/* KeePass Password Safe - The Open-Source Password Manager Copyright (C) 2003-2016 Dominik Reichl This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ using System; using System.Collections.Generic; using System.Diagnostics; using System.IO; using KeePassLib.Resources; using KeePassLib.Utility; namespace KeePassLib.Cryptography.Cipher { /// /// Implementation of the ChaCha20 cipher with a 96-bit nonce, /// as specified in RFC 7539. /// https://tools.ietf.org/html/rfc7539 /// public sealed class ChaCha20Cipher : CtrBlockCipher { private uint[] m_s = new uint[16]; // State private uint[] m_x = new uint[16]; // Working buffer private bool m_bLargeCounter; // See constructor documentation private static readonly uint[] g_sigma = new uint[4] { 0x61707865, 0x3320646E, 0x79622D32, 0x6B206574 }; private const string StrNameRfc = "ChaCha20 (RFC 7539)"; public override int BlockSize { get { return 64; } } public ChaCha20Cipher(byte[] pbKey32, byte[] pbIV12) : this(pbKey32, pbIV12, false) { } /// /// Constructor. /// /// Key (32 bytes). /// Nonce (12 bytes). /// If false, the RFC 7539 version /// of ChaCha20 is used. In this case, only 256 GB of data can be /// encrypted securely (because the block counter is a 32-bit variable); /// an attempt to encrypt more data throws an exception. /// If is true, the 32-bit /// counter overflows to another 32-bit variable (i.e. the counter /// effectively is a 64-bit variable), like in the original ChaCha20 /// specification by D. J. Bernstein (which has a 64-bit counter and a /// 64-bit nonce). To be compatible with this version, the 64-bit nonce /// must be stored in the last 8 bytes of /// and the first 4 bytes must be 0. /// If the IV was generated randomly, a 12-byte IV and a large counter /// can be used to securely encrypt more than 256 GB of data (but note /// this is incompatible with RFC 7539 and the original specification). public ChaCha20Cipher(byte[] pbKey32, byte[] pbIV12, bool bLargeCounter) : base() { if(pbKey32 == null) throw new ArgumentNullException("pbKey32"); if(pbKey32.Length != 32) throw new ArgumentOutOfRangeException("pbKey32"); if(pbIV12 == null) throw new ArgumentNullException("pbIV12"); if(pbIV12.Length != 12) throw new ArgumentOutOfRangeException("pbIV12"); m_bLargeCounter = bLargeCounter; // Key setup m_s[4] = MemUtil.BytesToUInt32(pbKey32, 0); m_s[5] = MemUtil.BytesToUInt32(pbKey32, 4); m_s[6] = MemUtil.BytesToUInt32(pbKey32, 8); m_s[7] = MemUtil.BytesToUInt32(pbKey32, 12); m_s[8] = MemUtil.BytesToUInt32(pbKey32, 16); m_s[9] = MemUtil.BytesToUInt32(pbKey32, 20); m_s[10] = MemUtil.BytesToUInt32(pbKey32, 24); m_s[11] = MemUtil.BytesToUInt32(pbKey32, 28); m_s[0] = g_sigma[0]; m_s[1] = g_sigma[1]; m_s[2] = g_sigma[2]; m_s[3] = g_sigma[3]; // IV setup m_s[12] = 0; // Counter m_s[13] = MemUtil.BytesToUInt32(pbIV12, 0); m_s[14] = MemUtil.BytesToUInt32(pbIV12, 4); m_s[15] = MemUtil.BytesToUInt32(pbIV12, 8); } protected override void Dispose(bool bDisposing) { MemUtil.ZeroArray(m_s); MemUtil.ZeroArray(m_x); base.Dispose(bDisposing); } protected override void NextBlock(byte[] pBlock) { if(pBlock == null) throw new ArgumentNullException("pBlock"); if(pBlock.Length != 64) throw new ArgumentOutOfRangeException("pBlock"); // x is a local alias for the working buffer; with this, // the compiler/runtime might remove some checks uint[] x = m_x; if(x == null) throw new InvalidOperationException(); if(x.Length < 16) throw new InvalidOperationException(); uint[] s = m_s; if(s == null) throw new InvalidOperationException(); if(s.Length < 16) throw new InvalidOperationException(); Array.Copy(s, x, 16); unchecked { // 10 * 8 quarter rounds = 20 rounds for(int i = 0; i < 10; ++i) { // Column quarter rounds x[ 0] += x[ 4]; x[12] = MemUtil.RotateLeft32(x[12] ^ x[ 0], 16); x[ 8] += x[12]; x[ 4] = MemUtil.RotateLeft32(x[ 4] ^ x[ 8], 12); x[ 0] += x[ 4]; x[12] = MemUtil.RotateLeft32(x[12] ^ x[ 0], 8); x[ 8] += x[12]; x[ 4] = MemUtil.RotateLeft32(x[ 4] ^ x[ 8], 7); x[ 1] += x[ 5]; x[13] = MemUtil.RotateLeft32(x[13] ^ x[ 1], 16); x[ 9] += x[13]; x[ 5] = MemUtil.RotateLeft32(x[ 5] ^ x[ 9], 12); x[ 1] += x[ 5]; x[13] = MemUtil.RotateLeft32(x[13] ^ x[ 1], 8); x[ 9] += x[13]; x[ 5] = MemUtil.RotateLeft32(x[ 5] ^ x[ 9], 7); x[ 2] += x[ 6]; x[14] = MemUtil.RotateLeft32(x[14] ^ x[ 2], 16); x[10] += x[14]; x[ 6] = MemUtil.RotateLeft32(x[ 6] ^ x[10], 12); x[ 2] += x[ 6]; x[14] = MemUtil.RotateLeft32(x[14] ^ x[ 2], 8); x[10] += x[14]; x[ 6] = MemUtil.RotateLeft32(x[ 6] ^ x[10], 7); x[ 3] += x[ 7]; x[15] = MemUtil.RotateLeft32(x[15] ^ x[ 3], 16); x[11] += x[15]; x[ 7] = MemUtil.RotateLeft32(x[ 7] ^ x[11], 12); x[ 3] += x[ 7]; x[15] = MemUtil.RotateLeft32(x[15] ^ x[ 3], 8); x[11] += x[15]; x[ 7] = MemUtil.RotateLeft32(x[ 7] ^ x[11], 7); // Diagonal quarter rounds x[ 0] += x[ 5]; x[15] = MemUtil.RotateLeft32(x[15] ^ x[ 0], 16); x[10] += x[15]; x[ 5] = MemUtil.RotateLeft32(x[ 5] ^ x[10], 12); x[ 0] += x[ 5]; x[15] = MemUtil.RotateLeft32(x[15] ^ x[ 0], 8); x[10] += x[15]; x[ 5] = MemUtil.RotateLeft32(x[ 5] ^ x[10], 7); x[ 1] += x[ 6]; x[12] = MemUtil.RotateLeft32(x[12] ^ x[ 1], 16); x[11] += x[12]; x[ 6] = MemUtil.RotateLeft32(x[ 6] ^ x[11], 12); x[ 1] += x[ 6]; x[12] = MemUtil.RotateLeft32(x[12] ^ x[ 1], 8); x[11] += x[12]; x[ 6] = MemUtil.RotateLeft32(x[ 6] ^ x[11], 7); x[ 2] += x[ 7]; x[13] = MemUtil.RotateLeft32(x[13] ^ x[ 2], 16); x[ 8] += x[13]; x[ 7] = MemUtil.RotateLeft32(x[ 7] ^ x[ 8], 12); x[ 2] += x[ 7]; x[13] = MemUtil.RotateLeft32(x[13] ^ x[ 2], 8); x[ 8] += x[13]; x[ 7] = MemUtil.RotateLeft32(x[ 7] ^ x[ 8], 7); x[ 3] += x[ 4]; x[14] = MemUtil.RotateLeft32(x[14] ^ x[ 3], 16); x[ 9] += x[14]; x[ 4] = MemUtil.RotateLeft32(x[ 4] ^ x[ 9], 12); x[ 3] += x[ 4]; x[14] = MemUtil.RotateLeft32(x[14] ^ x[ 3], 8); x[ 9] += x[14]; x[ 4] = MemUtil.RotateLeft32(x[ 4] ^ x[ 9], 7); } for(int i = 0; i < 16; ++i) x[i] += s[i]; for(int i = 0; i < 16; ++i) { int i4 = i << 2; uint xi = x[i]; pBlock[i4] = (byte)xi; pBlock[i4 + 1] = (byte)(xi >> 8); pBlock[i4 + 2] = (byte)(xi >> 16); pBlock[i4 + 3] = (byte)(xi >> 24); } ++s[12]; if(s[12] == 0) { if(!m_bLargeCounter) throw new InvalidOperationException( KLRes.EncDataTooLarge.Replace(@"{PARAM}", StrNameRfc)); ++s[13]; // Increment high half of large counter } } } public long Seek(long lOffset, SeekOrigin so) { if(so != SeekOrigin.Begin) throw new NotSupportedException(); if((lOffset < 0) || ((lOffset & 63) != 0) || ((lOffset >> 6) > (long)uint.MaxValue)) throw new ArgumentOutOfRangeException("lOffset"); m_s[12] = (uint)(lOffset >> 6); InvalidateBlock(); return lOffset; } } }