.length === 1) {
if(typeof bits === 'object') {
options = bits;
bits = undefined;
}
else if(typeof bits === 'function') {
callback = bits;
bits = undefined;
}
}
// (bits, options), (bits, callback), (options, callback)
else if(arguments.length === 2) {
if(typeof bits === 'number') {
if(typeof e === 'function') {
callback = e;
}
else {
options = e;
}
}
else {
options = bits;
callback = e;
bits = undefined;
}
e = undefined;
}
// (bits, e, options), (bits, e, callback), (bits, options, callback)
else if(arguments.length === 3) {
if(typeof e === 'number') {
if(typeof options === 'function') {
callback = options;
options = undefined;
}
}
else {
callback = options;
options = e;
e = undefined;
}
}
options = options || {};
if(bits === undefined) {
bits = options.bits || 1024;
}
if(e === undefined) {
e = options.e || 0x10001;
}
var state = pki.rsa.createKeyPairGenerationState(bits, e);
if(!callback) {
pki.rsa.stepKeyPairGenerationState(state, 0);
return state.keys;
}
_generateKeyPair(state, options, callback);
};
/**
* Sets an RSA public key from BigIntegers modulus and exponent.
*
* @param n the modulus.
* @param e the exponent.
*
* @return the public key.
*/
pki.rsa.setPublicKey = function(n, e) {
var key = {
n: n,
e: e
};
/**
* Encrypts the given data with this public key.
*
* @param data the byte string to encrypt.
*
* @return the encrypted byte string.
*/
key.encrypt = function(data) {
return pki.rsa.encrypt(data, key, 0x02);
};
/**
* Verifies the given signature against the given digest.
*
* PKCS#1 supports multiple (currently two) signature schemes:
* RSASSA-PKCS1-v1_5 and RSASSA-PSS.
*
* By default this implementation uses the "old scheme", i.e.
* RSASSA-PKCS1-v1_5, in which case once RSA-decrypted, the
* signature is an OCTET STRING that holds a DigestInfo.
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm DigestAlgorithmIdentifier,
* digest Digest
* }
* DigestAlgorithmIdentifier ::= AlgorithmIdentifier
* Digest ::= OCTET STRING
*
* To perform PSS signature verification, provide an instance
* of Forge PSS object as scheme parameter.
*
* @param digest the message digest hash to compare against the signature.
* @param signature the signature to verify.
* @param scheme signature scheme to use, undefined for PKCS#1 v1.5
* padding style.
* @return true if the signature was verified, false if not.
*/
key.verify = function(digest, signature, scheme) {
// do rsa decryption
var ml = scheme === undefined ? undefined : false;
var d = pki.rsa.decrypt(signature, key, true, ml);
if(scheme === undefined) {
// d is ASN.1 BER-encoded DigestInfo
var obj = asn1.fromDer(d);
// compare the given digest to the decrypted one
return digest === obj.value[1].value;
}
else {
return scheme.verify(digest, d, key.n.bitLength());
}
};
return key;
};
/**
* Sets an RSA private key from BigIntegers modulus, exponent, primes,
* prime exponents, and modular multiplicative inverse.
*
* @param n the modulus.
* @param e the public exponent.
* @param d the private exponent ((inverse of e) mod n).
* @param p the first prime.
* @param q the second prime.
* @param dP exponent1 (d mod (p-1)).
* @param dQ exponent2 (d mod (q-1)).
* @param qInv ((inverse of q) mod p)
*
* @return the private key.
*/
pki.rsa.setPrivateKey = function(n, e, d, p, q, dP, dQ, qInv) {
var key = {
n: n,
e: e,
d: d,
p: p,
q: q,
dP: dP,
dQ: dQ,
qInv: qInv
};
/**
* Decrypts the given data with this private key.
*
* @param data the byte string to decrypt.
*
* @return the decrypted byte string.
*/
key.decrypt = function(data) {
return pki.rsa.decrypt(data, key, false);
};
/**
* Signs the given digest, producing a signature.
*
* PKCS#1 supports multiple (currently two) signature schemes:
* RSASSA-PKCS1-v1_5 and RSASSA-PSS.
*
* By default this implementation uses the "old scheme", i.e.
* RSASSA-PKCS1-v1_5. In order to generate a PSS signature, provide
* an instance of Forge PSS object as scheme parameter.
*
* @param md the message digest object with the hash to sign.
* @param scheme signature scheme to use, undefined for PKCS#1 v1.5
* padding style.
* @return the signature as a byte string.
*/
key.sign = function(md, scheme) {
var bt = false; /* private key operation */
if(scheme === undefined) {
scheme = { encode: emsaPkcs1v15encode };
bt = 0x01;
}
var d = scheme.encode(md, key.n.bitLength());
return pki.rsa.encrypt(d, key, bt);
};
return key;
};
/**
* Runs the key-generation algorithm asynchronously, either in the background
* via Web Workers, or using the main thread and setImmediate.
*
* @param state the key-pair generation state.
* @param [options] options for key-pair generation:
* workerScript the worker script URL.
* workers the number of web workers (if supported) to use,
* (default: 2).
* workLoad the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* @param callback(err, keypair) called once the operation completes.
*/
function _generateKeyPair(state, options, callback) {
if(typeof options === 'function') {
callback = options;
options = {};
}
// web workers unavailable, use setImmediate
if(typeof(Worker) === 'undefined') {
function step() {
// 10 ms gives 5ms of leeway for other calculations before dropping
// below 60fps (1000/60 == 16.67), but in reality, the number will
// likely be higher due to an 'atomic' big int modPow
if(forge.pki.rsa.stepKeyPairGenerationState(state, 10)) {
return callback(null, state.keys);
}
forge.util.setImmediate(step);
}
return step();
}
// use web workers to generate keys
var numWorkers = options.workers || 2;
var workLoad = options.workLoad || 100;
var range = workLoad * 30/8;
var workerScript = options.workerScript || 'forge/prime.worker.js';
var THIRTY = new BigInteger(null);
THIRTY.fromInt(30);
var op_or = function(x,y) { return x|y; };
generate();
function generate() {
// find p and then q (done in series to simplify setting worker number)
getPrime(state.pBits, function(err, num) {
if(err) {
return callback(err);
}
state.p = num;
getPrime(state.qBits, finish);
});
}
// implement prime number generation using web workers
function getPrime(bits, callback) {
// TODO: consider optimizing by starting workers outside getPrime() ...
// note that in order to clean up they will have to be made internally
// asynchronous which may actually be slower
// start workers immediately
var workers = [];
for(var i = 0; i < numWorkers; ++i) {
// FIXME: fix path or use blob URLs
workers[i] = new Worker(workerScript);
}
var running = numWorkers;
// initialize random number
var num = generateRandom();
// listen for requests from workers and assign ranges to find prime
for(var i = 0; i < numWorkers; ++i) {
workers[i].addEventListener('message', workerMessage);
}
/* Note: The distribution of random numbers is unknown. Therefore, each
web worker is continuously allocated a range of numbers to check for a
random number until one is found.
Every 30 numbers will be checked just 8 times, because prime numbers
have the form:
30k+i, for i < 30 and gcd(30, i)=1 (there are 8 values of i for this)
Therefore, if we want a web worker to run N checks before asking for
a new range of numbers, each range must contain N*30/8 numbers.
For 100 checks (workLoad), this is a range of 375. */
function generateRandom() {
var bits1 = bits - 1;
var num = new BigInteger(bits, state.rng);
// force MSB set
if(!num.testBit(bits1)) {
num.bitwiseTo(BigInteger.ONE.shiftLeft(bits1), op_or, num);
}
// align number on 30k+1 boundary
num.dAddOffset(31 - num.mod(THIRTY).byteValue(), 0);
return num;
}
var found = false;
function workerMessage(e) {
// ignore message, prime already found
if(found) {
return;
}
--running;
var data = e.data;
if(data.found) {
// terminate all workers
for(var i = 0; i < workers.length; ++i) {
workers[i].terminate();
}
found = true;
return callback(null, new BigInteger(data.prime, 16));
}
// overflow, regenerate prime
if(num.bitLength() > bits) {
num = generateRandom();
}
// assign new range to check
var hex = num.toString(16);
// start prime search
e.target.postMessage({
e: state.eInt,
hex: hex,
workLoad: workLoad
});
num.dAddOffset(range, 0);
}
}
function finish(err, num) {
// set q
state.q = num;
// ensure p is larger than q (swap them if not)
if(state.p.compareTo(state.q) < 0) {
var tmp = state.p;
state.p = state.q;
state.q = tmp;
}
// compute phi: (p - 1)(q - 1) (Euler's totient function)
state.p1 = state.p.subtract(BigInteger.ONE);
state.q1 = state.q.subtract(BigInteger.ONE);
state.phi = state.p1.multiply(state.q1);
// ensure e and phi are coprime
if(state.phi.gcd(state.e).compareTo(BigInteger.ONE) !== 0) {
// phi and e aren't coprime, so generate a new p and q
state.p = state.q = null;
generate();
return;
}
// create n, ensure n is has the right number of bits
state.n = state.p.multiply(state.q);
if(state.n.bitLength() !== state.bits) {
// failed, get new q
state.q = null;
getPrime(state.qBits, finish);
return;
}
// set keys
var d = state.e.modInverse(state.phi);
state.keys = {
privateKey: forge.pki.rsa.setPrivateKey(
state.n, state.e, d, state.p, state.q,
d.mod(state.p1), d.mod(state.q1),
state.q.modInverse(state.p)),
publicKey: forge.pki.rsa.setPublicKey(state.n, state.e)
};
callback(null, state.keys);
}
}
} // end module implementation
/* ########## Begin module wrapper ########## */
var name = 'rsa';
var deps = ['./asn1', './oids', './random', './util', './jsbn'];
var nodeDefine = null;
if(typeof define !== 'function') {
// NodeJS -> AMD
if(typeof module === 'object' && module.exports) {
nodeDefine = function(ids, factory) {
factory(require, module);
};
}
// <script>
else {
if(typeof forge === 'undefined') {
forge = {};
}
initModule(forge);
}
}
// AMD
if(nodeDefine || typeof define === 'function') {
// define module AMD style
(nodeDefine || define)(['require', 'module'].concat(deps),
function(require, module) {
module.exports = function(forge) {
var mods = deps.map(function(dep) {
return require(dep);
}).concat(initModule);
// handle circular dependencies
forge = forge || {};
forge.defined = forge.defined || {};
if(forge.defined[name]) {
return forge[name];
}
forge.defined[name] = true;
for(var i = 0; i < mods.length; ++i) {
mods[i](forge);
}
return forge[name];
};
});
}
})();