mirror of
https://github.com/moparisthebest/keepass2android
synced 2024-11-29 04:22:22 -05:00
Support for native key transformation based on the method of Keepassdroid (performance improvement)
This commit is contained in:
parent
de0dd676ef
commit
5ca110fd66
@ -5,6 +5,8 @@ Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "KeePassLib2Android", "KeePa
|
||||
EndProject
|
||||
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "keepass2android", "keepass2android\keepass2android.csproj", "{A6CF8A86-37C1-4197-80FE-519DE2C842F5}"
|
||||
EndProject
|
||||
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "kp2akeytransform", "kp2akeytransform\kp2akeytransform.csproj", "{A57B3ACE-5634-469A-88C4-858BB409F356}"
|
||||
EndProject
|
||||
Global
|
||||
GlobalSection(SolutionConfigurationPlatforms) = preSolution
|
||||
Debug|Any CPU = Debug|Any CPU
|
||||
@ -36,6 +38,24 @@ Global
|
||||
{545B4A6B-8BBA-4FBE-92FC-4AC060122A54}.Release|x64.Build.0 = Release|Any CPU
|
||||
{545B4A6B-8BBA-4FBE-92FC-4AC060122A54}.ReleaseNoNet|Any CPU.ActiveCfg = ReleaseNoNet|Any CPU
|
||||
{545B4A6B-8BBA-4FBE-92FC-4AC060122A54}.ReleaseNoNet|Any CPU.Build.0 = ReleaseNoNet|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Any CPU.Build.0 = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Mixed Platforms.ActiveCfg = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Mixed Platforms.Build.0 = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Win32.ActiveCfg = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|Win32.Build.0 = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|x64.ActiveCfg = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Debug|x64.Build.0 = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Any CPU.ActiveCfg = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Any CPU.Build.0 = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Mixed Platforms.ActiveCfg = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Mixed Platforms.Build.0 = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Win32.ActiveCfg = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|Win32.Build.0 = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|x64.ActiveCfg = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.Release|x64.Build.0 = Release|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.ReleaseNoNet|Any CPU.ActiveCfg = Debug|Any CPU
|
||||
{A57B3ACE-5634-469A-88C4-858BB409F356}.ReleaseNoNet|Any CPU.Build.0 = Debug|Any CPU
|
||||
{A6CF8A86-37C1-4197-80FE-519DE2C842F5}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
|
||||
{A6CF8A86-37C1-4197-80FE-519DE2C842F5}.Debug|Any CPU.Build.0 = Debug|Any CPU
|
||||
{A6CF8A86-37C1-4197-80FE-519DE2C842F5}.Debug|Mixed Platforms.ActiveCfg = Debug|Any CPU
|
||||
|
@ -149,4 +149,10 @@
|
||||
<AndroidResource Include="Resources\values\Strings.xml" />
|
||||
</ItemGroup>
|
||||
<Import Project="$(MSBuildExtensionsPath)\Novell\Novell.MonoDroid.CSharp.targets" />
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\kp2akeytransform\kp2akeytransform.csproj">
|
||||
<Project>{A57B3ACE-5634-469A-88C4-858BB409F356}</Project>
|
||||
<Name>kp2akeytransform</Name>
|
||||
</ProjectReference>
|
||||
</ItemGroup>
|
||||
</Project>
|
@ -246,22 +246,35 @@ namespace KeePassLib.Keys
|
||||
ulong uNumRounds)
|
||||
{
|
||||
Debug.Assert((pbOriginalKey32 != null) && (pbOriginalKey32.Length == 32));
|
||||
if(pbOriginalKey32 == null) throw new ArgumentNullException("pbOriginalKey32");
|
||||
if(pbOriginalKey32.Length != 32) throw new ArgumentException();
|
||||
if (pbOriginalKey32 == null)
|
||||
throw new ArgumentNullException("pbOriginalKey32");
|
||||
if (pbOriginalKey32.Length != 32)
|
||||
throw new ArgumentException();
|
||||
|
||||
Debug.Assert((pbKeySeed32 != null) && (pbKeySeed32.Length == 32));
|
||||
if(pbKeySeed32 == null) throw new ArgumentNullException("pbKeySeed32");
|
||||
if(pbKeySeed32.Length != 32) throw new ArgumentException();
|
||||
if (pbKeySeed32 == null)
|
||||
throw new ArgumentNullException("pbKeySeed32");
|
||||
if (pbKeySeed32.Length != 32)
|
||||
throw new ArgumentException();
|
||||
|
||||
byte[] pbNewKey = new byte[32];
|
||||
Array.Copy(pbOriginalKey32, pbNewKey, pbNewKey.Length);
|
||||
|
||||
// Try to use the native library first
|
||||
if(NativeLib.TransformKey256(pbNewKey, pbKeySeed32, uNumRounds))
|
||||
return (new SHA256Managed()).ComputeHash(pbNewKey);
|
||||
Stopwatch sw = new Stopwatch();
|
||||
sw.Start();
|
||||
if (NativeLib.TransformKey256(pbNewKey, pbKeySeed32, uNumRounds))
|
||||
{
|
||||
sw.Stop();
|
||||
Android.Util.Log.Debug("DEBUG", "Native transform:" +sw.ElapsedMilliseconds+"ms");
|
||||
return pbNewKey;
|
||||
}
|
||||
|
||||
sw.Restart();
|
||||
if(TransformKeyManaged(pbNewKey, pbKeySeed32, uNumRounds) == false)
|
||||
return null;
|
||||
sw.Stop();
|
||||
Android.Util.Log.Debug("DEBUG", "Managed transform:" +sw.ElapsedMilliseconds+"ms");
|
||||
|
||||
SHA256Managed sha256 = new SHA256Managed();
|
||||
return sha256.ComputeHash(pbNewKey);
|
||||
|
@ -162,19 +162,20 @@ namespace KeePassLib.Native
|
||||
{
|
||||
if(m_bAllowNative == false) return false;
|
||||
|
||||
KeyValuePair<IntPtr, IntPtr> kvp = PrepareArrays256(pBuf256, pKey256);
|
||||
bool bResult = false;
|
||||
|
||||
try
|
||||
{
|
||||
bResult = NativeMethods.TransformKey(kvp.Key, kvp.Value, uRounds);
|
||||
//Android.Util.Log.Debug("DEBUG", "4+1"+new Kp2atest.TestClass().Add1(4));
|
||||
Com.Keepassdroid.Crypto.Finalkey.NativeFinalKey key = new Com.Keepassdroid.Crypto.Finalkey.NativeFinalKey();
|
||||
|
||||
byte[] newKey = key.TransformMasterKey(pKey256, pBuf256, (int)uRounds);
|
||||
Array.Copy(newKey, pBuf256, newKey.Length);
|
||||
}
|
||||
catch(Exception e)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
catch(Exception) { bResult = false; }
|
||||
|
||||
if(bResult) GetBuffers256(kvp, pBuf256, pKey256);
|
||||
|
||||
NativeLib.FreeArrays(kvp);
|
||||
return bResult;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
|
8
src/java/kp2akeytransform/.classpath
Normal file
8
src/java/kp2akeytransform/.classpath
Normal file
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<classpath>
|
||||
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>
|
||||
<classpathentry exported="true" kind="con" path="com.android.ide.eclipse.adt.LIBRARIES"/>
|
||||
<classpathentry kind="src" path="src"/>
|
||||
<classpathentry kind="src" path="gen"/>
|
||||
<classpathentry kind="output" path="bin/classes"/>
|
||||
</classpath>
|
5
src/java/kp2akeytransform/.gitignore
vendored
Normal file
5
src/java/kp2akeytransform/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
build.properties
|
||||
local.properties
|
||||
bin
|
||||
gen
|
||||
obj
|
33
src/java/kp2akeytransform/.project
Normal file
33
src/java/kp2akeytransform/.project
Normal file
@ -0,0 +1,33 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<projectDescription>
|
||||
<name>kp2akeytransform</name>
|
||||
<comment></comment>
|
||||
<projects>
|
||||
</projects>
|
||||
<buildSpec>
|
||||
<buildCommand>
|
||||
<name>com.android.ide.eclipse.adt.ResourceManagerBuilder</name>
|
||||
<arguments>
|
||||
</arguments>
|
||||
</buildCommand>
|
||||
<buildCommand>
|
||||
<name>com.android.ide.eclipse.adt.PreCompilerBuilder</name>
|
||||
<arguments>
|
||||
</arguments>
|
||||
</buildCommand>
|
||||
<buildCommand>
|
||||
<name>org.eclipse.jdt.core.javabuilder</name>
|
||||
<arguments>
|
||||
</arguments>
|
||||
</buildCommand>
|
||||
<buildCommand>
|
||||
<name>com.android.ide.eclipse.adt.ApkBuilder</name>
|
||||
<arguments>
|
||||
</arguments>
|
||||
</buildCommand>
|
||||
</buildSpec>
|
||||
<natures>
|
||||
<nature>com.android.ide.eclipse.adt.AndroidNature</nature>
|
||||
<nature>org.eclipse.jdt.core.javanature</nature>
|
||||
</natures>
|
||||
</projectDescription>
|
14
src/java/kp2akeytransform/AndroidManifest.xml
Normal file
14
src/java/kp2akeytransform/AndroidManifest.xml
Normal file
@ -0,0 +1,14 @@
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
package="keepass2android.kp2akeytransform"
|
||||
android:versionCode="1"
|
||||
android:versionName="1.0" >
|
||||
|
||||
<uses-sdk
|
||||
android:minSdkVersion="8"
|
||||
android:targetSdkVersion="17" />
|
||||
|
||||
<application
|
||||
android:allowBackup="true">
|
||||
</application>
|
||||
|
||||
</manifest>
|
339
src/java/kp2akeytransform/COPYING.gpl-2.0
Normal file
339
src/java/kp2akeytransform/COPYING.gpl-2.0
Normal file
@ -0,0 +1,339 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program is interactive, make it output a short notice like this
|
||||
when it starts in an interactive mode:
|
||||
|
||||
Gnomovision version 69, Copyright (C) year name of author
|
||||
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, the commands you use may
|
||||
be called something other than `show w' and `show c'; they could even be
|
||||
mouse-clicks or menu items--whatever suits your program.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
|
||||
`Gnomovision' (which makes passes at compilers) written by James Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1989
|
||||
Ty Coon, President of Vice
|
||||
|
||||
This General Public License does not permit incorporating your program into
|
||||
proprietary programs. If your program is a subroutine library, you may
|
||||
consider it more useful to permit linking proprietary applications with the
|
||||
library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License.
|
3
src/java/kp2akeytransform/jni/.gitignore
vendored
Normal file
3
src/java/kp2akeytransform/jni/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
openssl-0.9.8l
|
||||
aes-src-29-04-09.zip
|
||||
sha2-07-01-07.zip
|
3
src/java/kp2akeytransform/jni/Android.mk
Normal file
3
src/java/kp2akeytransform/jni/Android.mk
Normal file
@ -0,0 +1,3 @@
|
||||
# Recursively sources all Android.mk files in subdirs:
|
||||
include $(call all-subdir-makefiles)
|
||||
|
3
src/java/kp2akeytransform/jni/Application.mk
Normal file
3
src/java/kp2akeytransform/jni/Application.mk
Normal file
@ -0,0 +1,3 @@
|
||||
APP_MODULES := aes sha final-key
|
||||
APP_OPTIM := release
|
||||
APP_ABI := armeabi armeabi-v7a x86 mips
|
13
src/java/kp2akeytransform/jni/aes/Android.mk
Normal file
13
src/java/kp2akeytransform/jni/aes/Android.mk
Normal file
@ -0,0 +1,13 @@
|
||||
LOCAL_PATH := $(call my-dir)
|
||||
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
LOCAL_MODULE := aes
|
||||
|
||||
LOCAL_SRC_FILES := \
|
||||
aescrypt.c \
|
||||
aeskey.c \
|
||||
aes_modes.c \
|
||||
aestab.c
|
||||
|
||||
include $(BUILD_STATIC_LIBRARY)
|
205
src/java/kp2akeytransform/jni/aes/aes.h
Normal file
205
src/java/kp2akeytransform/jni/aes/aes.h
Normal file
@ -0,0 +1,205 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the definitions required to use AES in C. See aesopt.h
|
||||
for optimisation details.
|
||||
*/
|
||||
|
||||
#ifndef _AES_H
|
||||
#define _AES_H
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* This include is used to find 8 & 32 bit unsigned integer types */
|
||||
#include "brg_types.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define AES_128 /* if a fast 128 bit key scheduler is needed */
|
||||
#define AES_192 /* if a fast 192 bit key scheduler is needed */
|
||||
#define AES_256 /* if a fast 256 bit key scheduler is needed */
|
||||
#define AES_VAR /* if variable key size scheduler is needed */
|
||||
#define AES_MODES /* if support is needed for modes */
|
||||
|
||||
/* The following must also be set in assembler files if being used */
|
||||
|
||||
#define AES_ENCRYPT /* if support for encryption is needed */
|
||||
#define AES_DECRYPT /* if support for decryption is needed */
|
||||
#define AES_REV_DKS /* define to reverse decryption key schedule */
|
||||
|
||||
#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */
|
||||
#define N_COLS 4 /* the number of columns in the state */
|
||||
|
||||
/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
|
||||
/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
|
||||
/* or 44, 52 or 60 32-bit words. */
|
||||
|
||||
#if defined( AES_VAR ) || defined( AES_256 )
|
||||
#define KS_LENGTH 60
|
||||
#elif defined( AES_192 )
|
||||
#define KS_LENGTH 52
|
||||
#else
|
||||
#define KS_LENGTH 44
|
||||
#endif
|
||||
|
||||
#define AES_RETURN INT_RETURN
|
||||
|
||||
/* the character array 'inf' in the following structures is used */
|
||||
/* to hold AES context information. This AES code uses cx->inf.b[0] */
|
||||
/* to hold the number of rounds multiplied by 16. The other three */
|
||||
/* elements can be used by code that implements additional modes */
|
||||
|
||||
typedef union
|
||||
{ uint_32t l;
|
||||
uint_8t b[4];
|
||||
} aes_inf;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_encrypt_ctx;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_decrypt_ctx;
|
||||
|
||||
/* This routine must be called before first use if non-static */
|
||||
/* tables are being used */
|
||||
|
||||
AES_RETURN aes_init(void);
|
||||
|
||||
/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
|
||||
/* those in the range 128 <= key_len <= 256 are given in bits */
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
#if defined( AES_128 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_192 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_256 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
#if defined( AES_128 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_192 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_256 ) || defined( AES_VAR)
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_MODES )
|
||||
|
||||
/* Multiple calls to the following subroutines for multiple block */
|
||||
/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */
|
||||
/* long messages incremantally provided that the context AND the iv */
|
||||
/* are preserved between all such calls. For the ECB and CBC modes */
|
||||
/* each individual call within a series of incremental calls must */
|
||||
/* process only full blocks (i.e. len must be a multiple of 16) but */
|
||||
/* the CFB, OFB and CTR mode calls can handle multiple incremental */
|
||||
/* calls of any length. Each mode is reset when a new AES key is */
|
||||
/* set but ECB and CBC operations can be reset without setting a */
|
||||
/* new key by setting a new IV value. To reset CFB, OFB and CTR */
|
||||
/* without setting the key, aes_mode_reset() must be called and the */
|
||||
/* IV must be set. NOTE: All these calls update the IV on exit so */
|
||||
/* this has to be reset if a new operation with the same IV as the */
|
||||
/* previous one is required (or decryption follows encryption with */
|
||||
/* the same IV array). */
|
||||
|
||||
AES_RETURN aes_test_alignment_detection(unsigned int n);
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#define aes_ofb_encrypt aes_ofb_crypt
|
||||
#define aes_ofb_decrypt aes_ofb_crypt
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
typedef void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
#define aes_ctr_encrypt aes_ctr_crypt
|
||||
#define aes_ctr_decrypt aes_ctr_crypt
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
556
src/java/kp2akeytransform/jni/aes/aes.txt
Normal file
556
src/java/kp2akeytransform/jni/aes/aes.txt
Normal file
@ -0,0 +1,556 @@
|
||||
|
||||
An AES (Rijndael) Implementation in C/C++ (as specified in FIPS-197)
|
||||
====================================================================
|
||||
|
||||
Changes in this Version (16/04/2007)
|
||||
====================================
|
||||
|
||||
These changes remove errors in the VC++ build files and add some
|
||||
improvements in file naming consitency and portability. There are
|
||||
no changes to overcome reported bugs in the code.
|
||||
|
||||
1. gen_tabs() has been renamed to aes_init() to better decribe its
|
||||
function to those not familiar with AES internals.
|
||||
|
||||
2. via_ace.h has been renamed to aes_via_ace.h.
|
||||
|
||||
3. Minor changes have been made to aestab.h and aestab.c to enable
|
||||
all the code to be compiled in either C or C++.
|
||||
|
||||
4. The code for detecting memory alignment in aesmdoes.c has been
|
||||
simplified and a new routine has been added:
|
||||
|
||||
aes_test_alignment_detection()
|
||||
|
||||
to check that the aligment test is likely to be correct.
|
||||
|
||||
5. The addition of support for Structured Exception Handling (SEH)
|
||||
to YASM (well done Peter and Michael!) has allowed the AMD64
|
||||
x64 assembler code to be changed to comply with SEH requriements.
|
||||
|
||||
6. Corrections to build files (for win32 debug build).
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
This code implements AES for both 32 and 64 bit systems with optional
|
||||
assembler support for x86 and AMD64/EM64T (but optimised for AMD64).
|
||||
|
||||
The basic AES source code files are as follows:
|
||||
|
||||
aes.h the header file needed to use AES in C
|
||||
aescpp.h the header file required with to use AES in C++
|
||||
aesopt.h the header file for setting options (and some common code)
|
||||
aestab.h the header file for the AES table declaration
|
||||
aescrypt.c the main C source code file for encryption and decryption
|
||||
aeskey.c the main C source code file for the key schedule
|
||||
aestab.c the main file for the AES tables
|
||||
brg_types.h a header defining some standard types and DLL defines
|
||||
brg_endian.h a header containing code to detect or define endianness
|
||||
aes_x86_v1.asm x86 assembler (YASM) alternative to aescrypt.c using
|
||||
large tables
|
||||
aes_x86_v2.asm x86 assembler (YASM) alternative to aescrypt.c using
|
||||
compressed tables
|
||||
aes_amd64.asm AMD64 assembler (YASM) alternative to aescrypt.c using
|
||||
compressed tables
|
||||
|
||||
In addition AES modes are implemented in the files:
|
||||
|
||||
aes_modes.c AES modes with optional support for VIA ACE detection and use
|
||||
aes_via_ace.h the header file for VIA ACE support
|
||||
|
||||
Other associated files for testing and support are:
|
||||
|
||||
aesaux.h header for auxilliary routines for testsing
|
||||
aesaux.c auxilliary routines for testsingt
|
||||
aestst.h header file for setting the testing environment
|
||||
rdtsc.h a header file that provides access to the Time Stamp Counter
|
||||
aestst.c a simple test program for quick tests of the AES code
|
||||
aesgav.c a program to generate and verify the test vector files
|
||||
aesrav.c a program to verify output against the test vector files
|
||||
aestmr.c a program to time the code on x86 systems
|
||||
modetest.c a program to test the AES modes support
|
||||
vbxam.doc a demonstration of AES DLL use from Visual Basic in Microsoft Word
|
||||
vb.txt Visual Basic code from the above example (win32 only)
|
||||
aesxam.c an example of AES use
|
||||
tablegen.c a program to generate a simplified 'aestab.c' file for
|
||||
use with compilers that find aestab.c too complex
|
||||
yasm.rules the YASM build rules file for Microsoft Visual Studio 2005
|
||||
via_ace.txt describes support for the VIA ACE cryptography engine
|
||||
aes.txt this file
|
||||
|
||||
Building The AES Libraries
|
||||
--------------------------
|
||||
|
||||
A. Versions
|
||||
-----------
|
||||
|
||||
The code can be used to build static and dynamic libraries, each in five
|
||||
versions:
|
||||
|
||||
C uses C source code only
|
||||
ASM_X86_V1C large table x86 assembler code for encrypt/decrypt
|
||||
ASM_X86_V2 compressed table x86 assembler for encrypt/decrypt and keying
|
||||
ASM_X86_V2C compressed table x86 assembler code for encrypt/decrypt
|
||||
ASM_AMD64 compressed table x86 assembler code for encrypt/decrypt
|
||||
|
||||
The C version can be compiled for Win32 or x64, the x86 assembler versions
|
||||
are for Win32 only and the AMD64 version for x64 only.
|
||||
|
||||
B. Types
|
||||
--------
|
||||
|
||||
The code makes use of types defined as uint_<nn>t where <nn> is the length
|
||||
of the type, for example, the unsigned 32-bit type is 'uint_32t'. These are
|
||||
NOT the same as the fixed width integer types in C99, inttypes.h and stdint.h
|
||||
since several attempts to use these types have shown that support for them is
|
||||
still highly variable. But a regular expression search and replace in VC++
|
||||
with search on 'uint_{:z}t' and a replace with 'uint\1_t' will convert these
|
||||
types to C99 types (there should be similar search/replace facilities on other
|
||||
systems).
|
||||
|
||||
C. YASM
|
||||
-------
|
||||
|
||||
If you wish to use the x86 assembler files you will also need the YASM open
|
||||
source x86 assembler (r1331 or later) for Windows which can be obtained from:
|
||||
|
||||
http://www.tortall.net/projects/yasm/
|
||||
|
||||
This assembler should be placed in the bin directory used by VC++, which, for
|
||||
Visual Stduio 2005, is typically:
|
||||
|
||||
C:\Program Files (x86)\Microsoft Visual Studio 8\VC\bin
|
||||
|
||||
You will also need to move the yasm.rules file from this distribution into
|
||||
the directory where Visual Studio 2005 expects to find it, which is typically:
|
||||
|
||||
C:\Program Files (x86)\Microsoft Visual Studio 8\VC\VCProjectDefaults
|
||||
|
||||
Alternatively you can configure the path for rules files within Visual Studio.
|
||||
|
||||
D. Configuration
|
||||
----------------
|
||||
|
||||
The following configurations are available as projects for Visual Studio 2005
|
||||
but the following descriptions should allow them to be built in other x86
|
||||
environments:
|
||||
|
||||
lib_generic_c Win32 and x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aescrypt.c, aeskey.c, aestab.c, aes_modes.c
|
||||
defines
|
||||
dll_generic_c Win32 and x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aescrypt.c, aeskey.c, aestab.c, aes_modes.c
|
||||
defines DLL_EXPORT
|
||||
|
||||
lib_asm_x86_v1c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines ASM_X86_V1C (set for C and assembler files)
|
||||
dll_asm_x86_v1c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_X86_V1C (set for C and assembler files)
|
||||
|
||||
lib_asm_x86_v2c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v2.asm
|
||||
defines ASM_X86_V2C (set for C and assembler files)
|
||||
dll_asm_x86_v2c Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aeskey.c, aestab.c, aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_X86_V2C (set for C and assembler files)
|
||||
|
||||
lib_asm_x86_v2 Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines ASM_X86_V2 (set for C and assembler files)
|
||||
dll_asm_x86_v2 Win32
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_x86_v1.asm
|
||||
defines DLL_EXPORT, ASM_AMD64_C (set for C and assembler files)
|
||||
|
||||
lib_asm_amd64_c x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_amd64.asm
|
||||
defines ASM_X86_V2 (set for C and assembler files)
|
||||
dll_asm_amd64_c x64
|
||||
headers: aes.h, aesopt.h, aestab.h, brg_endian.h, tdefs,h
|
||||
C source: aes_modes.c
|
||||
x86 assembler: aes_amd64.asm
|
||||
defines DLL_EXPORT, ASM_AMD64_C (set for C and assembler files)
|
||||
|
||||
Notes:
|
||||
|
||||
ASM_X86_V1C is defined if using the version 1 assembler code (aescrypt1.asm).
|
||||
The defines in the assember file must match those in aes.h and
|
||||
aesopt.h). Also remember to include/exclude the right assembler
|
||||
and C files in the build to avoid undefined or multiply defined
|
||||
symbols - include aescrypt1.asm and exclude aescrypt.c and
|
||||
aescrypt2.asm.
|
||||
|
||||
ASM_X86_V2 is defined if using the version 2 assembler code (aescrypt2.asm).
|
||||
This version provides a full, self contained assembler version
|
||||
and does not use any C source code files except for the mutiple
|
||||
block encryption modes that are provided by aes_modes.c. The define
|
||||
ASM_X86_V2 must be set on the YASM command line (or in aescrypt2.asm)
|
||||
to use this version and all C files except aec_modes.c and. for the
|
||||
DLL build, aestab.c must be excluded from the build.
|
||||
|
||||
ASM_X86_V2C is defined when using the version 2 assembler code (aescrypt2.asm)
|
||||
with faster key scheduling provided by the in C code (the options in
|
||||
the assember file must match those in aes.h and aesopt.h). In this
|
||||
case aeskey.c and aestab.c are needed with aescrypt2.asm and the
|
||||
define ASM_X86_V2C must be set for both the C files and for
|
||||
asecrypt2.asm command lines (or in aesopt.h and aescrypt2.asm).
|
||||
Include aescrypt2.asm aeskey.c and aestab.c, exclude aescrypt.c for
|
||||
this option.
|
||||
|
||||
ASM_AMD64_C is defined when using the AMD64 assembly code because the C key
|
||||
scheduling is sued in this case.
|
||||
|
||||
DLL_EXPORT must be defined to generate the DLL version of the code and
|
||||
to run tests on it
|
||||
|
||||
DLL_IMPORT must be defined to use the DLL version of the code in an
|
||||
application program
|
||||
|
||||
Directories the paths for the various directories for test vector input and
|
||||
output have to be set in aestst.h
|
||||
|
||||
VIA ACE see the via_ace.txt for this item
|
||||
|
||||
Static The static libraries are named:
|
||||
Libraries
|
||||
aes_lib_generic_c.lib
|
||||
aes_lib_asm_x86_v1c.lib
|
||||
aes_lib_asm_x86_v2.lib
|
||||
aes_lib_asm_x86_v2c.lib
|
||||
aes_lib_asm_amd64_c.lib
|
||||
|
||||
and placed in one of the the directories:
|
||||
|
||||
lib\win32\release\
|
||||
lib\win32\debug\
|
||||
lib\x64\release\
|
||||
lib\x64\debug\
|
||||
|
||||
in the aes root directory depending on the platform(win32 or
|
||||
x64) and the build (release or debug). After any of these is
|
||||
built it is then copied into aes.lib, which is the library
|
||||
that is subsequently used for testing. Hence testing is for
|
||||
the last static library built.
|
||||
|
||||
Dynamic The static libraries are named:
|
||||
Libraries
|
||||
aes_lib_generic_c.dll
|
||||
aes_lib_asm_x86_v1c.dll
|
||||
aes_lib_asm_x86_v2.dll
|
||||
aes_lib_asm_x86_v2c.dll
|
||||
aes_lib_asm_amd64_c.dll
|
||||
|
||||
and placed in one of the the directories:
|
||||
|
||||
dll\win32\release\
|
||||
dll\win32\debug\
|
||||
dll\x64\release\
|
||||
dll\x64\debug\
|
||||
|
||||
in the aes root directory depending on the platform(win32 or
|
||||
x64) and the build (release or debug). Each DLL library:
|
||||
|
||||
aes_<ext>.dll
|
||||
|
||||
has three associated files:
|
||||
|
||||
aes_dll_<ext>.lib the library file for implicit linking
|
||||
aes_dll_<ext>.exp the exports file
|
||||
aes_dll_<ext>.pdb the symbol file
|
||||
|
||||
After any DLL is built it and its three related files are then
|
||||
copied into aes.lib, aes.lib, aes,exp and aes.pdb, which are
|
||||
the libraries used for testing. Hence testing is for the last
|
||||
static library or DLL built.
|
||||
|
||||
E. Testing
|
||||
----------
|
||||
|
||||
These tests require that the test vector files are placed in the 'testvals'
|
||||
subdirectory. If the AES Algorithm Validation Suite tests will be use3d then
|
||||
the *.fax files need to be put in the 'testvals\fax' subdirectory. This is
|
||||
covered in more detail below.
|
||||
|
||||
The projects test_dll and time_dll are used to test and time the last DLL
|
||||
built. These use the files:
|
||||
|
||||
test_dll: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h and aestst.h
|
||||
C source: aesaux.c, aesrav.c
|
||||
defines: DLL_IMPORT
|
||||
|
||||
time_dll: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h aestst.h and rdtsc.h
|
||||
C source: aesaux.c, aestmr.c
|
||||
defines: DLL_IMPORT
|
||||
|
||||
and link to the DLL using explicit linking. However, if the lib file associated
|
||||
with the DLL is linked into this project and the symbol DYNAMIC_LINK in aestst.h
|
||||
is left undefined, then implicit linking will be used
|
||||
|
||||
The projects test_lib and time_lib are used to test and time the last static LIB
|
||||
built. They use the files:
|
||||
|
||||
test_lib: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h and aestst.h
|
||||
C source: aesaux.c, aesrav.c
|
||||
defines:
|
||||
|
||||
time_lib: Win32 (x64 for the C and AMD64 versions)
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux.h, aestst.h and rdtsc.h
|
||||
C source: aesaux.c, aestmr.c
|
||||
defines:
|
||||
|
||||
and link to the last static library built.
|
||||
|
||||
The above test take command line arguments that determine which test are run
|
||||
as follows:
|
||||
|
||||
test_lib /t:[knec] /k:[468]
|
||||
test_dll /t:[knec] /k:[468]
|
||||
|
||||
where the symbols in square brackets can be used in any combination (without
|
||||
the brackets) and have the following meanings:
|
||||
|
||||
/t:[knec] selects which tests are used
|
||||
/k:[468] selects the key lengths used
|
||||
/c compares output with reference (see later)
|
||||
|
||||
k: generate ECB Known Answer Test files
|
||||
n: generate ECB Known Answer Test files (new)
|
||||
e: generate ECB Monte Carlo Test files
|
||||
c: generate CBC Monte Carlo Test files
|
||||
|
||||
and the characters giving the lengths are digits representing the lengths in
|
||||
32-bit units.\n\n");
|
||||
|
||||
The project test_modes tests the AES modes. It uses the files:
|
||||
|
||||
test_modes: Win32 or x64
|
||||
headers: aes.h, aescpp.h, brg_types.h, aesaux,h and aestst.h
|
||||
C source: aesaux.c, modetest.c
|
||||
defines: none for static library test, DLL_IMPORT for DLL test
|
||||
|
||||
which again links to the last library built.
|
||||
|
||||
F. Other Applications
|
||||
---------------------
|
||||
|
||||
These are:
|
||||
|
||||
gen_tests builds the test_vector files. The commad line is
|
||||
gen_tests /t:knec /k:468 /c
|
||||
as described earlier
|
||||
|
||||
test_aes_avs run the AES Algorithm Validation Suite tests for
|
||||
ECB, CBC, CFB and OFB modes
|
||||
|
||||
gen_tables builds a simple version of aes_tab.c (in aestab2.c)
|
||||
for compilers that cannot handle the normal version
|
||||
aes_example provides an example of AES use
|
||||
|
||||
These applications are linked to the last static library built or, if
|
||||
DLL_IMPORT is defined during compilation, to the last DLL built.
|
||||
|
||||
G. Use of the VIA ACE Cryptography Engine
|
||||
-----------------------------------------
|
||||
|
||||
The use of the code with the VIA ACE cryptography engine in described in the
|
||||
file via_ace.txt. In outline aes_modes.c is used and USE_VIA_ACE_IF_PRESENT
|
||||
is defined either in section 2 of aesopt.h or as a compilation option in Visual
|
||||
Studio. If in addition ASSUME_VIA_ACE_PRESENT is also defined then all normal
|
||||
AES code will be removed if not needed to support VIA ACE use. If VIA ACE
|
||||
support is needed and AES assembler is being used only the ASM_X86_V1C and
|
||||
ASM_X86_V2C versions should be used since ASM_X86_V2 and ASM_AMD64 do not
|
||||
support the VIA ACE engine.
|
||||
|
||||
H. The AES Test Vector Files
|
||||
----------------------------
|
||||
|
||||
These files fall in the following groups (where <nn> is a two digit
|
||||
number):
|
||||
|
||||
1. ecbvk<nn>.txt ECB vectors with variable key
|
||||
2. ecbvt<nn>.txt ECB vectors with variable text
|
||||
3. ecbnk<nn>.txt new ECB vectors with variable key
|
||||
4. ecbnt<nn>.txt new ECB vectors with variable text
|
||||
5. ecbme<nn>.txt ECB monte carlo encryption test vectors
|
||||
6. ecbmd<nn>.txt ECB monte carlo decryption test vectors
|
||||
7. cbcme<nn>.txt CBC monte carlo encryption test vectors
|
||||
8. cbcmd<nn>.txt CBC monte carlo decryption test vectors
|
||||
|
||||
The first digit of the numeric suffix on the filename gives the block size
|
||||
in 32 bit units and the second numeric digit gives the key size. For example,
|
||||
the file ecbvk44.txt provides the test vectors for ECB encryption with a 128
|
||||
bit block size and a 128 bit key size. The test routines expect to find these
|
||||
files in the 'testvals' subdirectory within the aes root directory. The
|
||||
'outvals' subdirectory is used for outputs that are compared with the files
|
||||
in 'testvals'. Note that the monte carlo test vectors are the result of
|
||||
applying AES iteratively 10000 times, not just once.
|
||||
|
||||
The AES Algorithm Validation Suite tests can be run for ECB, CBC, CFB and
|
||||
OFB modes (CFB1 and CFB8 are not implemented). The test routine uses the
|
||||
*.fax test files, which should be placed in the 'testvals\fax' subdirectory.
|
||||
|
||||
I. The Basic AES Calling Interface
|
||||
----------------------------------
|
||||
|
||||
The basic AES code keeps its state in a context, there being different
|
||||
contexts for encryption and decryption:
|
||||
|
||||
aes_encrypt_ctx
|
||||
aes_decrypt_ctx
|
||||
|
||||
The AES code is initialised with the call
|
||||
|
||||
aes_init(void)
|
||||
|
||||
although this is only essential if the option to generate the AES tables at
|
||||
run-time has been set in the options (i.e.fixed tables are not being used).
|
||||
|
||||
The AES encryption key is set by one of the calls:
|
||||
|
||||
aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
|
||||
or by:
|
||||
|
||||
aes_encrypt_key(const unsigned char *key, int key_len,
|
||||
aes_encrypt_ctx cx[1])
|
||||
|
||||
where the key length is set by 'key_len', which can be the length in bits
|
||||
or bytes.
|
||||
|
||||
Similarly, the AES decryption key is set by one of:
|
||||
|
||||
aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
|
||||
or by:
|
||||
|
||||
aes_decrypt_key(const unsigned char *key, int key_len,
|
||||
aes_decrypt_ctx cx[1])
|
||||
|
||||
Encryption and decryption for a single 16 byte block is then achieved using:
|
||||
|
||||
aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1])
|
||||
aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1])
|
||||
|
||||
The above subroutines return a value of EXIT_SUCCESS or EXIT_FAILURE
|
||||
depending on whether the operation succeeded or failed.
|
||||
|
||||
J. The Calling Interface for the AES Modes
|
||||
------------------------------------------
|
||||
|
||||
The subroutines for the AES modes, ECB, CBC, CFB, OFB and CTR, each process
|
||||
blocks of variable length and can also be called several times to complete
|
||||
single mode operations incrementally on long messages (or those messages,
|
||||
not all of which are available at the same time). The calls:
|
||||
|
||||
aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1])
|
||||
|
||||
for ECB operations and those for CBC:
|
||||
|
||||
aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1])
|
||||
|
||||
can only process blocks whose lengths are multiples of 16 bytes but the calls
|
||||
for CFB, OFB and CTR mode operations:
|
||||
|
||||
aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ofb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ofb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ctr_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1])
|
||||
|
||||
aes_ctr_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1])
|
||||
|
||||
can process blocks of any length. Note also that CFB, OFB and CTR mode calls only
|
||||
use AES encryption contexts even during decryption operations.
|
||||
|
||||
The calls CTR mode operations use a buffer (cbuf) which holds the counter value
|
||||
together with a function parameter:
|
||||
|
||||
void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
that is ued to update the counter value after each 16 byte AES operation. The
|
||||
counter buffer is updated appropriately to allow for incremental operations.
|
||||
|
||||
Please note the following IMPORTANT points about the AES mode subroutines:
|
||||
|
||||
1. All modes are reset when a new AES key is set.
|
||||
|
||||
2. Incremental calls to the different modes cannot
|
||||
be mixed. If a change of mode is needed a new
|
||||
key must be set or a reset must be issued (see
|
||||
below).
|
||||
|
||||
3. For modes with IVs, the IV value is an inpu AND
|
||||
an ouput since it is updated after each call to
|
||||
the value needed for any subsequent incremental
|
||||
call(s). If the mode is reset, the IV hence has
|
||||
to be set (or reset) as well.
|
||||
|
||||
4. ECB operations must be multiples of 16 bytes
|
||||
but do not need to be reset for new operations.
|
||||
|
||||
5. CBC operations must also be multiples of 16
|
||||
bytes and are reset for a new operation by
|
||||
setting the IV.
|
||||
|
||||
6. CFB, OFB and CTR mode must be reset by setting
|
||||
a new IV value AND by calling:
|
||||
|
||||
aes_mode_reset(aes_encrypt_ctx cx[1])
|
||||
|
||||
For CTR mode the cbuf value also has to be reset.
|
||||
|
||||
7. CFB, OFB and CTR modes only use AES encryption
|
||||
operations and contexts and do not need AES
|
||||
decrytpion operations.
|
||||
|
||||
8. AES keys remain valid across resets and changes
|
||||
of mode (but encryption and decryption keys must
|
||||
both be set if they are needed).
|
||||
|
||||
Brian Gladman 22/07/2008
|
||||
|
905
src/java/kp2akeytransform/jni/aes/aes_amd64.asm
Normal file
905
src/java/kp2akeytransform/jni/aes/aes_amd64.asm
Normal file
@ -0,0 +1,905 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; LICENSE TERMS
|
||||
;
|
||||
; The free distribution and use of this software is allowed (with or without
|
||||
; changes) provided that:
|
||||
;
|
||||
; 1. source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; 2. binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation;
|
||||
;
|
||||
; 3. the name of the copyright holder is not used to endorse products
|
||||
; built using this software without specific written permission.
|
||||
;
|
||||
; DISCLAIMER
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its properties, including, but not limited to, correctness
|
||||
; and/or fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue 20/12/2007
|
||||
;
|
||||
; I am grateful to Dag Arne Osvik for many discussions of the techniques that
|
||||
; can be used to optimise AES assembler code on AMD64/EM64T architectures.
|
||||
; Some of the techniques used in this implementation are the result of
|
||||
; suggestions made by him for which I am most grateful.
|
||||
|
||||
; An AES implementation for AMD64 processors using the YASM assembler. This
|
||||
; implemetation provides only encryption, decryption and hence requires key
|
||||
; scheduling support in C. It uses 8k bytes of tables but its encryption and
|
||||
; decryption performance is very close to that obtained using large tables.
|
||||
; It can use either Windows or Gnu/Linux calling conventions, which are as
|
||||
; follows:
|
||||
; windows gnu/linux
|
||||
;
|
||||
; in_blk rcx rdi
|
||||
; out_blk rdx rsi
|
||||
; context (cx) r8 rdx
|
||||
;
|
||||
; preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15
|
||||
; registers rdi - on both
|
||||
;
|
||||
; destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11
|
||||
; registers - rdi on both
|
||||
;
|
||||
; The default convention is that for windows, the gnu/linux convention being
|
||||
; used if __GNUC__ is defined.
|
||||
;
|
||||
; Define _SEH_ to include support for Win64 structured exception handling
|
||||
; (this requires YASM version 0.6 or later).
|
||||
;
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. It uses the Microsoft C AMD64 calling
|
||||
; conventions in which the three parameters are placed in rcx, rdx and r8
|
||||
; respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
;
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header file aes.h
|
||||
|
||||
%define AES_128 ; define if AES with 128 bit keys is needed
|
||||
%define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
%define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
%define AES_REV_DKS ; define if key decryption schedule is reversed
|
||||
|
||||
%define LAST_ROUND_TABLES ; define for the faster version using extra tables
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling provided here
|
||||
; is used.
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the sutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
;%define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
%define r0 rax
|
||||
%define r1 rdx
|
||||
%define r2 rcx
|
||||
%define r3 rbx
|
||||
%define r4 rsi
|
||||
%define r5 rdi
|
||||
%define r6 rbp
|
||||
%define r7 rsp
|
||||
|
||||
%define raxd eax
|
||||
%define rdxd edx
|
||||
%define rcxd ecx
|
||||
%define rbxd ebx
|
||||
%define rsid esi
|
||||
%define rdid edi
|
||||
%define rbpd ebp
|
||||
%define rspd esp
|
||||
|
||||
%define raxb al
|
||||
%define rdxb dl
|
||||
%define rcxb cl
|
||||
%define rbxb bl
|
||||
%define rsib sil
|
||||
%define rdib dil
|
||||
%define rbpb bpl
|
||||
%define rspb spl
|
||||
|
||||
%define r0h ah
|
||||
%define r1h dh
|
||||
%define r2h ch
|
||||
%define r3h bh
|
||||
|
||||
%define r0d eax
|
||||
%define r1d edx
|
||||
%define r2d ecx
|
||||
%define r3d ebx
|
||||
|
||||
; finite field multiplies by {02}, {04} and {08}
|
||||
|
||||
%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
|
||||
%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
|
||||
%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
|
||||
|
||||
; finite field multiplies required in table generation
|
||||
|
||||
%define f3(x) (f2(x) ^ x)
|
||||
%define f9(x) (f8(x) ^ x)
|
||||
%define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
%define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
; macro for expanding S-box data
|
||||
|
||||
%macro enc_vals 1
|
||||
db %1(0x63),%1(0x7c),%1(0x77),%1(0x7b),%1(0xf2),%1(0x6b),%1(0x6f),%1(0xc5)
|
||||
db %1(0x30),%1(0x01),%1(0x67),%1(0x2b),%1(0xfe),%1(0xd7),%1(0xab),%1(0x76)
|
||||
db %1(0xca),%1(0x82),%1(0xc9),%1(0x7d),%1(0xfa),%1(0x59),%1(0x47),%1(0xf0)
|
||||
db %1(0xad),%1(0xd4),%1(0xa2),%1(0xaf),%1(0x9c),%1(0xa4),%1(0x72),%1(0xc0)
|
||||
db %1(0xb7),%1(0xfd),%1(0x93),%1(0x26),%1(0x36),%1(0x3f),%1(0xf7),%1(0xcc)
|
||||
db %1(0x34),%1(0xa5),%1(0xe5),%1(0xf1),%1(0x71),%1(0xd8),%1(0x31),%1(0x15)
|
||||
db %1(0x04),%1(0xc7),%1(0x23),%1(0xc3),%1(0x18),%1(0x96),%1(0x05),%1(0x9a)
|
||||
db %1(0x07),%1(0x12),%1(0x80),%1(0xe2),%1(0xeb),%1(0x27),%1(0xb2),%1(0x75)
|
||||
db %1(0x09),%1(0x83),%1(0x2c),%1(0x1a),%1(0x1b),%1(0x6e),%1(0x5a),%1(0xa0)
|
||||
db %1(0x52),%1(0x3b),%1(0xd6),%1(0xb3),%1(0x29),%1(0xe3),%1(0x2f),%1(0x84)
|
||||
db %1(0x53),%1(0xd1),%1(0x00),%1(0xed),%1(0x20),%1(0xfc),%1(0xb1),%1(0x5b)
|
||||
db %1(0x6a),%1(0xcb),%1(0xbe),%1(0x39),%1(0x4a),%1(0x4c),%1(0x58),%1(0xcf)
|
||||
db %1(0xd0),%1(0xef),%1(0xaa),%1(0xfb),%1(0x43),%1(0x4d),%1(0x33),%1(0x85)
|
||||
db %1(0x45),%1(0xf9),%1(0x02),%1(0x7f),%1(0x50),%1(0x3c),%1(0x9f),%1(0xa8)
|
||||
db %1(0x51),%1(0xa3),%1(0x40),%1(0x8f),%1(0x92),%1(0x9d),%1(0x38),%1(0xf5)
|
||||
db %1(0xbc),%1(0xb6),%1(0xda),%1(0x21),%1(0x10),%1(0xff),%1(0xf3),%1(0xd2)
|
||||
db %1(0xcd),%1(0x0c),%1(0x13),%1(0xec),%1(0x5f),%1(0x97),%1(0x44),%1(0x17)
|
||||
db %1(0xc4),%1(0xa7),%1(0x7e),%1(0x3d),%1(0x64),%1(0x5d),%1(0x19),%1(0x73)
|
||||
db %1(0x60),%1(0x81),%1(0x4f),%1(0xdc),%1(0x22),%1(0x2a),%1(0x90),%1(0x88)
|
||||
db %1(0x46),%1(0xee),%1(0xb8),%1(0x14),%1(0xde),%1(0x5e),%1(0x0b),%1(0xdb)
|
||||
db %1(0xe0),%1(0x32),%1(0x3a),%1(0x0a),%1(0x49),%1(0x06),%1(0x24),%1(0x5c)
|
||||
db %1(0xc2),%1(0xd3),%1(0xac),%1(0x62),%1(0x91),%1(0x95),%1(0xe4),%1(0x79)
|
||||
db %1(0xe7),%1(0xc8),%1(0x37),%1(0x6d),%1(0x8d),%1(0xd5),%1(0x4e),%1(0xa9)
|
||||
db %1(0x6c),%1(0x56),%1(0xf4),%1(0xea),%1(0x65),%1(0x7a),%1(0xae),%1(0x08)
|
||||
db %1(0xba),%1(0x78),%1(0x25),%1(0x2e),%1(0x1c),%1(0xa6),%1(0xb4),%1(0xc6)
|
||||
db %1(0xe8),%1(0xdd),%1(0x74),%1(0x1f),%1(0x4b),%1(0xbd),%1(0x8b),%1(0x8a)
|
||||
db %1(0x70),%1(0x3e),%1(0xb5),%1(0x66),%1(0x48),%1(0x03),%1(0xf6),%1(0x0e)
|
||||
db %1(0x61),%1(0x35),%1(0x57),%1(0xb9),%1(0x86),%1(0xc1),%1(0x1d),%1(0x9e)
|
||||
db %1(0xe1),%1(0xf8),%1(0x98),%1(0x11),%1(0x69),%1(0xd9),%1(0x8e),%1(0x94)
|
||||
db %1(0x9b),%1(0x1e),%1(0x87),%1(0xe9),%1(0xce),%1(0x55),%1(0x28),%1(0xdf)
|
||||
db %1(0x8c),%1(0xa1),%1(0x89),%1(0x0d),%1(0xbf),%1(0xe6),%1(0x42),%1(0x68)
|
||||
db %1(0x41),%1(0x99),%1(0x2d),%1(0x0f),%1(0xb0),%1(0x54),%1(0xbb),%1(0x16)
|
||||
%endmacro
|
||||
|
||||
%macro dec_vals 1
|
||||
db %1(0x52),%1(0x09),%1(0x6a),%1(0xd5),%1(0x30),%1(0x36),%1(0xa5),%1(0x38)
|
||||
db %1(0xbf),%1(0x40),%1(0xa3),%1(0x9e),%1(0x81),%1(0xf3),%1(0xd7),%1(0xfb)
|
||||
db %1(0x7c),%1(0xe3),%1(0x39),%1(0x82),%1(0x9b),%1(0x2f),%1(0xff),%1(0x87)
|
||||
db %1(0x34),%1(0x8e),%1(0x43),%1(0x44),%1(0xc4),%1(0xde),%1(0xe9),%1(0xcb)
|
||||
db %1(0x54),%1(0x7b),%1(0x94),%1(0x32),%1(0xa6),%1(0xc2),%1(0x23),%1(0x3d)
|
||||
db %1(0xee),%1(0x4c),%1(0x95),%1(0x0b),%1(0x42),%1(0xfa),%1(0xc3),%1(0x4e)
|
||||
db %1(0x08),%1(0x2e),%1(0xa1),%1(0x66),%1(0x28),%1(0xd9),%1(0x24),%1(0xb2)
|
||||
db %1(0x76),%1(0x5b),%1(0xa2),%1(0x49),%1(0x6d),%1(0x8b),%1(0xd1),%1(0x25)
|
||||
db %1(0x72),%1(0xf8),%1(0xf6),%1(0x64),%1(0x86),%1(0x68),%1(0x98),%1(0x16)
|
||||
db %1(0xd4),%1(0xa4),%1(0x5c),%1(0xcc),%1(0x5d),%1(0x65),%1(0xb6),%1(0x92)
|
||||
db %1(0x6c),%1(0x70),%1(0x48),%1(0x50),%1(0xfd),%1(0xed),%1(0xb9),%1(0xda)
|
||||
db %1(0x5e),%1(0x15),%1(0x46),%1(0x57),%1(0xa7),%1(0x8d),%1(0x9d),%1(0x84)
|
||||
db %1(0x90),%1(0xd8),%1(0xab),%1(0x00),%1(0x8c),%1(0xbc),%1(0xd3),%1(0x0a)
|
||||
db %1(0xf7),%1(0xe4),%1(0x58),%1(0x05),%1(0xb8),%1(0xb3),%1(0x45),%1(0x06)
|
||||
db %1(0xd0),%1(0x2c),%1(0x1e),%1(0x8f),%1(0xca),%1(0x3f),%1(0x0f),%1(0x02)
|
||||
db %1(0xc1),%1(0xaf),%1(0xbd),%1(0x03),%1(0x01),%1(0x13),%1(0x8a),%1(0x6b)
|
||||
db %1(0x3a),%1(0x91),%1(0x11),%1(0x41),%1(0x4f),%1(0x67),%1(0xdc),%1(0xea)
|
||||
db %1(0x97),%1(0xf2),%1(0xcf),%1(0xce),%1(0xf0),%1(0xb4),%1(0xe6),%1(0x73)
|
||||
db %1(0x96),%1(0xac),%1(0x74),%1(0x22),%1(0xe7),%1(0xad),%1(0x35),%1(0x85)
|
||||
db %1(0xe2),%1(0xf9),%1(0x37),%1(0xe8),%1(0x1c),%1(0x75),%1(0xdf),%1(0x6e)
|
||||
db %1(0x47),%1(0xf1),%1(0x1a),%1(0x71),%1(0x1d),%1(0x29),%1(0xc5),%1(0x89)
|
||||
db %1(0x6f),%1(0xb7),%1(0x62),%1(0x0e),%1(0xaa),%1(0x18),%1(0xbe),%1(0x1b)
|
||||
db %1(0xfc),%1(0x56),%1(0x3e),%1(0x4b),%1(0xc6),%1(0xd2),%1(0x79),%1(0x20)
|
||||
db %1(0x9a),%1(0xdb),%1(0xc0),%1(0xfe),%1(0x78),%1(0xcd),%1(0x5a),%1(0xf4)
|
||||
db %1(0x1f),%1(0xdd),%1(0xa8),%1(0x33),%1(0x88),%1(0x07),%1(0xc7),%1(0x31)
|
||||
db %1(0xb1),%1(0x12),%1(0x10),%1(0x59),%1(0x27),%1(0x80),%1(0xec),%1(0x5f)
|
||||
db %1(0x60),%1(0x51),%1(0x7f),%1(0xa9),%1(0x19),%1(0xb5),%1(0x4a),%1(0x0d)
|
||||
db %1(0x2d),%1(0xe5),%1(0x7a),%1(0x9f),%1(0x93),%1(0xc9),%1(0x9c),%1(0xef)
|
||||
db %1(0xa0),%1(0xe0),%1(0x3b),%1(0x4d),%1(0xae),%1(0x2a),%1(0xf5),%1(0xb0)
|
||||
db %1(0xc8),%1(0xeb),%1(0xbb),%1(0x3c),%1(0x83),%1(0x53),%1(0x99),%1(0x61)
|
||||
db %1(0x17),%1(0x2b),%1(0x04),%1(0x7e),%1(0xba),%1(0x77),%1(0xd6),%1(0x26)
|
||||
db %1(0xe1),%1(0x69),%1(0x14),%1(0x63),%1(0x55),%1(0x21),%1(0x0c),%1(0x7d)
|
||||
%endmacro
|
||||
|
||||
%define u8(x) f2(x), x, x, f3(x), f2(x), x, x, f3(x)
|
||||
%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
|
||||
%define w8(x) x, 0, 0, 0, x, 0, 0, 0
|
||||
|
||||
%define tptr rbp ; table pointer
|
||||
%define kptr r8 ; key schedule pointer
|
||||
%define fofs 128 ; adjust offset in key schedule to keep |disp| < 128
|
||||
%define fk_ref(x,y) [kptr-16*x+fofs+4*y]
|
||||
%ifdef AES_REV_DKS
|
||||
%define rofs 128
|
||||
%define ik_ref(x,y) [kptr-16*x+rofs+4*y]
|
||||
%else
|
||||
%define rofs -128
|
||||
%define ik_ref(x,y) [kptr+16*x+rofs+4*y]
|
||||
%endif
|
||||
|
||||
%define tab_0(x) [tptr+8*x]
|
||||
%define tab_1(x) [tptr+8*x+3]
|
||||
%define tab_2(x) [tptr+8*x+2]
|
||||
%define tab_3(x) [tptr+8*x+1]
|
||||
%define tab_f(x) byte [tptr+8*x+1]
|
||||
%define tab_i(x) byte [tptr+8*x+7]
|
||||
%define t_ref(x,r) tab_ %+ x(r)
|
||||
|
||||
%macro ff_rnd 5 ; normal forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
add tptr, 2048
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %3d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %1d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro ii_rnd 5 ; normal inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
add tptr, 2048
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr eax, 16
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ebx, 16
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %1d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %3d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
global aes_encrypt
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_encrypt
|
||||
%endif
|
||||
|
||||
section .data align=64
|
||||
align 64
|
||||
enc_tab:
|
||||
enc_vals u8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
enc_vals w8
|
||||
%endif
|
||||
|
||||
section .text align=16
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_encrypt
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_encrypt:
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi, byte [kptr+4*KS_LENGTH]
|
||||
lea tptr,[enc_tab wrt rip]
|
||||
sub kptr, fofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
xor eax, [kptr+fofs]
|
||||
xor ebx, [kptr+fofs+4]
|
||||
xor ecx, [kptr+fofs+8]
|
||||
xor edx, [kptr+fofs+12]
|
||||
|
||||
lea kptr,[kptr+rsi]
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ff_rnd r9, r10, r11, r12, 13
|
||||
ff_rnd r9, r10, r11, r12, 12
|
||||
.2: ff_rnd r9, r10, r11, r12, 11
|
||||
ff_rnd r9, r10, r11, r12, 10
|
||||
.3: ff_rnd r9, r10, r11, r12, 9
|
||||
ff_rnd r9, r10, r11, r12, 8
|
||||
ff_rnd r9, r10, r11, r12, 7
|
||||
ff_rnd r9, r10, r11, r12, 6
|
||||
ff_rnd r9, r10, r11, r12, 5
|
||||
ff_rnd r9, r10, r11, r12, 4
|
||||
ff_rnd r9, r10, r11, r12, 3
|
||||
ff_rnd r9, r10, r11, r12, 2
|
||||
ff_rnd r9, r10, r11, r12, 1
|
||||
fl_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4:
|
||||
mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
global aes_decrypt
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_decrypt
|
||||
%endif
|
||||
|
||||
section .data
|
||||
align 64
|
||||
dec_tab:
|
||||
dec_vals v8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
dec_vals w8
|
||||
%endif
|
||||
|
||||
section .text
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_decrypt
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_decrypt:
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi,byte[kptr+4*KS_LENGTH]
|
||||
lea tptr,[dec_tab wrt rip]
|
||||
sub kptr, rofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
mov rdi, kptr
|
||||
lea kptr,[kptr+rsi]
|
||||
%else
|
||||
lea rdi,[kptr+rsi]
|
||||
%endif
|
||||
|
||||
xor eax, [rdi+rofs]
|
||||
xor ebx, [rdi+rofs+4]
|
||||
xor ecx, [rdi+rofs+8]
|
||||
xor edx, [rdi+rofs+12]
|
||||
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ii_rnd r9, r10, r11, r12, 13
|
||||
ii_rnd r9, r10, r11, r12, 12
|
||||
.2: ii_rnd r9, r10, r11, r12, 11
|
||||
ii_rnd r9, r10, r11, r12, 10
|
||||
.3: ii_rnd r9, r10, r11, r12, 9
|
||||
ii_rnd r9, r10, r11, r12, 8
|
||||
ii_rnd r9, r10, r11, r12, 7
|
||||
ii_rnd r9, r10, r11, r12, 6
|
||||
ii_rnd r9, r10, r11, r12, 5
|
||||
ii_rnd r9, r10, r11, r12, 4
|
||||
ii_rnd r9, r10, r11, r12, 3
|
||||
ii_rnd r9, r10, r11, r12, 2
|
||||
ii_rnd r9, r10, r11, r12, 1
|
||||
il_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4: mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
|
||||
end
|
945
src/java/kp2akeytransform/jni/aes/aes_modes.c
Normal file
945
src/java/kp2akeytransform/jni/aes/aes_modes.c
Normal file
@ -0,0 +1,945 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
These subroutines implement multiple block AES modes for ECB, CBC, CFB,
|
||||
OFB and CTR encryption, The code provides support for the VIA Advanced
|
||||
Cryptography Engine (ACE).
|
||||
|
||||
NOTE: In the following subroutines, the AES contexts (ctx) must be
|
||||
16 byte aligned if VIA ACE is being used
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined( AES_MODES )
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#define BFR_BLOCKS 8
|
||||
|
||||
/* These values are used to detect long word alignment in order to */
|
||||
/* speed up some buffer operations. This facility may not work on */
|
||||
/* some machines so this define can be commented out if necessary */
|
||||
|
||||
#define FAST_BUFFER_OPERATIONS
|
||||
|
||||
#define lp32(x) ((uint_32t*)(x))
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
#include "aes_via_ace.h"
|
||||
|
||||
#pragma pack(16)
|
||||
|
||||
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
|
||||
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
|
||||
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
|
||||
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
|
||||
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
|
||||
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
|
||||
|
||||
/* NOTE: These control word macros must only be used after */
|
||||
/* a key has been set up because they depend on key size */
|
||||
|
||||
#if NEH_KEY_TYPE == NEH_LOAD
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks)
|
||||
#elif NEH_KEY_TYPE == NEH_GENERATE
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks + (c)->inf.b[0])
|
||||
#else
|
||||
#define kd_adr(c) ((uint_8t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#define aligned_array(type, name, no, stride) type name[no]
|
||||
#define aligned_auto(type, name, no, stride) type name[no]
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && _MSC_VER > 1200
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) \
|
||||
unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
|
||||
|
||||
#else
|
||||
|
||||
#define via_cwd(cwd, ty, dir, len) \
|
||||
aligned_auto(unsigned long, cwd, 4, 16); \
|
||||
cwd[1] = cwd[2] = cwd[3] = 0; \
|
||||
cwd[0] = neh_##dir##_##ty##_key(len)
|
||||
|
||||
#endif
|
||||
|
||||
/* test the code for detecting and setting pointer alignment */
|
||||
|
||||
AES_RETURN aes_test_alignment_detection(unsigned int n) /* 4 <= n <= 16 */
|
||||
{ uint_8t p[16];
|
||||
uint_32t i, count_eq = 0, count_neq = 0;
|
||||
|
||||
if(n < 4 || n > 16)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
for(i = 0; i < n; ++i)
|
||||
{
|
||||
uint_8t *qf = ALIGN_FLOOR(p + i, n),
|
||||
*qh = ALIGN_CEIL(p + i, n);
|
||||
|
||||
if(qh == qf)
|
||||
++count_eq;
|
||||
else if(qh == qf + n)
|
||||
++count_neq;
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
return (count_eq != 1 || count_neq != n - 1 ? EXIT_FAILURE : EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx ctx[1])
|
||||
{
|
||||
ctx->inf.b[2] = 0;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = (uint_8t*)(ctx->ks);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp, cwd, ip, op, m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
if(aes_encrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = kd_adr(ctx);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ecb_op5(ksp, cwd, ip, op, m);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
while(nb--)
|
||||
{
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
|
||||
{ int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
||||
{
|
||||
via_cbc_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(nb--)
|
||||
{
|
||||
lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
|
||||
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
|
||||
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
|
||||
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
|
||||
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
|
||||
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
|
||||
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
|
||||
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
memcpy(obuf, iv, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
|
||||
{ unsigned char tmp[AES_BLOCK_SIZE];
|
||||
int nb = len >> 4;
|
||||
|
||||
if(len & (AES_BLOCK_SIZE - 1))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ uint_8t *ksp = kd_adr(ctx), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
|
||||
{
|
||||
via_cbc_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
}
|
||||
else
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cbc_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
nb -= m;
|
||||
}
|
||||
}
|
||||
|
||||
if(iv != ivp)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] ^= lp32(iv)[0];
|
||||
lp32(obuf)[1] ^= lp32(iv)[1];
|
||||
lp32(obuf)[2] ^= lp32(iv)[2];
|
||||
lp32(obuf)[3] ^= lp32(iv)[3];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(nb--)
|
||||
{
|
||||
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
|
||||
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
|
||||
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
|
||||
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
|
||||
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
|
||||
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
|
||||
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
|
||||
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
|
||||
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
|
||||
memcpy(iv, tmp, AES_BLOCK_SIZE);
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
|
||||
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
|
||||
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
|
||||
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
*obuf++ = (iv[b_pos++] ^= *ibuf++);
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint_8t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{ uint_8t t;
|
||||
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
t = *ibuf++;
|
||||
*obuf++ = t ^ iv[b_pos];
|
||||
iv[b_pos++] = t;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf) /* input buffer is not aligned */
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf) /* output buffer is not aligned */
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) &&!ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint_32t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
|
||||
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
|
||||
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
|
||||
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{ uint_8t t;
|
||||
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
|
||||
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
|
||||
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
|
||||
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
|
||||
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
|
||||
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
|
||||
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
|
||||
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
|
||||
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
|
||||
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
|
||||
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
|
||||
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
|
||||
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
|
||||
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
|
||||
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
|
||||
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{ uint_8t t;
|
||||
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
t = *ibuf++;
|
||||
*obuf++ = t ^ iv[b_pos];
|
||||
iv[b_pos++] = t;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint_8t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
|
||||
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
|
||||
|
||||
if(b_pos) /* complete any partial block */
|
||||
{
|
||||
while(b_pos < AES_BLOCK_SIZE && cnt < len)
|
||||
{
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
|
||||
{
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{ int m;
|
||||
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
|
||||
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
|
||||
if(ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
|
||||
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
|
||||
{
|
||||
ivp = liv;
|
||||
memcpy(liv, iv, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
|
||||
{
|
||||
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
|
||||
ibuf += nb * AES_BLOCK_SIZE;
|
||||
obuf += nb * AES_BLOCK_SIZE;
|
||||
cnt += nb * AES_BLOCK_SIZE;
|
||||
}
|
||||
else /* input, output or both are unaligned */
|
||||
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
|
||||
uint_8t *ip, *op;
|
||||
|
||||
while(nb)
|
||||
{
|
||||
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
|
||||
|
||||
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
|
||||
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
|
||||
|
||||
if(ip != ibuf)
|
||||
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
|
||||
|
||||
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
|
||||
|
||||
if(op != obuf)
|
||||
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
|
||||
|
||||
ibuf += m * AES_BLOCK_SIZE;
|
||||
obuf += m * AES_BLOCK_SIZE;
|
||||
cnt += m * AES_BLOCK_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
if(ivp != iv)
|
||||
memcpy(iv, ivp, AES_BLOCK_SIZE);
|
||||
}
|
||||
#else
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
|
||||
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
|
||||
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
|
||||
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
# endif
|
||||
while(cnt + AES_BLOCK_SIZE <= len)
|
||||
{
|
||||
assert(b_pos == 0);
|
||||
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
|
||||
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
|
||||
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
|
||||
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
|
||||
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
|
||||
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
|
||||
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
|
||||
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
cnt += AES_BLOCK_SIZE;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
while(cnt < len)
|
||||
{
|
||||
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(cnt < len && b_pos < AES_BLOCK_SIZE)
|
||||
{
|
||||
*obuf++ = iv[b_pos++] ^ *ibuf++;
|
||||
cnt++;
|
||||
}
|
||||
|
||||
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint_8t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
|
||||
{ unsigned char *ip;
|
||||
int i, blen, b_pos = (int)(ctx->inf.b[2]);
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
aligned_auto(uint_8t, buf, BFR_LENGTH, 16);
|
||||
if(ctx->inf.b[1] == 0xff && ALIGN_OFFSET( ctx, 16 ))
|
||||
return EXIT_FAILURE;
|
||||
#else
|
||||
uint_8t buf[BFR_LENGTH];
|
||||
#endif
|
||||
|
||||
if(b_pos)
|
||||
{
|
||||
memcpy(buf, cbuf, AES_BLOCK_SIZE);
|
||||
if(aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
while(b_pos < AES_BLOCK_SIZE && len)
|
||||
{
|
||||
*obuf++ = *ibuf++ ^ buf[b_pos++];
|
||||
--len;
|
||||
}
|
||||
|
||||
if(len)
|
||||
ctr_inc(cbuf), b_pos = 0;
|
||||
}
|
||||
|
||||
while(len)
|
||||
{
|
||||
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
|
||||
|
||||
for(i = 0, ip = buf; i < (blen >> 4); ++i)
|
||||
{
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE);
|
||||
ctr_inc(cbuf);
|
||||
ip += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
if(blen & (AES_BLOCK_SIZE - 1))
|
||||
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
if(ctx->inf.b[1] == 0xff)
|
||||
{
|
||||
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
|
||||
via_ecb_op5((ctx->ks), cwd, buf, buf, i);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
if(aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
|
||||
return EXIT_FAILURE;
|
||||
|
||||
i = 0; ip = buf;
|
||||
# ifdef FAST_BUFFER_OPERATIONS
|
||||
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( ip, 4 ))
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
|
||||
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
|
||||
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
|
||||
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
while(i + AES_BLOCK_SIZE <= blen)
|
||||
{
|
||||
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
|
||||
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
|
||||
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
|
||||
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
|
||||
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
|
||||
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
|
||||
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
|
||||
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
|
||||
i += AES_BLOCK_SIZE;
|
||||
ip += AES_BLOCK_SIZE;
|
||||
ibuf += AES_BLOCK_SIZE;
|
||||
obuf += AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
while(i++ < blen)
|
||||
*obuf++ = *ibuf++ ^ ip[b_pos++];
|
||||
}
|
||||
|
||||
ctx->inf.b[2] = (uint_8t)b_pos;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
#endif
|
529
src/java/kp2akeytransform/jni/aes/aes_via_ace.h
Normal file
529
src/java/kp2akeytransform/jni/aes/aes_via_ace.h
Normal file
@ -0,0 +1,529 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/20077
|
||||
*/
|
||||
|
||||
#ifndef AES_VIA_ACE_H
|
||||
#define AES_VIA_ACE_H
|
||||
|
||||
#if defined( _MSC_VER )
|
||||
# define INLINE __inline
|
||||
#elif defined( __GNUC__ )
|
||||
# define INLINE static inline
|
||||
#else
|
||||
# error VIA ACE requires Microsoft or GNU C
|
||||
#endif
|
||||
|
||||
#define NEH_GENERATE 1
|
||||
#define NEH_LOAD 2
|
||||
#define NEH_HYBRID 3
|
||||
|
||||
#define MAX_READ_ATTEMPTS 1000
|
||||
|
||||
/* VIA Nehemiah RNG and ACE Feature Mask Values */
|
||||
|
||||
#define NEH_CPU_IS_VIA 0x00000001
|
||||
#define NEH_CPU_READ 0x00000010
|
||||
#define NEH_CPU_MASK 0x00000011
|
||||
|
||||
#define NEH_RNG_PRESENT 0x00000004
|
||||
#define NEH_RNG_ENABLED 0x00000008
|
||||
#define NEH_ACE_PRESENT 0x00000040
|
||||
#define NEH_ACE_ENABLED 0x00000080
|
||||
#define NEH_RNG_FLAGS (NEH_RNG_PRESENT | NEH_RNG_ENABLED)
|
||||
#define NEH_ACE_FLAGS (NEH_ACE_PRESENT | NEH_ACE_ENABLED)
|
||||
#define NEH_FLAGS_MASK (NEH_RNG_FLAGS | NEH_ACE_FLAGS)
|
||||
|
||||
/* VIA Nehemiah Advanced Cryptography Engine (ACE) Control Word Values */
|
||||
|
||||
#define NEH_GEN_KEY 0x00000000 /* generate key schedule */
|
||||
#define NEH_LOAD_KEY 0x00000080 /* load schedule from memory */
|
||||
#define NEH_ENCRYPT 0x00000000 /* encryption */
|
||||
#define NEH_DECRYPT 0x00000200 /* decryption */
|
||||
#define NEH_KEY128 0x00000000+0x0a /* 128 bit key */
|
||||
#define NEH_KEY192 0x00000400+0x0c /* 192 bit key */
|
||||
#define NEH_KEY256 0x00000800+0x0e /* 256 bit key */
|
||||
|
||||
#define NEH_ENC_GEN (NEH_ENCRYPT | NEH_GEN_KEY)
|
||||
#define NEH_DEC_GEN (NEH_DECRYPT | NEH_GEN_KEY)
|
||||
#define NEH_ENC_LOAD (NEH_ENCRYPT | NEH_LOAD_KEY)
|
||||
#define NEH_DEC_LOAD (NEH_DECRYPT | NEH_LOAD_KEY)
|
||||
|
||||
#define NEH_ENC_GEN_DATA {\
|
||||
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_GEN | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_GEN | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_ENC_LOAD_DATA {\
|
||||
NEH_ENC_LOAD | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_ENC_HYBRID_DATA {\
|
||||
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_GEN_DATA {\
|
||||
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_GEN | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_GEN | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_LOAD_DATA {\
|
||||
NEH_DEC_LOAD | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define NEH_DEC_HYBRID_DATA {\
|
||||
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
|
||||
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
|
||||
|
||||
#define neh_enc_gen_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_GEN | NEH_KEY192) : (NEH_ENC_GEN | NEH_KEY256))
|
||||
|
||||
#define neh_enc_load_key(x) ((x) == 128 ? (NEH_ENC_LOAD | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_enc_hybrid_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_dec_gen_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_GEN | NEH_KEY192) : (NEH_DEC_GEN | NEH_KEY256))
|
||||
|
||||
#define neh_dec_load_key(x) ((x) == 128 ? (NEH_DEC_LOAD | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
|
||||
|
||||
#define neh_dec_hybrid_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
|
||||
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
|
||||
#define aligned_auto(type, name, no, stride) __declspec(align(stride)) type name[no]
|
||||
#else
|
||||
#define aligned_auto(type, name, no, stride) \
|
||||
unsigned char _##name[no * sizeof(type) + stride]; \
|
||||
type *name = (type*)(16 * ((((unsigned long)(_##name)) + stride - 1) / stride))
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
|
||||
#define aligned_array(type, name, no, stride) __declspec(align(stride)) type name[no]
|
||||
#elif defined( __GNUC__ )
|
||||
#define aligned_array(type, name, no, stride) type name[no] __attribute__ ((aligned(stride)))
|
||||
#else
|
||||
#define aligned_array(type, name, no, stride) type name[no]
|
||||
#endif
|
||||
|
||||
/* VIA ACE codeword */
|
||||
|
||||
static unsigned char via_flags = 0;
|
||||
|
||||
#if defined ( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
|
||||
#define NEH_REKEY __asm pushfd __asm popfd
|
||||
#define NEH_AES __asm _emit 0xf3 __asm _emit 0x0f __asm _emit 0xa7
|
||||
#define NEH_ECB NEH_AES __asm _emit 0xc8
|
||||
#define NEH_CBC NEH_AES __asm _emit 0xd0
|
||||
#define NEH_CFB NEH_AES __asm _emit 0xe0
|
||||
#define NEH_OFB NEH_AES __asm _emit 0xe8
|
||||
#define NEH_RNG __asm _emit 0x0f __asm _emit 0xa7 __asm _emit 0xc0
|
||||
|
||||
INLINE int has_cpuid(void)
|
||||
{ char ret_value;
|
||||
__asm
|
||||
{ pushfd /* save EFLAGS register */
|
||||
mov eax,[esp] /* copy it to eax */
|
||||
mov edx,0x00200000 /* CPUID bit position */
|
||||
xor eax,edx /* toggle the CPUID bit */
|
||||
push eax /* attempt to set EFLAGS to */
|
||||
popfd /* the new value */
|
||||
pushfd /* get the new EFLAGS value */
|
||||
pop eax /* into eax */
|
||||
xor eax,[esp] /* xor with original value */
|
||||
and eax,edx /* has CPUID bit changed? */
|
||||
setne al /* set to 1 if we have been */
|
||||
mov ret_value,al /* able to change it */
|
||||
popfd /* restore original EFLAGS */
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE int is_via_cpu(void)
|
||||
{ char ret_value;
|
||||
__asm
|
||||
{ xor eax,eax /* use CPUID to get vendor */
|
||||
cpuid /* identity string */
|
||||
xor eax,eax /* is it "CentaurHauls" ? */
|
||||
sub ebx,0x746e6543 /* 'Cent' */
|
||||
or eax,ebx
|
||||
sub edx,0x48727561 /* 'aurH' */
|
||||
or eax,edx
|
||||
sub ecx,0x736c7561 /* 'auls' */
|
||||
or eax,ecx
|
||||
sete al /* set to 1 if it is VIA ID */
|
||||
mov dl,NEH_CPU_READ /* mark CPU type as read */
|
||||
or dl,al /* & store result in flags */
|
||||
mov [via_flags],dl /* set VIA detected flag */
|
||||
mov ret_value,al /* able to change it */
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE int read_via_flags(void)
|
||||
{ char ret_value = 0;
|
||||
__asm
|
||||
{
|
||||
mov eax,0xC0000000 /* Centaur extended CPUID */
|
||||
cpuid
|
||||
mov edx,0xc0000001 /* >= 0xc0000001 if support */
|
||||
cmp eax,edx /* for VIA extended feature */
|
||||
jnae no_rng /* flags is available */
|
||||
mov eax,edx /* read Centaur extended */
|
||||
cpuid /* feature flags */
|
||||
mov eax,NEH_FLAGS_MASK /* mask out and save */
|
||||
and eax,edx /* the RNG and ACE flags */
|
||||
or [via_flags],al /* present & enabled flags */
|
||||
mov ret_value,al /* able to change it */
|
||||
no_rng:
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE unsigned int via_rng_in(void *buf)
|
||||
{ char ret_value = 0x1f;
|
||||
__asm
|
||||
{
|
||||
push edi
|
||||
mov edi,buf /* input buffer address */
|
||||
xor edx,edx /* try to fetch 8 bytes */
|
||||
NEH_RNG /* do RNG read operation */
|
||||
and ret_value,al /* count of bytes returned */
|
||||
pop edi
|
||||
}
|
||||
return (int)ret_value;
|
||||
}
|
||||
|
||||
INLINE void via_ecb_op5(
|
||||
const void *k, const void *c, const void *s, void *d, int l)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
NEH_ECB
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cbc_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CBC
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cbc_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CBC
|
||||
mov esi, eax
|
||||
mov edi, (w)
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cfb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CFB
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_cfb_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_CFB
|
||||
mov esi, eax
|
||||
mov edi, (w)
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
movsd
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void via_ofb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{ __asm
|
||||
{
|
||||
NEH_REKEY
|
||||
mov ebx, (k)
|
||||
mov edx, (c)
|
||||
mov esi, (s)
|
||||
mov edi, (d)
|
||||
mov ecx, (l)
|
||||
mov eax, (v)
|
||||
NEH_OFB
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined( __GNUC__ )
|
||||
|
||||
#define NEH_REKEY asm("pushfl\n popfl\n\t")
|
||||
#define NEH_ECB asm(".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t")
|
||||
#define NEH_CBC asm(".byte 0xf3, 0x0f, 0xa7, 0xd0\n\t")
|
||||
#define NEH_CFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe0\n\t")
|
||||
#define NEH_OFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe8\n\t")
|
||||
#define NEH_RNG asm(".byte 0x0f, 0xa7, 0xc0\n\t");
|
||||
|
||||
INLINE int has_cpuid(void)
|
||||
{ int val;
|
||||
asm("pushfl\n\t");
|
||||
asm("movl 0(%esp),%eax\n\t");
|
||||
asm("xor $0x00200000,%eax\n\t");
|
||||
asm("pushl %eax\n\t");
|
||||
asm("popfl\n\t");
|
||||
asm("pushfl\n\t");
|
||||
asm("popl %eax\n\t");
|
||||
asm("xorl 0(%esp),%edx\n\t");
|
||||
asm("andl $0x00200000,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
asm("popfl\n\t");
|
||||
return val ? 1 : 0;
|
||||
}
|
||||
|
||||
INLINE int is_via_cpu(void)
|
||||
{ int val;
|
||||
asm("xorl %eax,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("xorl %eax,%eax\n\t");
|
||||
asm("subl $0x746e6543,%ebx\n\t");
|
||||
asm("orl %ebx,%eax\n\t");
|
||||
asm("subl $0x48727561,%edx\n\t");
|
||||
asm("orl %edx,%eax\n\t");
|
||||
asm("subl $0x736c7561,%ecx\n\t");
|
||||
asm("orl %ecx,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
val = (val ? 0 : 1);
|
||||
via_flags = (val | NEH_CPU_READ);
|
||||
return val;
|
||||
}
|
||||
|
||||
INLINE int read_via_flags(void)
|
||||
{ unsigned char val;
|
||||
asm("movl $0xc0000000,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("movl $0xc0000001,%edx\n\t");
|
||||
asm("cmpl %edx,%eax\n\t");
|
||||
asm("setae %al\n\t");
|
||||
asm("movb %%al,%0\n\t" : "=m" (val));
|
||||
if(!val) return 0;
|
||||
asm("movl $0xc0000001,%eax\n\t");
|
||||
asm("cpuid\n\t");
|
||||
asm("movb %%dl,%0\n\t" : "=m" (val));
|
||||
val &= NEH_FLAGS_MASK;
|
||||
via_flags |= val;
|
||||
return (int) val;
|
||||
}
|
||||
|
||||
INLINE int via_rng_in(void *buf)
|
||||
{ int val;
|
||||
asm("pushl %edi\n\t");
|
||||
asm("movl %0,%%edi\n\t" : : "m" (buf));
|
||||
asm("xorl %edx,%edx\n\t");
|
||||
NEH_RNG
|
||||
asm("andl $0x0000001f,%eax\n\t");
|
||||
asm("movl %%eax,%0\n\t" : "=m" (val));
|
||||
asm("popl %edi\n\t");
|
||||
return val;
|
||||
}
|
||||
|
||||
INLINE volatile void via_ecb_op5(
|
||||
const void *k, const void *c, const void *s, void *d, int l)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
NEH_ECB;
|
||||
}
|
||||
|
||||
INLINE volatile void via_cbc_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CBC;
|
||||
}
|
||||
|
||||
INLINE volatile void via_cbc_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CBC;
|
||||
asm("movl %eax,%esi\n\t");
|
||||
asm("movl %0, %%edi\n\t" : : "m" (w));
|
||||
asm("movsl; movsl; movsl; movsl\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_cfb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CFB;
|
||||
}
|
||||
|
||||
INLINE volatile void via_cfb_op7(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_CFB;
|
||||
asm("movl %eax,%esi\n\t");
|
||||
asm("movl %0, %%edi\n\t" : : "m" (w));
|
||||
asm("movsl; movsl; movsl; movsl\n\t");
|
||||
}
|
||||
|
||||
INLINE volatile void via_ofb_op6(
|
||||
const void *k, const void *c, const void *s, void *d, int l, void *v)
|
||||
{
|
||||
NEH_REKEY;
|
||||
asm("movl %0, %%ebx\n\t" : : "m" (k));
|
||||
asm("movl %0, %%edx\n\t" : : "m" (c));
|
||||
asm("movl %0, %%esi\n\t" : : "m" (s));
|
||||
asm("movl %0, %%edi\n\t" : : "m" (d));
|
||||
asm("movl %0, %%ecx\n\t" : : "m" (l));
|
||||
asm("movl %0, %%eax\n\t" : : "m" (v));
|
||||
NEH_OFB;
|
||||
}
|
||||
|
||||
#else
|
||||
#error VIA ACE is not available with this compiler
|
||||
#endif
|
||||
|
||||
INLINE int via_ace_test(void)
|
||||
{
|
||||
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_ACE_FLAGS) == NEH_ACE_FLAGS);
|
||||
}
|
||||
|
||||
#define VIA_ACE_AVAILABLE (((via_flags & NEH_ACE_FLAGS) == NEH_ACE_FLAGS) \
|
||||
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_ace_test())
|
||||
|
||||
INLINE int via_rng_test(void)
|
||||
{
|
||||
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_RNG_FLAGS) == NEH_RNG_FLAGS);
|
||||
}
|
||||
|
||||
#define VIA_RNG_AVAILABLE (((via_flags & NEH_RNG_FLAGS) == NEH_RNG_FLAGS) \
|
||||
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_rng_test())
|
||||
|
||||
INLINE int read_via_rng(void *buf, int count)
|
||||
{ int nbr, max_reads, lcnt = count;
|
||||
unsigned char *p, *q;
|
||||
aligned_auto(unsigned char, bp, 64, 16);
|
||||
|
||||
if(!VIA_RNG_AVAILABLE)
|
||||
return 0;
|
||||
|
||||
do
|
||||
{
|
||||
max_reads = MAX_READ_ATTEMPTS;
|
||||
do
|
||||
nbr = via_rng_in(bp);
|
||||
while
|
||||
(nbr == 0 && --max_reads);
|
||||
|
||||
lcnt -= nbr;
|
||||
p = (unsigned char*)buf; q = bp;
|
||||
while(nbr--)
|
||||
*p++ = *q++;
|
||||
}
|
||||
while
|
||||
(lcnt && max_reads);
|
||||
|
||||
return count - lcnt;
|
||||
}
|
||||
|
||||
#endif
|
644
src/java/kp2akeytransform/jni/aes/aes_x86_v1.asm
Normal file
644
src/java/kp2akeytransform/jni/aes/aes_x86_v1.asm
Normal file
@ -0,0 +1,644 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; LICENSE TERMS
|
||||
;
|
||||
; The redistribution and use of this software (with or without changes)
|
||||
; is allowed without the payment of fees or royalties provided that:
|
||||
;
|
||||
; 1. source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; 2. binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation;
|
||||
;
|
||||
; 3. the name of the copyright holder is not used to endorse products
|
||||
; built using this software without specific written permission.
|
||||
;
|
||||
; DISCLAIMER
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its properties, including, but not limited to, correctness
|
||||
; and/or fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue 13/08/2008
|
||||
;
|
||||
; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
|
||||
; aeskey.c and aestab.c for support.
|
||||
|
||||
; An AES implementation for x86 processors using the YASM (or NASM) assembler.
|
||||
; This is an assembler implementation that covers encryption and decryption
|
||||
; only and is intended as a replacement of the C file aescrypt.c. It hence
|
||||
; requires the file aeskey.c for keying and aestab.c for the AES tables. It
|
||||
; employs full tables rather than compressed tables.
|
||||
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. The ebx, esi, edi and ebp registers are
|
||||
; preserved across calls but eax, ecx and edx and the artihmetic status flags
|
||||
; are not. It is also important that the defines below match those used in the
|
||||
; C code. This code uses the VC++ register saving conentions; if it is used
|
||||
; with another compiler, conventions for using and saving registers may need to
|
||||
; be checked (and calling conventions). The YASM command line for the VC++
|
||||
; custom build step is:
|
||||
;
|
||||
; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
|
||||
;
|
||||
; The calling intefaces are:
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
;
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header file aes.h
|
||||
|
||||
%define AES_128 ; define if AES with 128 bit keys is needed
|
||||
%define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
%define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
%define AES_REV_DKS ; define if key decryption schedule is reversed
|
||||
%define LAST_ROUND_TABLES ; define if tables are to be used for last round
|
||||
|
||||
; offsets to parameters
|
||||
|
||||
in_blk equ 4 ; input byte array address parameter
|
||||
out_blk equ 8 ; output byte array address parameter
|
||||
ctx equ 12 ; AES context structure
|
||||
stk_spc equ 20 ; stack space
|
||||
%define parms 12 ; parameter space on stack
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling provided here
|
||||
; is used.
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the sutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
;%define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
; These macros implement stack based local variables
|
||||
|
||||
%macro save 2
|
||||
mov [esp+4*%1],%2
|
||||
%endmacro
|
||||
|
||||
%macro restore 2
|
||||
mov %1,[esp+4*%2]
|
||||
%endmacro
|
||||
|
||||
; the DLL has to implement the _stdcall calling interface on return
|
||||
; In this case we have to take our parameters (3 4-byte pointers)
|
||||
; off the stack
|
||||
|
||||
%macro do_name 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
global %1
|
||||
%1:
|
||||
%else
|
||||
global %1@%2
|
||||
export %1@%2
|
||||
%1@%2:
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_call 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
call %1
|
||||
add esp,%2
|
||||
%else
|
||||
call %1@%2
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_exit 0-1 parms
|
||||
%ifdef DLL_EXPORT
|
||||
ret %1
|
||||
%else
|
||||
ret
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
extern _t_fn
|
||||
|
||||
%define etab_0(x) [_t_fn+4*x]
|
||||
%define etab_1(x) [_t_fn+1024+4*x]
|
||||
%define etab_2(x) [_t_fn+2048+4*x]
|
||||
%define etab_3(x) [_t_fn+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern _t_fl
|
||||
|
||||
%define eltab_0(x) [_t_fl+4*x]
|
||||
%define eltab_1(x) [_t_fl+1024+4*x]
|
||||
%define eltab_2(x) [_t_fl+2048+4*x]
|
||||
%define eltab_3(x) [_t_fl+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
%define etab_b(x) byte [_t_fn+3072+4*x]
|
||||
|
||||
%endif
|
||||
|
||||
; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
|
||||
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
|
||||
;
|
||||
; Input:
|
||||
;
|
||||
; EAX column[0]
|
||||
; EBX column[1]
|
||||
; ECX column[2]
|
||||
; EDX column[3]
|
||||
; ESI column key[round][2]
|
||||
; EDI column key[round][3]
|
||||
; EBP scratch
|
||||
;
|
||||
; Output:
|
||||
;
|
||||
; EBP column[0] unkeyed
|
||||
; EBX column[1] unkeyed
|
||||
; ESI column[2] keyed
|
||||
; EDI column[3] keyed
|
||||
; EAX scratch
|
||||
; ECX scratch
|
||||
; EDX scratch
|
||||
|
||||
%macro rnd_fun 2
|
||||
|
||||
rol ebx,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, dh, 1, ebp
|
||||
%1 esi, bh, 3, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ah, 1, ebp
|
||||
%1 edi, bl, 2, ebp
|
||||
%2 ebp, al, 0, ebp
|
||||
shr ebx,16
|
||||
and eax,0xffff0000
|
||||
or eax,ebx
|
||||
shr edx,16
|
||||
%1 ebp, ah, 1, ebx
|
||||
%1 ebp, dh, 3, ebx
|
||||
%2 ebx, dl, 2, ebx
|
||||
%1 ebx, ch, 1, edx
|
||||
%1 ebx, al, 0, edx
|
||||
shr eax,16
|
||||
shr ecx,16
|
||||
%1 ebp, cl, 2, edx
|
||||
%1 edi, ch, 3, edx
|
||||
%1 esi, al, 2, edx
|
||||
%1 ebx, ah, 3, edx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro nr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro nr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro enc_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun nr_xor, nr_mov
|
||||
|
||||
mov eax,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro enc_last_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun lr_xor, lr_mov
|
||||
|
||||
mov eax,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
section .text align=32
|
||||
|
||||
; AES Encryption Subroutine
|
||||
|
||||
align 32
|
||||
do_name _aes_encrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte [ebp+4*KS_LENGTH]
|
||||
xor eax,[ebp ]
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: enc_round
|
||||
enc_round
|
||||
.2: enc_round
|
||||
enc_round
|
||||
.3: enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_last_round
|
||||
|
||||
mov edx,[esp+out_blk+stk_spc]
|
||||
mov [edx],eax
|
||||
mov [edx+4],ebx
|
||||
mov [edx+8],esi
|
||||
mov [edx+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
extern _t_in
|
||||
|
||||
%define dtab_0(x) [_t_in+4*x]
|
||||
%define dtab_1(x) [_t_in+1024+4*x]
|
||||
%define dtab_2(x) [_t_in+2048+4*x]
|
||||
%define dtab_3(x) [_t_in+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern _t_il
|
||||
|
||||
%define dltab_0(x) [_t_il+4*x]
|
||||
%define dltab_1(x) [_t_il+1024+4*x]
|
||||
%define dltab_2(x) [_t_il+2048+4*x]
|
||||
%define dltab_3(x) [_t_il+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
extern _t_ibox
|
||||
|
||||
%define dtab_x(x) byte [_t_ibox+x]
|
||||
|
||||
%endif
|
||||
|
||||
%macro irn_fun 2
|
||||
|
||||
rol eax,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, bh, 1, ebp
|
||||
%1 esi, al, 2, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ch, 1, ebp
|
||||
%1 edi, ah, 3, ebp
|
||||
%2 ebp, bl, 0, ebp
|
||||
shr eax,16
|
||||
and ebx,0xffff0000
|
||||
or ebx,eax
|
||||
shr ecx,16
|
||||
%1 ebp, bh, 1, eax
|
||||
%1 ebp, ch, 3, eax
|
||||
%2 eax, cl, 2, ecx
|
||||
%1 eax, bl, 0, ecx
|
||||
%1 eax, dh, 1, ecx
|
||||
shr ebx,16
|
||||
shr edx,16
|
||||
%1 esi, dh, 3, ecx
|
||||
%1 ebp, dl, 2, ecx
|
||||
%1 eax, bh, 3, ecx
|
||||
%1 edi, bl, 2, ecx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro ni_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro ni_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro dec_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun ni_xor, ni_mov
|
||||
|
||||
mov ebx,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro dec_last_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun li_xor, li_mov
|
||||
|
||||
mov ebx,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
section .text
|
||||
|
||||
; AES Decryption Subroutine
|
||||
|
||||
align 32
|
||||
do_name _aes_decrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
; input four columns and xor in first round key
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
lea esi,[esi+16]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte[ebp+4*KS_LENGTH]
|
||||
%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
|
||||
lea ebp,[ebp+edi] ; we have to access it from the top down
|
||||
%endif
|
||||
xor eax,[ebp ] ; key schedule
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: dec_round
|
||||
dec_round
|
||||
.2: dec_round
|
||||
dec_round
|
||||
.3: dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_last_round
|
||||
|
||||
; move final values to the output array.
|
||||
|
||||
mov ebp,[esp+out_blk+stk_spc]
|
||||
mov [ebp],eax
|
||||
mov [ebp+4],ebx
|
||||
mov [ebp+8],esi
|
||||
mov [ebp+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
|
||||
end
|
||||
|
1419
src/java/kp2akeytransform/jni/aes/aes_x86_v2.asm
Normal file
1419
src/java/kp2akeytransform/jni/aes/aes_x86_v2.asm
Normal file
File diff suppressed because it is too large
Load Diff
148
src/java/kp2akeytransform/jni/aes/aescpp.h
Normal file
148
src/java/kp2akeytransform/jni/aes/aescpp.h
Normal file
@ -0,0 +1,148 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the definitions required to use AES (Rijndael) in C++.
|
||||
*/
|
||||
|
||||
#ifndef _AESCPP_H
|
||||
#define _AESCPP_H
|
||||
|
||||
#include "aes.h"
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
class AESencrypt
|
||||
{
|
||||
public:
|
||||
aes_encrypt_ctx cx[1];
|
||||
AESencrypt(void) { aes_init(); };
|
||||
#if defined(AES_128)
|
||||
AESencrypt(const unsigned char key[])
|
||||
{ aes_encrypt_key128(key, cx); }
|
||||
AES_RETURN key128(const unsigned char key[])
|
||||
{ return aes_encrypt_key128(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_192)
|
||||
AES_RETURN key192(const unsigned char key[])
|
||||
{ return aes_encrypt_key192(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_256)
|
||||
AES_RETURN key256(const unsigned char key[])
|
||||
{ return aes_encrypt_key256(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN key(const unsigned char key[], int key_len)
|
||||
{ return aes_encrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
AES_RETURN encrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_encrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
AES_RETURN ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_encrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
AES_RETURN mode_reset(void) { return aes_mode_reset(cx); }
|
||||
|
||||
AES_RETURN ecb_encrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_encrypt(in, out, nb, cx); }
|
||||
|
||||
AES_RETURN cbc_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN cfb_encrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_encrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN cfb_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_cfb_decrypt(in, out, nb, iv, cx); }
|
||||
|
||||
AES_RETURN ofb_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[])
|
||||
{ return aes_ofb_crypt(in, out, nb, iv, cx); }
|
||||
|
||||
typedef void ctr_fn(unsigned char ctr[]);
|
||||
|
||||
AES_RETURN ctr_crypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[], ctr_fn cf)
|
||||
{ return aes_ctr_crypt(in, out, nb, iv, cf, cx); }
|
||||
|
||||
#endif
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
class AESdecrypt
|
||||
{
|
||||
public:
|
||||
aes_decrypt_ctx cx[1];
|
||||
AESdecrypt(void) { aes_init(); };
|
||||
#if defined(AES_128)
|
||||
AESdecrypt(const unsigned char key[])
|
||||
{ aes_decrypt_key128(key, cx); }
|
||||
AES_RETURN key128(const unsigned char key[])
|
||||
{ return aes_decrypt_key128(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_192)
|
||||
AES_RETURN key192(const unsigned char key[])
|
||||
{ return aes_decrypt_key192(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_256)
|
||||
AES_RETURN key256(const unsigned char key[])
|
||||
{ return aes_decrypt_key256(key, cx); }
|
||||
#endif
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN key(const unsigned char key[], int key_len)
|
||||
{ return aes_decrypt_key(key, key_len, cx); }
|
||||
#endif
|
||||
AES_RETURN decrypt(const unsigned char in[], unsigned char out[]) const
|
||||
{ return aes_decrypt(in, out, cx); }
|
||||
#ifndef AES_MODES
|
||||
AES_RETURN ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ while(nb--)
|
||||
{ aes_decrypt(in, out, cx), in += AES_BLOCK_SIZE, out += AES_BLOCK_SIZE; }
|
||||
}
|
||||
#endif
|
||||
#ifdef AES_MODES
|
||||
|
||||
AES_RETURN ecb_decrypt(const unsigned char in[], unsigned char out[], int nb) const
|
||||
{ return aes_ecb_decrypt(in, out, nb, cx); }
|
||||
|
||||
AES_RETURN cbc_decrypt(const unsigned char in[], unsigned char out[], int nb,
|
||||
unsigned char iv[]) const
|
||||
{ return aes_cbc_decrypt(in, out, nb, iv, cx); }
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
301
src/java/kp2akeytransform/jni/aes/aescrypt.c
Normal file
301
src/java/kp2akeytransform/jni/aes/aescrypt.c
Normal file
@ -0,0 +1,301 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
|
||||
#define so(y,x,c) word_out(y, c, s(x,c))
|
||||
|
||||
#if defined(ARRAYS)
|
||||
#define locals(y,x) x[4],y[4]
|
||||
#else
|
||||
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
|
||||
#endif
|
||||
|
||||
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
|
||||
s(y,2) = s(x,2); s(y,3) = s(x,3);
|
||||
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
|
||||
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
|
||||
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "s", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define fwd_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
|
||||
|
||||
#if defined(FT4_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
|
||||
#elif defined(FT1_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(FL4_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
|
||||
#elif defined(FL1_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
const uint_32t *kp;
|
||||
#if defined( dec_fmvars )
|
||||
dec_fmvars; /* declare variables for fwd_mcol() if needed */
|
||||
#endif
|
||||
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
|
||||
kp = cx->ks;
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (ENC_UNROLL == FULL)
|
||||
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 12 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 10 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
|
||||
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (ENC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b0, b1, kp);
|
||||
}
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp += N_COLS;
|
||||
round(fwd_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "t", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define inv_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
|
||||
|
||||
#if defined(IT4_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
|
||||
#elif defined(IT1_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(IL4_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
|
||||
#elif defined(IL1_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
|
||||
#endif
|
||||
|
||||
/* This code can work with the decryption key schedule in the */
|
||||
/* order that is used for encrytpion (where the 1st decryption */
|
||||
/* round key is at the high end ot the schedule) or with a key */
|
||||
/* schedule that has been reversed to put the 1st decryption */
|
||||
/* round key at the low end of the schedule in memory (when */
|
||||
/* AES_REV_DKS is defined) */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define key_ofs 0
|
||||
#define rnd_key(n) (kp + n * N_COLS)
|
||||
#else
|
||||
#define key_ofs 1
|
||||
#define rnd_key(n) (kp - n * N_COLS)
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
#if defined( dec_imvars )
|
||||
dec_imvars; /* declare variables for inv_mcol() if needed */
|
||||
#endif
|
||||
const uint_32t *kp;
|
||||
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
|
||||
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (DEC_UNROLL == FULL)
|
||||
|
||||
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-13));
|
||||
round(inv_rnd, b0, b1, rnd_key(-12));
|
||||
case 12 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-11));
|
||||
round(inv_rnd, b0, b1, rnd_key(-10));
|
||||
case 10 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-9));
|
||||
round(inv_rnd, b0, b1, rnd_key(-8));
|
||||
round(inv_rnd, b1, b0, rnd_key(-7));
|
||||
round(inv_rnd, b0, b1, rnd_key(-6));
|
||||
round(inv_rnd, b1, b0, rnd_key(-5));
|
||||
round(inv_rnd, b0, b1, rnd_key(-4));
|
||||
round(inv_rnd, b1, b0, rnd_key(-3));
|
||||
round(inv_rnd, b0, b1, rnd_key(-2));
|
||||
round(inv_rnd, b1, b0, rnd_key(-1));
|
||||
round(inv_lrnd, b0, b1, rnd_key( 0));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (DEC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b0, b1, kp);
|
||||
}
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp = rnd_key(1);
|
||||
round(inv_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
555
src/java/kp2akeytransform/jni/aes/aeskey.c
Normal file
555
src/java/kp2akeytransform/jni/aes/aeskey.c
Normal file
@ -0,0 +1,555 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "aesopt.h"
|
||||
#include "aestab.h"
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
# include "aes_via_ace.h"
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Initialise the key schedule from the user supplied key. The key
|
||||
length can be specified in bytes, with legal values of 16, 24
|
||||
and 32, or in bits, with legal values of 128, 192 and 256. These
|
||||
values correspond with Nk values of 4, 6 and 8 respectively.
|
||||
|
||||
The following macros implement a single cycle in the key
|
||||
schedule generation process. The number of cycles needed
|
||||
for each cx->n_col and nk value is:
|
||||
|
||||
nk = 4 5 6 7 8
|
||||
------------------------------
|
||||
cx->n_col = 4 10 9 8 7 7
|
||||
cx->n_col = 5 14 11 10 9 9
|
||||
cx->n_col = 6 19 15 12 11 11
|
||||
cx->n_col = 7 21 19 16 13 14
|
||||
cx->n_col = 8 29 23 19 17 14
|
||||
*/
|
||||
|
||||
#if defined( REDUCE_CODE_SIZE )
|
||||
# define ls_box ls_sub
|
||||
uint_32t ls_sub(const uint_32t t, const uint_32t n);
|
||||
# define inv_mcol im_sub
|
||||
uint_32t im_sub(const uint_32t x);
|
||||
# ifdef ENC_KS_UNROLL
|
||||
# undef ENC_KS_UNROLL
|
||||
# endif
|
||||
# ifdef DEC_KS_UNROLL
|
||||
# undef DEC_KS_UNROLL
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
|
||||
|
||||
#if defined(AES_128) || defined( AES_VAR )
|
||||
|
||||
#define ke4(k,i) \
|
||||
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
||||
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
||||
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[4];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
||||
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
||||
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
||||
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
||||
ke4(cx->ks, 8);
|
||||
#else
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 9; ++i)
|
||||
ke4(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
ke4(cx->ks, 9);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined( AES_VAR )
|
||||
|
||||
#define kef6(k,i) \
|
||||
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
||||
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
||||
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke6(k,i) \
|
||||
{ kef6(k,i); \
|
||||
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
||||
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[6];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
||||
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
||||
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
||||
ke6(cx->ks, 6);
|
||||
#else
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 7; ++i)
|
||||
ke6(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
kef6(cx->ks, 7);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined( AES_VAR )
|
||||
|
||||
#define kef8(k,i) \
|
||||
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
||||
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
||||
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke8(k,i) \
|
||||
{ kef8(k,i); \
|
||||
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
||||
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
||||
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[8];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
cx->ks[6] = ss[6] = word_in(key, 6);
|
||||
cx->ks[7] = ss[7] = word_in(key, 7);
|
||||
|
||||
#ifdef ENC_KS_UNROLL
|
||||
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
||||
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
||||
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
||||
#else
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 6; ++i)
|
||||
ke8(cx->ks, i);
|
||||
}
|
||||
#endif
|
||||
kef8(cx->ks, 6);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
case 16: case 128: return aes_encrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_encrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_encrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
|
||||
/* this is used to store the decryption round keys */
|
||||
/* in forward or reverse order */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
|
||||
#else
|
||||
#define v(n,i) (i)
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES
|
||||
#define ff(x) (x)
|
||||
#else
|
||||
#define ff(x) inv_mcol(x)
|
||||
#if defined( dec_imvars )
|
||||
#define d_vars dec_imvars
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(AES_128) || defined( AES_VAR )
|
||||
|
||||
#define k4e(k,i) \
|
||||
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
|
||||
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
|
||||
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
||||
ss[1] = ss[1] ^ ss[3]; \
|
||||
ss[2] = ss[2] ^ ss[3]; \
|
||||
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; \
|
||||
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
||||
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
|
||||
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
|
||||
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
||||
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+6)] = ss[0]; \
|
||||
k[v(40,(4*(i))+7)] = ss[1]; \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[5];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
||||
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
||||
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
||||
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
||||
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
||||
#else
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 10; ++i)
|
||||
k4e(cx->ks, i);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined( AES_VAR )
|
||||
|
||||
#define k6ef(k,i) \
|
||||
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
|
||||
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
|
||||
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k6e(k,i) \
|
||||
{ k6ef(k,i); \
|
||||
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
|
||||
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
#define kdf6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
|
||||
}
|
||||
|
||||
#define kd6(k,i) \
|
||||
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
|
||||
}
|
||||
|
||||
#define kdl6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[7];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
||||
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
||||
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
||||
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
||||
#else
|
||||
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 7; ++i)
|
||||
k6e(cx->ks, i);
|
||||
k6ef(cx->ks, 7);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined( AES_VAR )
|
||||
|
||||
#define k8ef(k,i) \
|
||||
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
|
||||
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
|
||||
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k8e(k,i) \
|
||||
{ k8ef(k,i); \
|
||||
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
|
||||
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
|
||||
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
#define kdf8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
|
||||
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
|
||||
}
|
||||
|
||||
#define kd8(k,i) \
|
||||
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
|
||||
ss[8] = ls_box(ss[3],0); \
|
||||
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
|
||||
}
|
||||
|
||||
#define kdl8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[9];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#ifdef DEC_KS_UNROLL
|
||||
cx->ks[v(56,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(56,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
cx->ks[v(56,(6))] = ff(ss[6] = word_in(key, 6));
|
||||
cx->ks[v(56,(7))] = ff(ss[7] = word_in(key, 7));
|
||||
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
||||
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
||||
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
||||
kdl8(cx->ks, 6);
|
||||
#else
|
||||
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
|
||||
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
|
||||
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 6; ++i)
|
||||
k8e(cx->ks, i);
|
||||
k8ef(cx->ks, 6);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_VAR )
|
||||
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
case 16: case 128: return aes_decrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_decrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_decrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
747
src/java/kp2akeytransform/jni/aes/aesopt.h
Normal file
747
src/java/kp2akeytransform/jni/aes/aesopt.h
Normal file
@ -0,0 +1,747 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the compilation options for AES (Rijndael) and code
|
||||
that is common across encryption, key scheduling and table generation.
|
||||
|
||||
OPERATION
|
||||
|
||||
These source code files implement the AES algorithm Rijndael designed by
|
||||
Joan Daemen and Vincent Rijmen. This version is designed for the standard
|
||||
block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
|
||||
and 32 bytes).
|
||||
|
||||
This version is designed for flexibility and speed using operations on
|
||||
32-bit words rather than operations on bytes. It can be compiled with
|
||||
either big or little endian internal byte order but is faster when the
|
||||
native byte order for the processor is used.
|
||||
|
||||
THE CIPHER INTERFACE
|
||||
|
||||
The cipher interface is implemented as an array of bytes in which lower
|
||||
AES bit sequence indexes map to higher numeric significance within bytes.
|
||||
|
||||
uint_8t (an unsigned 8-bit type)
|
||||
uint_32t (an unsigned 32-bit type)
|
||||
struct aes_encrypt_ctx (structure for the cipher encryption context)
|
||||
struct aes_decrypt_ctx (structure for the cipher decryption context)
|
||||
AES_RETURN the function return type
|
||||
|
||||
C subroutine calls:
|
||||
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
|
||||
you call aes_init() before AES is used so that the tables are initialised.
|
||||
|
||||
C++ aes class subroutines:
|
||||
|
||||
Class AESencrypt for encryption
|
||||
|
||||
Construtors:
|
||||
AESencrypt(void)
|
||||
AESencrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
|
||||
|
||||
Class AESdecrypt for encryption
|
||||
Construtors:
|
||||
AESdecrypt(void)
|
||||
AESdecrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
|
||||
*/
|
||||
|
||||
#if !defined( _AESOPT_H )
|
||||
#define _AESOPT_H
|
||||
|
||||
#if defined( __cplusplus )
|
||||
#include "aescpp.h"
|
||||
#else
|
||||
#include "aes.h"
|
||||
#endif
|
||||
|
||||
/* PLATFORM SPECIFIC INCLUDES */
|
||||
|
||||
#include "brg_endian.h"
|
||||
|
||||
/* CONFIGURATION - THE USE OF DEFINES
|
||||
|
||||
Later in this section there are a number of defines that control the
|
||||
operation of the code. In each section, the purpose of each define is
|
||||
explained so that the relevant form can be included or excluded by
|
||||
setting either 1's or 0's respectively on the branches of the related
|
||||
#if clauses. The following local defines should not be changed.
|
||||
*/
|
||||
|
||||
#define ENCRYPTION_IN_C 1
|
||||
#define DECRYPTION_IN_C 2
|
||||
#define ENC_KEYING_IN_C 4
|
||||
#define DEC_KEYING_IN_C 8
|
||||
|
||||
#define NO_TABLES 0
|
||||
#define ONE_TABLE 1
|
||||
#define FOUR_TABLES 4
|
||||
#define NONE 0
|
||||
#define PARTIAL 1
|
||||
#define FULL 2
|
||||
|
||||
/* --- START OF USER CONFIGURED OPTIONS --- */
|
||||
|
||||
/* 1. BYTE ORDER WITHIN 32 BIT WORDS
|
||||
|
||||
The fundamental data processing units in Rijndael are 8-bit bytes. The
|
||||
input, output and key input are all enumerated arrays of bytes in which
|
||||
bytes are numbered starting at zero and increasing to one less than the
|
||||
number of bytes in the array in question. This enumeration is only used
|
||||
for naming bytes and does not imply any adjacency or order relationship
|
||||
from one byte to another. When these inputs and outputs are considered
|
||||
as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
|
||||
byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
|
||||
In this implementation bits are numbered from 0 to 7 starting at the
|
||||
numerically least significant end of each byte (bit n represents 2^n).
|
||||
|
||||
However, Rijndael can be implemented more efficiently using 32-bit
|
||||
words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
|
||||
into word[n]. While in principle these bytes can be assembled into words
|
||||
in any positions, this implementation only supports the two formats in
|
||||
which bytes in adjacent positions within words also have adjacent byte
|
||||
numbers. This order is called big-endian if the lowest numbered bytes
|
||||
in words have the highest numeric significance and little-endian if the
|
||||
opposite applies.
|
||||
|
||||
This code can work in either order irrespective of the order used by the
|
||||
machine on which it runs. Normally the internal byte order will be set
|
||||
to the order of the processor on which the code is to be run but this
|
||||
define can be used to reverse this in special situations
|
||||
|
||||
WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
|
||||
This define will hence be redefined later (in section 4) if necessary
|
||||
*/
|
||||
|
||||
#if 1
|
||||
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#elif 0
|
||||
# define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0
|
||||
# define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error The algorithm byte order is not defined
|
||||
#endif
|
||||
|
||||
/* 2. VIA ACE SUPPORT */
|
||||
|
||||
#if defined( __GNUC__ ) && defined( __i386__ ) \
|
||||
|| defined( _WIN32 ) && defined( _M_IX86 ) \
|
||||
&& !(defined( _WIN64 ) || defined( _WIN32_WCE ) || defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
# define VIA_ACE_POSSIBLE
|
||||
#endif
|
||||
|
||||
/* Define this option if support for the VIA ACE is required. This uses
|
||||
inline assembler instructions and is only implemented for the Microsoft,
|
||||
Intel and GCC compilers. If VIA ACE is known to be present, then defining
|
||||
ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
|
||||
code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
|
||||
it is detected (both present and enabled) but the normal AES code will
|
||||
also be present.
|
||||
|
||||
When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
|
||||
aligned; other input/output buffers do not need to be 16 byte aligned
|
||||
but there are very large performance gains if this can be arranged.
|
||||
VIA ACE also requires the decryption key schedule to be in reverse
|
||||
order (which later checks below ensure).
|
||||
*/
|
||||
|
||||
/* Disable VIA ACE cpu detection which crashes on x86 android devices */
|
||||
#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# define ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
|
||||
/* 3. ASSEMBLER SUPPORT
|
||||
|
||||
This define (which can be on the command line) enables the use of the
|
||||
assembler code routines for encryption, decryption and key scheduling
|
||||
as follows:
|
||||
|
||||
ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption, decryption and key scheduling
|
||||
ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
|
||||
Change one 'if 0' below to 'if 1' to select the version or define
|
||||
as a compilation option.
|
||||
*/
|
||||
|
||||
#if 0 && !defined( ASM_X86_V1C )
|
||||
# define ASM_X86_V1C
|
||||
#elif 0 && !defined( ASM_X86_V2 )
|
||||
# define ASM_X86_V2
|
||||
#elif 0 && !defined( ASM_X86_V2C )
|
||||
# define ASM_X86_V2C
|
||||
#elif 0 && !defined( ASM_AMD64_C )
|
||||
# define ASM_AMD64_C
|
||||
#endif
|
||||
|
||||
#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
|
||||
&& !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
|
||||
# error Assembler code is only available for x86 and AMD64 systems
|
||||
#endif
|
||||
|
||||
/* 4. FAST INPUT/OUTPUT OPERATIONS.
|
||||
|
||||
On some machines it is possible to improve speed by transferring the
|
||||
bytes in the input and output arrays to and from the internal 32-bit
|
||||
variables by addressing these arrays as if they are arrays of 32-bit
|
||||
words. On some machines this will always be possible but there may
|
||||
be a large performance penalty if the byte arrays are not aligned on
|
||||
the normal word boundaries. On other machines this technique will
|
||||
lead to memory access errors when such 32-bit word accesses are not
|
||||
properly aligned. The option SAFE_IO avoids such problems but will
|
||||
often be slower on those machines that support misaligned access
|
||||
(especially so if care is taken to align the input and output byte
|
||||
arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
|
||||
assumed that access to byte arrays as if they are arrays of 32-bit
|
||||
words will not cause problems when such accesses are misaligned.
|
||||
*/
|
||||
#if 1 && !defined( _MSC_VER )
|
||||
# define SAFE_IO
|
||||
#endif
|
||||
|
||||
/* 5. LOOP UNROLLING
|
||||
|
||||
The code for encryption and decrytpion cycles through a number of rounds
|
||||
that can be implemented either in a loop or by expanding the code into a
|
||||
long sequence of instructions, the latter producing a larger program but
|
||||
one that will often be much faster. The latter is called loop unrolling.
|
||||
There are also potential speed advantages in expanding two iterations in
|
||||
a loop with half the number of iterations, which is called partial loop
|
||||
unrolling. The following options allow partial or full loop unrolling
|
||||
to be set independently for encryption and decryption
|
||||
*/
|
||||
#if 1
|
||||
# define ENC_UNROLL FULL
|
||||
#elif 0
|
||||
# define ENC_UNROLL PARTIAL
|
||||
#else
|
||||
# define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define DEC_UNROLL FULL
|
||||
#elif 0
|
||||
# define DEC_UNROLL PARTIAL
|
||||
#else
|
||||
# define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define ENC_KS_UNROLL
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define DEC_KS_UNROLL
|
||||
#endif
|
||||
|
||||
/* 6. FAST FINITE FIELD OPERATIONS
|
||||
|
||||
If this section is included, tables are used to provide faster finite
|
||||
field arithmetic (this has no effect if FIXED_TABLES is defined).
|
||||
*/
|
||||
#if 1
|
||||
# define FF_TABLES
|
||||
#endif
|
||||
|
||||
/* 7. INTERNAL STATE VARIABLE FORMAT
|
||||
|
||||
The internal state of Rijndael is stored in a number of local 32-bit
|
||||
word varaibles which can be defined either as an array or as individual
|
||||
names variables. Include this section if you want to store these local
|
||||
varaibles in arrays. Otherwise individual local variables will be used.
|
||||
*/
|
||||
#if 1
|
||||
# define ARRAYS
|
||||
#endif
|
||||
|
||||
/* 8. FIXED OR DYNAMIC TABLES
|
||||
|
||||
When this section is included the tables used by the code are compiled
|
||||
statically into the binary file. Otherwise the subroutine aes_init()
|
||||
must be called to compute them before the code is first used.
|
||||
*/
|
||||
#if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
# define FIXED_TABLES
|
||||
#endif
|
||||
|
||||
/* 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
|
||||
|
||||
In some systems it is better to mask longer values to extract bytes
|
||||
rather than using a cast. This option allows this choice.
|
||||
*/
|
||||
#if 0
|
||||
# define to_byte(x) ((uint_8t)(x))
|
||||
#else
|
||||
# define to_byte(x) ((x) & 0xff)
|
||||
#endif
|
||||
|
||||
/* 10. TABLE ALIGNMENT
|
||||
|
||||
On some sytsems speed will be improved by aligning the AES large lookup
|
||||
tables on particular boundaries. This define should be set to a power of
|
||||
two giving the desired alignment. It can be left undefined if alignment
|
||||
is not needed. This option is specific to the Microsft VC++ compiler -
|
||||
it seems to sometimes cause trouble for the VC++ version 6 compiler.
|
||||
*/
|
||||
|
||||
#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# define TABLE_ALIGN 32
|
||||
#endif
|
||||
|
||||
/* 11. REDUCE CODE AND TABLE SIZE
|
||||
|
||||
This replaces some expanded macros with function calls if AES_ASM_V2 or
|
||||
AES_ASM_V2C are defined
|
||||
*/
|
||||
|
||||
#if 1 && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C ))
|
||||
# define REDUCE_CODE_SIZE
|
||||
#endif
|
||||
|
||||
/* 12. TABLE OPTIONS
|
||||
|
||||
This cipher proceeds by repeating in a number of cycles known as 'rounds'
|
||||
which are implemented by a round function which can optionally be speeded
|
||||
up using tables. The basic tables are each 256 32-bit words, with either
|
||||
one or four tables being required for each round function depending on
|
||||
how much speed is required. The encryption and decryption round functions
|
||||
are different and the last encryption and decrytpion round functions are
|
||||
different again making four different round functions in all.
|
||||
|
||||
This means that:
|
||||
1. Normal encryption and decryption rounds can each use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
2. The last encryption and decryption rounds can also use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
|
||||
Include or exclude the appropriate definitions below to set the number
|
||||
of tables used by this implementation.
|
||||
*/
|
||||
|
||||
#if 1 /* set tables for the normal encryption round */
|
||||
# define ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last encryption round */
|
||||
# define LAST_ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define LAST_ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define LAST_ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the normal decryption round */
|
||||
# define DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last decryption round */
|
||||
# define LAST_DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
# define LAST_DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
# define LAST_DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
/* The decryption key schedule can be speeded up with tables in the same
|
||||
way that the round functions can. Include or exclude the following
|
||||
defines to set this requirement.
|
||||
*/
|
||||
#if 1
|
||||
# define KEY_SCHED FOUR_TABLES
|
||||
#elif 0
|
||||
# define KEY_SCHED ONE_TABLE
|
||||
#else
|
||||
# define KEY_SCHED NO_TABLES
|
||||
#endif
|
||||
|
||||
/* ---- END OF USER CONFIGURED OPTIONS ---- */
|
||||
|
||||
/* VIA ACE support is only available for VC++ and GCC */
|
||||
|
||||
#if !defined( _MSC_VER ) && !defined( __GNUC__ )
|
||||
# if defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# undef ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
# if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# undef USE_VIA_ACE_IF_PRESENT
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
|
||||
# define AES_REV_DKS
|
||||
#endif
|
||||
|
||||
/* Assembler support requires the use of platform byte order */
|
||||
|
||||
#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
|
||||
&& (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
|
||||
# undef ALGORITHM_BYTE_ORDER
|
||||
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#endif
|
||||
|
||||
/* In this implementation the columns of the state array are each held in
|
||||
32-bit words. The state array can be held in various ways: in an array
|
||||
of words, in a number of individual word variables or in a number of
|
||||
processor registers. The following define maps a variable name x and
|
||||
a column number c to the way the state array variable is to be held.
|
||||
The first define below maps the state into an array x[c] whereas the
|
||||
second form maps the state into a number of individual variables x0,
|
||||
x1, etc. Another form could map individual state colums to machine
|
||||
register names.
|
||||
*/
|
||||
|
||||
#if defined( ARRAYS )
|
||||
# define s(x,c) x[c]
|
||||
#else
|
||||
# define s(x,c) x##c
|
||||
#endif
|
||||
|
||||
/* This implementation provides subroutines for encryption, decryption
|
||||
and for setting the three key lengths (separately) for encryption
|
||||
and decryption. Since not all functions are needed, masks are set
|
||||
up here to determine which will be implemented in C
|
||||
*/
|
||||
|
||||
#if !defined( AES_ENCRYPT )
|
||||
# define EFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define EFUNCS_IN_C ENC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
|
||||
#else
|
||||
# define EFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#if !defined( AES_DECRYPT )
|
||||
# define DFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define DFUNCS_IN_C DEC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
|
||||
#else
|
||||
# define DFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
|
||||
|
||||
/* END OF CONFIGURATION OPTIONS */
|
||||
|
||||
#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
|
||||
|
||||
/* Disable or report errors on some combinations of options */
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
|
||||
# undef LAST_ENC_ROUND
|
||||
# define LAST_ENC_ROUND NO_TABLES
|
||||
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
|
||||
# undef LAST_ENC_ROUND
|
||||
# define LAST_ENC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
|
||||
# undef ENC_UNROLL
|
||||
# define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
|
||||
# undef LAST_DEC_ROUND
|
||||
# define LAST_DEC_ROUND NO_TABLES
|
||||
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
|
||||
# undef LAST_DEC_ROUND
|
||||
# define LAST_DEC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
|
||||
# undef DEC_UNROLL
|
||||
# define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if defined( bswap32 )
|
||||
# define aes_sw32 bswap32
|
||||
#elif defined( bswap_32 )
|
||||
# define aes_sw32 bswap_32
|
||||
#else
|
||||
# define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
|
||||
# define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
|
||||
higher index positions with wrap around into low positions
|
||||
ups(x,n): moves bytes by n positions to higher index positions in
|
||||
words but without wrap around
|
||||
bval(x,n): extracts a byte from a word
|
||||
|
||||
WARNING: The definitions given here are intended only for use with
|
||||
unsigned variables and with shift counts that are compile
|
||||
time constants
|
||||
*/
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
|
||||
# define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
|
||||
# define ups(x,n) ((uint_32t) (x) << (8 * (n)))
|
||||
# define bval(x,n) to_byte((x) >> (8 * (n)))
|
||||
# define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
|
||||
#endif
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
|
||||
# define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
|
||||
# define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
|
||||
# define bval(x,n) to_byte((x) >> (24 - 8 * (n)))
|
||||
# define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
|
||||
#endif
|
||||
|
||||
#if defined( SAFE_IO )
|
||||
# define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
|
||||
((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
|
||||
# define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
|
||||
((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
|
||||
#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
|
||||
# define word_in(x,c) (*((uint_32t*)(x)+(c)))
|
||||
# define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
|
||||
#else
|
||||
# define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
|
||||
# define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
|
||||
#endif
|
||||
|
||||
/* the finite field modular polynomial and elements */
|
||||
|
||||
#define WPOLY 0x011b
|
||||
#define BPOLY 0x1b
|
||||
|
||||
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
|
||||
|
||||
#define m1 0x80808080
|
||||
#define m2 0x7f7f7f7f
|
||||
#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
|
||||
|
||||
/* The following defines provide alternative definitions of gf_mulx that might
|
||||
give improved performance if a fast 32-bit multiply is not available. Note
|
||||
that a temporary variable u needs to be defined where gf_mulx is used.
|
||||
|
||||
#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
|
||||
#define m4 (0x01010101 * BPOLY)
|
||||
#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
|
||||
*/
|
||||
|
||||
/* Work out which tables are needed for the different options */
|
||||
|
||||
#if defined( ASM_X86_V1C )
|
||||
# if defined( ENC_ROUND )
|
||||
# undef ENC_ROUND
|
||||
# endif
|
||||
# define ENC_ROUND FOUR_TABLES
|
||||
# if defined( LAST_ENC_ROUND )
|
||||
# undef LAST_ENC_ROUND
|
||||
# endif
|
||||
# define LAST_ENC_ROUND FOUR_TABLES
|
||||
# if defined( DEC_ROUND )
|
||||
# undef DEC_ROUND
|
||||
# endif
|
||||
# define DEC_ROUND FOUR_TABLES
|
||||
# if defined( LAST_DEC_ROUND )
|
||||
# undef LAST_DEC_ROUND
|
||||
# endif
|
||||
# define LAST_DEC_ROUND FOUR_TABLES
|
||||
# if defined( KEY_SCHED )
|
||||
# undef KEY_SCHED
|
||||
# define KEY_SCHED FOUR_TABLES
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
# if ENC_ROUND == ONE_TABLE
|
||||
# define FT1_SET
|
||||
# elif ENC_ROUND == FOUR_TABLES
|
||||
# define FT4_SET
|
||||
# else
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# if LAST_ENC_ROUND == ONE_TABLE
|
||||
# define FL1_SET
|
||||
# elif LAST_ENC_ROUND == FOUR_TABLES
|
||||
# define FL4_SET
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
# if DEC_ROUND == ONE_TABLE
|
||||
# define IT1_SET
|
||||
# elif DEC_ROUND == FOUR_TABLES
|
||||
# define IT4_SET
|
||||
# else
|
||||
# define ISB_SET
|
||||
# endif
|
||||
# if LAST_DEC_ROUND == ONE_TABLE
|
||||
# define IL1_SET
|
||||
# elif LAST_DEC_ROUND == FOUR_TABLES
|
||||
# define IL4_SET
|
||||
# elif !defined(ISB_SET)
|
||||
# define ISB_SET
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
|
||||
# if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
|
||||
# if KEY_SCHED == ONE_TABLE
|
||||
# if !defined( FL1_SET ) && !defined( FL4_SET )
|
||||
# define LS1_SET
|
||||
# endif
|
||||
# elif KEY_SCHED == FOUR_TABLES
|
||||
# if !defined( FL4_SET )
|
||||
# define LS4_SET
|
||||
# endif
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# endif
|
||||
# if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
# if KEY_SCHED == ONE_TABLE
|
||||
# define IM1_SET
|
||||
# elif KEY_SCHED == FOUR_TABLES
|
||||
# define IM4_SET
|
||||
# elif !defined( SBX_SET )
|
||||
# define SBX_SET
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* generic definitions of Rijndael macros that use tables */
|
||||
|
||||
#define no_table(x,box,vf,rf,c) bytes2word( \
|
||||
box[bval(vf(x,0,c),rf(0,c))], \
|
||||
box[bval(vf(x,1,c),rf(1,c))], \
|
||||
box[bval(vf(x,2,c),rf(2,c))], \
|
||||
box[bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define one_table(x,op,tab,vf,rf,c) \
|
||||
( tab[bval(vf(x,0,c),rf(0,c))] \
|
||||
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
|
||||
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
|
||||
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
|
||||
|
||||
#define four_tables(x,tab,vf,rf,c) \
|
||||
( tab[0][bval(vf(x,0,c),rf(0,c))] \
|
||||
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
|
||||
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
|
||||
^ tab[3][bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define vf1(x,r,c) (x)
|
||||
#define rf1(r,c) (r)
|
||||
#define rf2(r,c) ((8+r-c)&3)
|
||||
|
||||
/* perform forward and inverse column mix operation on four bytes in long word x in */
|
||||
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
|
||||
|
||||
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
|
||||
|
||||
#if defined( FM4_SET ) /* not currently used */
|
||||
# define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
|
||||
#elif defined( FM1_SET ) /* not currently used */
|
||||
# define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
|
||||
#else
|
||||
# define dec_fmvars uint_32t g2
|
||||
# define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
|
||||
#endif
|
||||
|
||||
#if defined( IM4_SET )
|
||||
# define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
|
||||
#elif defined( IM1_SET )
|
||||
# define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
|
||||
#else
|
||||
# define dec_imvars uint_32t g2, g4, g9
|
||||
# define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
|
||||
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
|
||||
#endif
|
||||
|
||||
#if defined( FL4_SET )
|
||||
# define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS4_SET )
|
||||
# define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
|
||||
#elif defined( FL1_SET )
|
||||
# define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS1_SET )
|
||||
# define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
|
||||
#else
|
||||
# define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
|
||||
# define ISB_SET
|
||||
#endif
|
||||
|
||||
#endif
|
398
src/java/kp2akeytransform/jni/aes/aestab.c
Normal file
398
src/java/kp2akeytransform/jni/aes/aestab.c
Normal file
@ -0,0 +1,398 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include "aes.h"
|
||||
#include "aesopt.h"
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES) || !defined(FF_TABLES)
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#else
|
||||
|
||||
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
|
||||
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
|
||||
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
|
||||
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
|
||||
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
|
||||
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
|
||||
|
||||
#endif
|
||||
|
||||
#include "aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
/* implemented in case of wrong call for fixed tables */
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#else /* Generate the tables for the dynamic table option */
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
#define gf_inv(x) ((x) ? pow[ 255 - log[x]] : 0)
|
||||
|
||||
#else
|
||||
|
||||
/* It will generally be sensible to use tables to compute finite
|
||||
field multiplies and inverses but where memory is scarse this
|
||||
code might sometimes be better. But it only has effect during
|
||||
initialisation so its pretty unimportant in overall terms.
|
||||
*/
|
||||
|
||||
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
|
||||
set in x with x in the range 1 < x < 0x00000200. This form is
|
||||
used so that locals within fi can be bytes rather than words
|
||||
*/
|
||||
|
||||
static uint_8t hibit(const uint_32t x)
|
||||
{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
|
||||
|
||||
r |= (r >> 2);
|
||||
r |= (r >> 4);
|
||||
return (r + 1) >> 1;
|
||||
}
|
||||
|
||||
/* return the inverse of the finite field element x */
|
||||
|
||||
static uint_8t gf_inv(const uint_8t x)
|
||||
{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
||||
|
||||
if(x < 2)
|
||||
return x;
|
||||
|
||||
for( ; ; )
|
||||
{
|
||||
if(n1)
|
||||
while(n2 >= n1) /* divide polynomial p2 by p1 */
|
||||
{
|
||||
n2 /= n1; /* shift smaller polynomial left */
|
||||
p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */
|
||||
v2 ^= v1 * n2; /* shift accumulated value and */
|
||||
n2 = hibit(p2); /* add into result */
|
||||
}
|
||||
else
|
||||
return v1;
|
||||
|
||||
if(n2) /* repeat with values swapped */
|
||||
while(n1 >= n2)
|
||||
{
|
||||
n1 /= n2;
|
||||
p1 ^= p2 * n1;
|
||||
v1 ^= v2 * n1;
|
||||
n1 = hibit(p1);
|
||||
}
|
||||
else
|
||||
return v2;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* The forward and inverse affine transformations used in the S-box */
|
||||
uint_8t fwd_affine(const uint_8t x)
|
||||
{ uint_32t w = x;
|
||||
w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4);
|
||||
return 0x63 ^ ((w ^ (w >> 8)) & 0xff);
|
||||
}
|
||||
|
||||
uint_8t inv_affine(const uint_8t x)
|
||||
{ uint_32t w = x;
|
||||
w = (w << 1) ^ (w << 3) ^ (w << 6);
|
||||
return 0x05 ^ ((w ^ (w >> 8)) & 0xff);
|
||||
}
|
||||
|
||||
static int init = 0;
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{ uint_32t i, w;
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
uint_8t pow[512], log[256];
|
||||
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
/* log and power tables for GF(2^8) finite field with
|
||||
WPOLY as modular polynomial - the simplest primitive
|
||||
root is 0x03, used here to generate the tables
|
||||
*/
|
||||
|
||||
i = 0; w = 1;
|
||||
do
|
||||
{
|
||||
pow[i] = (uint_8t)w;
|
||||
pow[i + 255] = (uint_8t)w;
|
||||
log[w] = (uint_8t)i++;
|
||||
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
||||
}
|
||||
while (w != 1);
|
||||
|
||||
#else
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
|
||||
for(i = 0, w = 1; i < RC_LENGTH; ++i)
|
||||
{
|
||||
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
|
||||
w = f2(w);
|
||||
}
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{ uint_8t b;
|
||||
|
||||
b = fwd_affine(gf_inv((uint_8t)i));
|
||||
w = bytes2word(f2(b), b, b, f3(b));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
t_set(s,box)[i] = b;
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET ) /* tables for a normal encryption round */
|
||||
t_set(f,n)[i] = w;
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
t_set(f,n)[0][i] = w;
|
||||
t_set(f,n)[1][i] = upr(w,1);
|
||||
t_set(f,n)[2][i] = upr(w,2);
|
||||
t_set(f,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
|
||||
#if defined( FL1_SET ) /* tables for last encryption round (may also */
|
||||
t_set(f,l)[i] = w; /* be used in the key schedule) */
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
t_set(f,l)[0][i] = w;
|
||||
t_set(f,l)[1][i] = upr(w,1);
|
||||
t_set(f,l)[2][i] = upr(w,2);
|
||||
t_set(f,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/
|
||||
t_set(l,s)[i] = w; /* not of the required form */
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
t_set(l,s)[0][i] = w;
|
||||
t_set(l,s)[1][i] = upr(w,1);
|
||||
t_set(l,s)[2][i] = upr(w,2);
|
||||
t_set(l,s)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
b = gf_inv(inv_affine((uint_8t)i));
|
||||
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
||||
|
||||
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
|
||||
t_set(i,m)[b] = w;
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
t_set(i,m)[0][b] = w;
|
||||
t_set(i,m)[1][b] = upr(w,1);
|
||||
t_set(i,m)[2][b] = upr(w,2);
|
||||
t_set(i,m)[3][b] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
t_set(i,box)[i] = b;
|
||||
#endif
|
||||
#if defined( IT1_SET ) /* tables for a normal decryption round */
|
||||
t_set(i,n)[i] = w;
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
t_set(i,n)[0][i] = w;
|
||||
t_set(i,n)[1][i] = upr(w,1);
|
||||
t_set(i,n)[2][i] = upr(w,2);
|
||||
t_set(i,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
#if defined( IL1_SET ) /* tables for last decryption round */
|
||||
t_set(i,l)[i] = w;
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
t_set(i,l)[0][i] = w;
|
||||
t_set(i,l)[1][i] = upr(w,1);
|
||||
t_set(i,l)[2][i] = upr(w,2);
|
||||
t_set(i,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
}
|
||||
init = 1;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
180
src/java/kp2akeytransform/jni/aes/aestab.h
Normal file
180
src/java/kp2akeytransform/jni/aes/aestab.h
Normal file
@ -0,0 +1,180 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the code for declaring the tables needed to implement
|
||||
AES. The file aesopt.h is assumed to be included before this header file.
|
||||
If there are no global variables, the definitions here can be used to put
|
||||
the AES tables in a structure so that a pointer can then be added to the
|
||||
AES context to pass them to the AES routines that need them. If this
|
||||
facility is used, the calling program has to ensure that this pointer is
|
||||
managed appropriately. In particular, the value of the t_dec(in,it) item
|
||||
in the table structure must be set to zero in order to ensure that the
|
||||
tables are initialised. In practice the three code sequences in aeskey.c
|
||||
that control the calls to aes_init() and the aes_init() routine itself will
|
||||
have to be changed for a specific implementation. If global variables are
|
||||
available it will generally be preferable to use them with the precomputed
|
||||
FIXED_TABLES option that uses static global tables.
|
||||
|
||||
The following defines can be used to control the way the tables
|
||||
are defined, initialised and used in embedded environments that
|
||||
require special features for these purposes
|
||||
|
||||
the 't_dec' construction is used to declare fixed table arrays
|
||||
the 't_set' construction is used to set fixed table values
|
||||
the 't_use' construction is used to access fixed table values
|
||||
|
||||
256 byte tables:
|
||||
|
||||
t_xxx(s,box) => forward S box
|
||||
t_xxx(i,box) => inverse S box
|
||||
|
||||
256 32-bit word OR 4 x 256 32-bit word tables:
|
||||
|
||||
t_xxx(f,n) => forward normal round
|
||||
t_xxx(f,l) => forward last round
|
||||
t_xxx(i,n) => inverse normal round
|
||||
t_xxx(i,l) => inverse last round
|
||||
t_xxx(l,s) => key schedule table
|
||||
t_xxx(i,m) => key schedule table
|
||||
|
||||
Other variables and tables:
|
||||
|
||||
t_xxx(r,c) => the rcon table
|
||||
*/
|
||||
|
||||
#if !defined( _AESTAB_H )
|
||||
#define _AESTAB_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define t_dec(m,n) t_##m##n
|
||||
#define t_set(m,n) t_##m##n
|
||||
#define t_use(m,n) t_##m##n
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ ))
|
||||
/* make tables far data to avoid using too much DGROUP space (PG) */
|
||||
# define CONST const far
|
||||
# else
|
||||
# define CONST const
|
||||
# endif
|
||||
#else
|
||||
# define CONST
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES)
|
||||
# define EXTERN
|
||||
#else
|
||||
# define EXTERN extern
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(TABLE_ALIGN)
|
||||
#define ALIGN __declspec(align(TABLE_ALIGN))
|
||||
#else
|
||||
#define ALIGN
|
||||
#endif
|
||||
|
||||
#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 )
|
||||
# define XP_DIR __cdecl
|
||||
#else
|
||||
# define XP_DIR
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES) && defined(FIXED_TABLES)
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e)
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
|
||||
#else
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH];
|
||||
#endif
|
||||
|
||||
#if defined( SBX_SET )
|
||||
d_1(uint_8t, t_dec(s,box), sb_data, h0);
|
||||
#endif
|
||||
#if defined( ISB_SET )
|
||||
d_1(uint_8t, t_dec(i,box), isb_data, h0);
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
d_1(uint_32t, t_dec(f,n), sb_data, u0);
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3);
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
d_1(uint_32t, t_dec(f,l), sb_data, w0);
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
d_1(uint_32t, t_dec(i,n), isb_data, v0);
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
d_1(uint_32t, t_dec(i,l), isb_data, w0);
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if defined( FL1_SET )
|
||||
#undef LS1_SET
|
||||
#else
|
||||
d_1(uint_32t, t_dec(l,s), sb_data, w0);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( LS4_SET )
|
||||
#if defined( FL4_SET )
|
||||
#undef LS4_SET
|
||||
#else
|
||||
d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
d_1(uint_32t, t_dec(i,m), mm_data, v0);
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
426
src/java/kp2akeytransform/jni/aes/aesxam.c
Normal file
426
src/java/kp2akeytransform/jni/aes/aesxam.c
Normal file
@ -0,0 +1,426 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
// An example of the use of AES (Rijndael) for file encryption. This code
|
||||
// implements AES in CBC mode with ciphertext stealing when the file length
|
||||
// is greater than one block (16 bytes). This code is an example of how to
|
||||
// use AES and is not intended for real use since it does not provide any
|
||||
// file integrity checking.
|
||||
//
|
||||
// The Command line is:
|
||||
//
|
||||
// aesxam input_file_name output_file_name [D|E] hexadecimalkey
|
||||
//
|
||||
// where E gives encryption and D decryption of the input file into the
|
||||
// output file using the given hexadecimal key string. The later is a
|
||||
// hexadecimal sequence of 32, 48 or 64 digits. Examples to encrypt or
|
||||
// decrypt aes.c into aes.enc are:
|
||||
//
|
||||
// aesxam file.c file.enc E 0123456789abcdeffedcba9876543210
|
||||
//
|
||||
// aesxam file.enc file2.c D 0123456789abcdeffedcba9876543210
|
||||
//
|
||||
// which should return a file 'file2.c' identical to 'file.c'
|
||||
//
|
||||
// CIPHERTEXT STEALING
|
||||
//
|
||||
// Ciphertext stealing modifies the encryption of the last two CBC
|
||||
// blocks. It can be applied invariably to the last two plaintext
|
||||
// blocks or only applied when the last block is a partial one. In
|
||||
// this code it is only applied if there is a partial block. For
|
||||
// a plaintext consisting of N blocks, with the last block possibly
|
||||
// a partial one, ciphertext stealing works as shown below (note the
|
||||
// reversal of the last two ciphertext blocks). During decryption
|
||||
// the part of the C:N-1 block that is not transmitted (X) can be
|
||||
// obtained from the decryption of the penultimate ciphertext block
|
||||
// since the bytes in X are xored with the zero padding appended to
|
||||
// the last plaintext block.
|
||||
//
|
||||
// This is a picture of the processing of the last
|
||||
// plaintext blocks during encryption:
|
||||
//
|
||||
// +---------+ +---------+ +---------+ +-------+-+
|
||||
// | P:N-4 | | P:N-3 | | P:N-2 | | P:N-1 |0|
|
||||
// +---------+ +---------+ +---------+ +-------+-+
|
||||
// | | | |
|
||||
// v v v v
|
||||
// +----->x +----->x +----->x +----->x x = xor
|
||||
// | | | | | | | |
|
||||
// | v | v | v | v
|
||||
// | +---+ | +---+ | +---+ | +---+
|
||||
// | | E | | | E | | | E | | | E |
|
||||
// | +---+ | +---+ | +---+ | +---+
|
||||
// | | | | | | | |
|
||||
// | | | | | v | +---+
|
||||
// | | | | | +-------+-+ | |
|
||||
// | | | | | | C:N-1 |X| | |
|
||||
// | | | | | +-------+-+ ^ |
|
||||
// | | | | | || | |
|
||||
// | | | | | |+------+ |
|
||||
// | | | | | +----------|--+
|
||||
// | | | | | | |
|
||||
// | | | | | +---------+ |
|
||||
// | | | | | | |
|
||||
// | v | v | v v
|
||||
// | +---------+ | +---------+ | +---------+ +-------+
|
||||
// -+ | C:N-4 |-+ | C:N-3 |-+ | C:N-2 | | C:N-1 |
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
//
|
||||
// And this is a picture of the processing of the last
|
||||
// ciphertext blocks during decryption:
|
||||
//
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
// -+ | C:N-4 |-+ | C:N-3 |-+ | C:N-2 | | C:N-1 |
|
||||
// | +---------+ | +---------+ | +---------+ +-------+
|
||||
// | | | | | | |
|
||||
// | v | v | v +--------|----+
|
||||
// | +---+ | +---+ | +---+ | +--<--+ |
|
||||
// | | D | | | D | | | D | | | | |
|
||||
// | +---+ | +---+ | +---+ | | v v
|
||||
// | | | | | | ^ | +-------+-+
|
||||
// | v | v | v | | | C:N-1 |X|
|
||||
// +----->x +----->x | +-------+-+ | +-------+-+
|
||||
// | | | | |X| | |
|
||||
// | | | +-------+-+ | v
|
||||
// | | | | | +---+
|
||||
// | | | | v | D |
|
||||
// | | | +------>x +---+
|
||||
// | | | | |
|
||||
// | | +----->x<-----|------+ x = xor
|
||||
// | | | +-----+
|
||||
// | | | |
|
||||
// v v v v
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
// | P:N-4 | | P:N-3 | | P:N-2 | | P:N-1 |
|
||||
// +---------+ +---------+ +---------+ +-------+
|
||||
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
|
||||
#include "aes.h"
|
||||
#include "rdtsc.h"
|
||||
|
||||
#define BLOCK_LEN 16
|
||||
|
||||
#define OK 0
|
||||
#define READ_ERROR -7
|
||||
#define WRITE_ERROR -8
|
||||
|
||||
// A Pseudo Random Number Generator (PRNG) used for the
|
||||
// Initialisation Vector. The PRNG is George Marsaglia's
|
||||
// Multiply-With-Carry (MWC) PRNG that concatenates two
|
||||
// 16-bit MWC generators:
|
||||
// x(n)=36969 * x(n-1) + carry mod 2^16
|
||||
// y(n)=18000 * y(n-1) + carry mod 2^16
|
||||
// to produce a combined PRNG with a period of about 2^60.
|
||||
// The Pentium cycle counter is used to initialise it. This
|
||||
// is crude but the IV does not really need to be secret.
|
||||
|
||||
#define RAND(a,b) (((a = 36969 * (a & 65535) + (a >> 16)) << 16) + \
|
||||
(b = 18000 * (b & 65535) + (b >> 16)) )
|
||||
|
||||
void fillrand(unsigned char *buf, const int len)
|
||||
{ static unsigned long a[2], mt = 1, count = 4;
|
||||
static unsigned char r[4];
|
||||
int i;
|
||||
|
||||
if(mt) { mt = 0; *(unsigned long long*)a = read_tsc(); }
|
||||
|
||||
for(i = 0; i < len; ++i)
|
||||
{
|
||||
if(count == 4)
|
||||
{
|
||||
*(unsigned long*)r = RAND(a[0], a[1]);
|
||||
count = 0;
|
||||
}
|
||||
|
||||
buf[i] = r[count++];
|
||||
}
|
||||
}
|
||||
|
||||
int encfile(FILE *fin, FILE *fout, aes_encrypt_ctx ctx[1])
|
||||
{ unsigned char dbuf[3 * BLOCK_LEN];
|
||||
unsigned long i, len, wlen = BLOCK_LEN;
|
||||
|
||||
// When ciphertext stealing is used, we three ciphertext blocks so
|
||||
// we use a buffer that is three times the block length. The buffer
|
||||
// pointers b1, b2 and b3 point to the buffer positions of three
|
||||
// ciphertext blocks, b3 being the most recent and b1 being the
|
||||
// oldest. We start with the IV in b1 and the block to be decrypted
|
||||
// in b2.
|
||||
|
||||
// set a random IV
|
||||
|
||||
fillrand(dbuf, BLOCK_LEN);
|
||||
|
||||
// read the first file block
|
||||
len = (unsigned long) fread((char*)dbuf + BLOCK_LEN, 1, BLOCK_LEN, fin);
|
||||
|
||||
if(len < BLOCK_LEN)
|
||||
{ // if the file length is less than one block
|
||||
|
||||
// xor the file bytes with the IV bytes
|
||||
for(i = 0; i < len; ++i)
|
||||
dbuf[i + BLOCK_LEN] ^= dbuf[i];
|
||||
|
||||
// encrypt the top 16 bytes of the buffer
|
||||
aes_encrypt(dbuf + len, dbuf + len, ctx);
|
||||
|
||||
len += BLOCK_LEN;
|
||||
// write the IV and the encrypted file bytes
|
||||
if(fwrite((char*)dbuf, 1, len, fout) != len)
|
||||
return WRITE_ERROR;
|
||||
|
||||
return OK;
|
||||
}
|
||||
else // if the file length is more 16 bytes
|
||||
{ unsigned char *b1 = dbuf, *b2 = b1 + BLOCK_LEN, *b3 = b2 + BLOCK_LEN, *bt;
|
||||
|
||||
// write the IV
|
||||
if(fwrite((char*)dbuf, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
|
||||
for( ; ; )
|
||||
{
|
||||
// read the next block to see if ciphertext stealing is needed
|
||||
len = (unsigned long)fread((char*)b3, 1, BLOCK_LEN, fin);
|
||||
|
||||
// do CBC chaining prior to encryption for current block (in b2)
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
b1[i] ^= b2[i];
|
||||
|
||||
// encrypt the block (now in b1)
|
||||
aes_encrypt(b1, b1, ctx);
|
||||
|
||||
if(len != 0 && len != BLOCK_LEN) // use ciphertext stealing
|
||||
{
|
||||
// set the length of the last block
|
||||
wlen = len;
|
||||
|
||||
// xor ciphertext into last block
|
||||
for(i = 0; i < len; ++i)
|
||||
b3[i] ^= b1[i];
|
||||
|
||||
// move 'stolen' ciphertext into last block
|
||||
for(i = len; i < BLOCK_LEN; ++i)
|
||||
b3[i] = b1[i];
|
||||
|
||||
// encrypt this block
|
||||
aes_encrypt(b3, b3, ctx);
|
||||
|
||||
// and write it as the second to last encrypted block
|
||||
if(fwrite((char*)b3, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
}
|
||||
|
||||
// write the encrypted block
|
||||
if(fwrite((char*)b1, 1, wlen, fout) != wlen)
|
||||
return WRITE_ERROR;
|
||||
|
||||
if(len != BLOCK_LEN)
|
||||
return OK;
|
||||
|
||||
// advance the buffer pointers
|
||||
bt = b3, b3 = b2, b2 = b1, b1 = bt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int decfile(FILE *fin, FILE *fout, aes_decrypt_ctx ctx[1])
|
||||
{ unsigned char dbuf[3 * BLOCK_LEN], buf[BLOCK_LEN];
|
||||
unsigned long i, len, wlen = BLOCK_LEN;
|
||||
|
||||
// When ciphertext stealing is used, we three ciphertext blocks so
|
||||
// we use a buffer that is three times the block length. The buffer
|
||||
// pointers b1, b2 and b3 point to the buffer positions of three
|
||||
// ciphertext blocks, b3 being the most recent and b1 being the
|
||||
// oldest. We start with the IV in b1 and the block to be decrypted
|
||||
// in b2.
|
||||
|
||||
len = (unsigned long)fread((char*)dbuf, 1, 2 * BLOCK_LEN, fin);
|
||||
|
||||
if(len < 2 * BLOCK_LEN) // the original file is less than one block in length
|
||||
{
|
||||
len -= BLOCK_LEN;
|
||||
// decrypt from position len to position len + BLOCK_LEN
|
||||
aes_decrypt(dbuf + len, dbuf + len, ctx);
|
||||
|
||||
// undo the CBC chaining
|
||||
for(i = 0; i < len; ++i)
|
||||
dbuf[i] ^= dbuf[i + BLOCK_LEN];
|
||||
|
||||
// output the decrypted bytes
|
||||
if(fwrite((char*)dbuf, 1, len, fout) != len)
|
||||
return WRITE_ERROR;
|
||||
|
||||
return OK;
|
||||
}
|
||||
else
|
||||
{ unsigned char *b1 = dbuf, *b2 = b1 + BLOCK_LEN, *b3 = b2 + BLOCK_LEN, *bt;
|
||||
|
||||
for( ; ; ) // while some ciphertext remains, prepare to decrypt block b2
|
||||
{
|
||||
// read in the next block to see if ciphertext stealing is needed
|
||||
len = fread((char*)b3, 1, BLOCK_LEN, fin);
|
||||
|
||||
// decrypt the b2 block
|
||||
aes_decrypt(b2, buf, ctx);
|
||||
|
||||
if(len == 0 || len == BLOCK_LEN) // no ciphertext stealing
|
||||
{
|
||||
// unchain CBC using the previous ciphertext block in b1
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
buf[i] ^= b1[i];
|
||||
}
|
||||
else // partial last block - use ciphertext stealing
|
||||
{
|
||||
wlen = len;
|
||||
|
||||
// produce last 'len' bytes of plaintext by xoring with
|
||||
// the lowest 'len' bytes of next block b3 - C[N-1]
|
||||
for(i = 0; i < len; ++i)
|
||||
buf[i] ^= b3[i];
|
||||
|
||||
// reconstruct the C[N-1] block in b3 by adding in the
|
||||
// last (BLOCK_LEN - len) bytes of C[N-2] in b2
|
||||
for(i = len; i < BLOCK_LEN; ++i)
|
||||
b3[i] = buf[i];
|
||||
|
||||
// decrypt the C[N-1] block in b3
|
||||
aes_decrypt(b3, b3, ctx);
|
||||
|
||||
// produce the last but one plaintext block by xoring with
|
||||
// the last but two ciphertext block
|
||||
for(i = 0; i < BLOCK_LEN; ++i)
|
||||
b3[i] ^= b1[i];
|
||||
|
||||
// write decrypted plaintext blocks
|
||||
if(fwrite((char*)b3, 1, BLOCK_LEN, fout) != BLOCK_LEN)
|
||||
return WRITE_ERROR;
|
||||
}
|
||||
|
||||
// write the decrypted plaintext block
|
||||
if(fwrite((char*)buf, 1, wlen, fout) != wlen)
|
||||
return WRITE_ERROR;
|
||||
|
||||
if(len != BLOCK_LEN)
|
||||
return OK;
|
||||
|
||||
// advance the buffer pointers
|
||||
bt = b1, b1 = b2, b2 = b3, b3 = bt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{ FILE *fin = 0, *fout = 0;
|
||||
char *cp, ch, key[32];
|
||||
int i, by = 0, key_len, err = 0;
|
||||
|
||||
if(argc != 5 || toupper(*argv[3]) != 'D' && toupper(*argv[3]) != 'E')
|
||||
{
|
||||
printf("usage: aesxam in_filename out_filename [d/e] key_in_hex\n");
|
||||
err = -1; goto exit;
|
||||
}
|
||||
|
||||
aes_init(); // in case dynamic AES tables are being used
|
||||
|
||||
cp = argv[4]; // this is a pointer to the hexadecimal key digits
|
||||
i = 0; // this is a count for the input digits processed
|
||||
|
||||
while(i < 64 && *cp) // the maximum key length is 32 bytes and
|
||||
{ // hence at most 64 hexadecimal digits
|
||||
ch = toupper(*cp++); // process a hexadecimal digit
|
||||
if(ch >= '0' && ch <= '9')
|
||||
by = (by << 4) + ch - '0';
|
||||
else if(ch >= 'A' && ch <= 'F')
|
||||
by = (by << 4) + ch - 'A' + 10;
|
||||
else // error if not hexadecimal
|
||||
{
|
||||
printf("key must be in hexadecimal notation\n");
|
||||
err = -2; goto exit;
|
||||
}
|
||||
|
||||
// store a key byte for each pair of hexadecimal digits
|
||||
if(i++ & 1)
|
||||
key[i / 2 - 1] = by & 0xff;
|
||||
}
|
||||
|
||||
if(*cp)
|
||||
{
|
||||
printf("The key value is too long\n");
|
||||
err = -3; goto exit;
|
||||
}
|
||||
else if(i < 32 || (i & 15))
|
||||
{
|
||||
printf("The key length must be 32, 48 or 64 hexadecimal digits\n");
|
||||
err = -4; goto exit;
|
||||
}
|
||||
|
||||
key_len = i / 2;
|
||||
|
||||
if(!(fin = fopen(argv[1], "rb"))) // try to open the input file
|
||||
{
|
||||
printf("The input file: %s could not be opened\n", argv[1]);
|
||||
err = -5; goto exit;
|
||||
}
|
||||
|
||||
if(!(fout = fopen(argv[2], "wb"))) // try to open the output file
|
||||
{
|
||||
printf("The output file: %s could not be opened\n", argv[2]);
|
||||
err = -6; goto exit;
|
||||
}
|
||||
|
||||
if(toupper(*argv[3]) == 'E') // encryption in Cipher Block Chaining mode
|
||||
{ aes_encrypt_ctx ctx[1];
|
||||
|
||||
aes_encrypt_key((unsigned char*)key, key_len, ctx);
|
||||
|
||||
err = encfile(fin, fout, ctx);
|
||||
}
|
||||
else // decryption in Cipher Block Chaining mode
|
||||
{ aes_decrypt_ctx ctx[1];
|
||||
|
||||
aes_decrypt_key((unsigned char*)key, key_len, ctx);
|
||||
|
||||
err = decfile(fin, fout, ctx);
|
||||
}
|
||||
exit:
|
||||
if(err == READ_ERROR)
|
||||
printf("Error reading from input file: %s\n", argv[1]);
|
||||
|
||||
if(err == WRITE_ERROR)
|
||||
printf("Error writing to output file: %s\n", argv[2]);
|
||||
|
||||
if(fout)
|
||||
fclose(fout);
|
||||
|
||||
if(fin)
|
||||
fclose(fin);
|
||||
|
||||
return err;
|
||||
}
|
133
src/java/kp2akeytransform/jni/aes/brg_endian.h
Normal file
133
src/java/kp2akeytransform/jni/aes/brg_endian.h
Normal file
@ -0,0 +1,133 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#ifndef _BRG_ENDIAN_H
|
||||
#define _BRG_ENDIAN_H
|
||||
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
|
||||
/* Include files where endian defines and byteswap functions may reside */
|
||||
#if defined( __sun )
|
||||
# include <sys/isa_defs.h>
|
||||
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
|
||||
# include <sys/endian.h>
|
||||
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
|
||||
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
|
||||
# include <machine/endian.h>
|
||||
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
|
||||
# if !defined( __MINGW32__ ) && !defined( _AIX )
|
||||
# include <endian.h>
|
||||
# if !defined( __BEOS__ )
|
||||
# include <byteswap.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Now attempt to set the define for platform byte order using any */
|
||||
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
|
||||
/* seem to encompass most endian symbol definitions */
|
||||
|
||||
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
|
||||
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
|
||||
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( _BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( _LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
|
||||
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
|
||||
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
# endif
|
||||
#elif defined( __BIG_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#elif defined( __LITTLE_ENDIAN__ )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
/* if the platform byte order could not be determined, then try to */
|
||||
/* set this define using common machine defines */
|
||||
#if !defined(PLATFORM_BYTE_ORDER)
|
||||
|
||||
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
|
||||
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
|
||||
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
|
||||
defined( vax ) || defined( vms ) || defined( VMS ) || \
|
||||
defined( __VMS ) || defined( _M_X64 )
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
|
||||
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
|
||||
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
|
||||
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
|
||||
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
|
||||
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
|
||||
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
|
||||
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
226
src/java/kp2akeytransform/jni/aes/brg_types.h
Normal file
226
src/java/kp2akeytransform/jni/aes/brg_types.h
Normal file
@ -0,0 +1,226 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
The unsigned integer types defined here are of the form uint_<nn>t where
|
||||
<nn> is the length of the type; for example, the unsigned 32-bit type is
|
||||
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
|
||||
defined in the inttypes.h and stdint.h headers since attempts to use these
|
||||
types have shown that support for them is still highly variable. However,
|
||||
since the latter are of the form uint<nn>_t, a regular expression search
|
||||
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
|
||||
can be used to convert the types used here to the C99 standard types.
|
||||
*/
|
||||
|
||||
#ifndef _BRG_TYPES_H
|
||||
#define _BRG_TYPES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
# include <stddef.h>
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __ECOS__ )
|
||||
# define intptr_t unsigned int
|
||||
# define ptrint_t intptr_t
|
||||
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 )
|
||||
# include <stdint.h>
|
||||
# define ptrint_t intptr_t
|
||||
#else
|
||||
# define ptrint_t int
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI8
|
||||
# define BRG_UI8
|
||||
# if UCHAR_MAX == 255u
|
||||
typedef unsigned char uint_8t;
|
||||
# else
|
||||
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI16
|
||||
# define BRG_UI16
|
||||
# if USHRT_MAX == 65535u
|
||||
typedef unsigned short uint_16t;
|
||||
# else
|
||||
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI32
|
||||
# define BRG_UI32
|
||||
# if UINT_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##u
|
||||
typedef unsigned int uint_32t;
|
||||
# elif ULONG_MAX == 4294967295u
|
||||
# define li_32(h) 0x##h##ul
|
||||
typedef unsigned long uint_32t;
|
||||
# elif defined( _CRAY )
|
||||
# error This code needs 32-bit data types, which Cray machines do not provide
|
||||
# else
|
||||
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BRG_UI64
|
||||
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ui64
|
||||
typedef unsigned __int64 uint_64t;
|
||||
# elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# elif defined( __MVS__ )
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned int long long uint_64t;
|
||||
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
|
||||
# if UINT_MAX == 18446744073709551615u
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##u
|
||||
typedef unsigned int uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
|
||||
# if ULONG_MAX == 18446744073709551615ul
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ul
|
||||
typedef unsigned long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
|
||||
# if ULLONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
|
||||
# if ULONG_LONG_MAX == 18446744073709551615ull
|
||||
# define BRG_UI64
|
||||
# define li_64(h) 0x##h##ull
|
||||
typedef unsigned long long uint_64t;
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if !defined( BRG_UI64 )
|
||||
# if defined( NEED_UINT_64T )
|
||||
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef RETURN_VALUES
|
||||
# define RETURN_VALUES
|
||||
# if defined( DLL_EXPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllexport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllexport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllexport__ ) void
|
||||
# define INT_RETURN __declspec( __dllexport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( DLL_IMPORT )
|
||||
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
|
||||
# define VOID_RETURN __declspec( dllimport ) void __stdcall
|
||||
# define INT_RETURN __declspec( dllimport ) int __stdcall
|
||||
# elif defined( __GNUC__ )
|
||||
# define VOID_RETURN __declspec( __dllimport__ ) void
|
||||
# define INT_RETURN __declspec( __dllimport__ ) int
|
||||
# else
|
||||
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
|
||||
# endif
|
||||
# elif defined( __WATCOMC__ )
|
||||
# define VOID_RETURN void __cdecl
|
||||
# define INT_RETURN int __cdecl
|
||||
# else
|
||||
# define VOID_RETURN void
|
||||
# define INT_RETURN int
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* These defines are used to detect and set the memory alignment of pointers.
|
||||
Note that offsets are in bytes.
|
||||
|
||||
ALIGN_OFFSET(x,n) return the positive or zero offset of
|
||||
the memory addressed by the pointer 'x'
|
||||
from an address that is aligned on an
|
||||
'n' byte boundary ('n' is a power of 2)
|
||||
|
||||
ALIGN_FLOOR(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not higher than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
|
||||
ALIGN_CEIL(x,n) return a pointer that points to memory
|
||||
that is aligned on an 'n' byte boundary
|
||||
and is not lower than the memory address
|
||||
pointed to by 'x' ('n' is a power of 2)
|
||||
*/
|
||||
|
||||
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
|
||||
#define ALIGN_FLOOR(x,n) ((uint_8t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
|
||||
#define ALIGN_CEIL(x,n) ((uint_8t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
|
||||
|
||||
/* These defines are used to declare buffers in a way that allows
|
||||
faster operations on longer variables to be used. In all these
|
||||
defines 'size' must be a power of 2 and >= 8. NOTE that the
|
||||
buffer size is in bytes but the type length is in bits
|
||||
|
||||
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
|
||||
'size' bits
|
||||
|
||||
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
|
||||
bytes defined as an array of variables
|
||||
each of 'size' bits (bsize must be a
|
||||
multiple of size / 8)
|
||||
|
||||
UNIT_CAST(x,size) casts a variable to a type of
|
||||
length 'size' bits
|
||||
|
||||
UPTR_CAST(x,size) casts a pointer to a pointer to a
|
||||
varaiable of length 'size' bits
|
||||
*/
|
||||
|
||||
#define UI_TYPE(size) uint_##size##t
|
||||
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
|
||||
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
|
||||
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
|
||||
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
331
src/java/kp2akeytransform/jni/aes/rfc3686.c
Normal file
331
src/java/kp2akeytransform/jni/aes/rfc3686.c
Normal file
@ -0,0 +1,331 @@
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "aes.h"
|
||||
|
||||
typedef struct
|
||||
{ unsigned int k_len;
|
||||
unsigned int m_len;
|
||||
unsigned char key[32];
|
||||
unsigned char iv[8];
|
||||
unsigned char nonce[8];
|
||||
unsigned char p_txt[36];
|
||||
unsigned char c_str[48];
|
||||
unsigned char k_str[48];
|
||||
unsigned char c_txt[36];
|
||||
} test_str;
|
||||
|
||||
test_str tests[] =
|
||||
{
|
||||
{ 16, 16, /* Vector 1 */
|
||||
{ 0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc,
|
||||
0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x30
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0xb7, 0x60, 0x33, 0x28, 0xdb, 0xc2, 0x93, 0x1b,
|
||||
0x41, 0x0e, 0x16, 0xc8, 0x06, 0x7e, 0x62, 0xdf
|
||||
},
|
||||
{ 0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79,
|
||||
0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
|
||||
}
|
||||
},
|
||||
{ 16, 32, /* Vector 2 */
|
||||
{ 0x7e, 0x24, 0x06, 0x78, 0x17, 0xfa, 0xe0, 0xd7,
|
||||
0x43, 0xd6, 0xce, 0x1f, 0x32, 0x53, 0x91, 0x63
|
||||
},
|
||||
{ 0xc0, 0x54, 0x3b, 0x59, 0xda, 0x48, 0xd9, 0x0b
|
||||
},
|
||||
{ 0x00, 0x6c, 0xb6, 0xdb
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59,
|
||||
0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59,
|
||||
0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x51, 0x05, 0xa3, 0x05, 0x12, 0x8f, 0x74, 0xde,
|
||||
0x71, 0x04, 0x4b, 0xe5, 0x82, 0xd7, 0xdd, 0x87,
|
||||
0xfb, 0x3f, 0x0c, 0xef, 0x52, 0xcf, 0x41, 0xdf,
|
||||
0xe4, 0xff, 0x2a, 0xc4, 0x8d, 0x5c, 0xa0, 0x37
|
||||
},
|
||||
{ 0x51, 0x04, 0xa1, 0x06, 0x16, 0x8a, 0x72, 0xd9,
|
||||
0x79, 0x0d, 0x41, 0xee, 0x8e, 0xda, 0xd3, 0x88,
|
||||
0xeb, 0x2e, 0x1e, 0xfc, 0x46, 0xda, 0x57, 0xc8,
|
||||
0xfc, 0xe6, 0x30, 0xdf, 0x91, 0x41, 0xbe, 0x28
|
||||
}
|
||||
},
|
||||
{ 16, 36, /* Vector 3 */
|
||||
{ 0x76, 0x91, 0xbe, 0x03, 0x5e, 0x50, 0x20, 0xa8,
|
||||
0xac, 0x6e, 0x61, 0x85, 0x29, 0xf9, 0xa0, 0xdc
|
||||
},
|
||||
{ 0x27, 0x77, 0x7f, 0x3f, 0x4a, 0x17, 0x86, 0xf0
|
||||
},
|
||||
{ 0x00, 0xe0, 0x01, 0x7b
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x02,
|
||||
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f,
|
||||
0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x03
|
||||
},
|
||||
{ 0xc1, 0xce, 0x4a, 0xab, 0x9b, 0x2a, 0xfb, 0xde,
|
||||
0xc7, 0x4f, 0x58, 0xe2, 0xe3, 0xd6, 0x7c, 0xd8,
|
||||
0x55, 0x51, 0xb6, 0x38, 0xca, 0x78, 0x6e, 0x21,
|
||||
0xcd, 0x83, 0x46, 0xf1, 0xb2, 0xee, 0x0e, 0x4c,
|
||||
0x05, 0x93, 0x25, 0x0c, 0x17, 0x55, 0x36, 0x00,
|
||||
0xa6, 0x3d, 0xfe, 0xcf, 0x56, 0x23, 0x87, 0xe9
|
||||
},
|
||||
{ 0xc1, 0xcf, 0x48, 0xa8, 0x9f, 0x2f, 0xfd, 0xd9,
|
||||
0xcf, 0x46, 0x52, 0xe9, 0xef, 0xdb, 0x72, 0xd7,
|
||||
0x45, 0x40, 0xa4, 0x2b, 0xde, 0x6d, 0x78, 0x36,
|
||||
0xd5, 0x9a, 0x5c, 0xea, 0xae, 0xf3, 0x10, 0x53,
|
||||
0x25, 0xb2, 0x07, 0x2f
|
||||
}
|
||||
},
|
||||
{ 24, 16, /* Vector 4 */
|
||||
{ 0x16, 0xaf, 0x5b, 0x14, 0x5f, 0xc9, 0xf5, 0x79,
|
||||
0xc1, 0x75, 0xf9, 0x3e, 0x3b, 0xfb, 0x0e, 0xed,
|
||||
0x86, 0x3d, 0x06, 0xcc, 0xfd, 0xb7, 0x85, 0x15
|
||||
},
|
||||
{ 0x36, 0x73, 0x3c, 0x14, 0x7d, 0x6d, 0x93, 0xcb
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x48
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x48, 0x36, 0x73, 0x3c, 0x14,
|
||||
0x7d, 0x6d, 0x93, 0xcb, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0x18, 0x3c, 0x56, 0x28, 0x8e, 0x3c, 0xe9, 0xaa,
|
||||
0x22, 0x16, 0x56, 0xcb, 0x23, 0xa6, 0x9a, 0x4f
|
||||
},
|
||||
{ 0x4b, 0x55, 0x38, 0x4f, 0xe2, 0x59, 0xc9, 0xc8,
|
||||
0x4e, 0x79, 0x35, 0xa0, 0x03, 0xcb, 0xe9, 0x28
|
||||
}
|
||||
},
|
||||
{ 24, 32, /* Vector 5 */
|
||||
{ 0x7c, 0x5c, 0xb2, 0x40, 0x1b, 0x3d, 0xc3, 0x3c,
|
||||
0x19, 0xe7, 0x34, 0x08, 0x19, 0xe0, 0xf6, 0x9c,
|
||||
0x67, 0x8c, 0x3d, 0xb8, 0xe6, 0xf6, 0xa9, 0x1a
|
||||
},
|
||||
{ 0x02, 0x0c, 0x6e, 0xad, 0xc2, 0xcb, 0x50, 0x0d
|
||||
},
|
||||
{ 0x00, 0x96, 0xb0, 0x3b
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad,
|
||||
0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad,
|
||||
0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x45, 0x33, 0x41, 0xff, 0x64, 0x9e, 0x25, 0x35,
|
||||
0x76, 0xd6, 0xa0, 0xf1, 0x7d, 0x3c, 0xc3, 0x90,
|
||||
0x94, 0x81, 0x62, 0x0f, 0x4e, 0xc1, 0xb1, 0x8b,
|
||||
0xe4, 0x06, 0xfa, 0xe4, 0x5e, 0xe9, 0xe5, 0x1f
|
||||
},
|
||||
{ 0x45, 0x32, 0x43, 0xfc, 0x60, 0x9b, 0x23, 0x32,
|
||||
0x7e, 0xdf, 0xaa, 0xfa, 0x71, 0x31, 0xcd, 0x9f,
|
||||
0x84, 0x90, 0x70, 0x1c, 0x5a, 0xd4, 0xa7, 0x9c,
|
||||
0xfc, 0x1f, 0xe0, 0xff, 0x42, 0xf4, 0xfb, 0x00
|
||||
}
|
||||
},
|
||||
{ 24, 36, /* Vector 6 */
|
||||
{ 0x02, 0xbf, 0x39, 0x1e, 0xe8, 0xec, 0xb1, 0x59,
|
||||
0xb9, 0x59, 0x61, 0x7b, 0x09, 0x65, 0x27, 0x9b,
|
||||
0xf5, 0x9b, 0x60, 0xa7, 0x86, 0xd3, 0xe0, 0xfe
|
||||
},
|
||||
{ 0x5c, 0xbd, 0x60, 0x27, 0x8d, 0xcc, 0x09, 0x12
|
||||
},
|
||||
{ 0x00, 0x07, 0xbd, 0xfd
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x03,
|
||||
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27,
|
||||
0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0x96, 0x88, 0x3d, 0xc6, 0x5a, 0x59, 0x74, 0x28,
|
||||
0x5c, 0x02, 0x77, 0xda, 0xd1, 0xfa, 0xe9, 0x57,
|
||||
0xc2, 0x99, 0xae, 0x86, 0xd2, 0x84, 0x73, 0x9f,
|
||||
0x5d, 0x2f, 0xd2, 0x0a, 0x7a, 0x32, 0x3f, 0x97,
|
||||
0x8b, 0xcf, 0x2b, 0x16, 0x39, 0x99, 0xb2, 0x26,
|
||||
0x15, 0xb4, 0x9c, 0xd4, 0xfe, 0x57, 0x39, 0x98
|
||||
},
|
||||
{ 0x96, 0x89, 0x3f, 0xc5, 0x5e, 0x5c, 0x72, 0x2f,
|
||||
0x54, 0x0b, 0x7d, 0xd1, 0xdd, 0xf7, 0xe7, 0x58,
|
||||
0xd2, 0x88, 0xbc, 0x95, 0xc6, 0x91, 0x65, 0x88,
|
||||
0x45, 0x36, 0xc8, 0x11, 0x66, 0x2f, 0x21, 0x88,
|
||||
0xab, 0xee, 0x09, 0x35
|
||||
}
|
||||
},
|
||||
{ 32, 16, /* Vector 7 */
|
||||
{ 0x77, 0x6b, 0xef, 0xf2, 0x85, 0x1d, 0xb0, 0x6f,
|
||||
0x4c, 0x8a, 0x05, 0x42, 0xc8, 0x69, 0x6f, 0x6c,
|
||||
0x6a, 0x81, 0xaf, 0x1e, 0xec, 0x96, 0xb4, 0xd3,
|
||||
0x7f, 0xc1, 0xd6, 0x89, 0xe6, 0xc1, 0xc1, 0x04
|
||||
},
|
||||
{ 0xdb, 0x56, 0x72, 0xc9, 0x7a, 0xa8, 0xf0, 0xb2
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x60
|
||||
},
|
||||
/* "Single block msg" */
|
||||
{ 0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62,
|
||||
0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
|
||||
},
|
||||
{ 0x00, 0x00, 0x00, 0x60, 0xdb, 0x56, 0x72, 0xc9,
|
||||
0x7a, 0xa8, 0xf0, 0xb2, 0x00, 0x00, 0x00, 0x01
|
||||
},
|
||||
{ 0x47, 0x33, 0xbe, 0x7a, 0xd3, 0xe7, 0x6e, 0xa5,
|
||||
0x3a, 0x67, 0x00, 0xb7, 0x51, 0x8e, 0x93, 0xa7
|
||||
},
|
||||
{ 0x14, 0x5a, 0xd0, 0x1d, 0xbf, 0x82, 0x4e, 0xc7,
|
||||
0x56, 0x08, 0x63, 0xdc, 0x71, 0xe3, 0xe0, 0xc0
|
||||
}
|
||||
},
|
||||
{ 32, 32, /* Vector 8 */
|
||||
{ 0xf6, 0xd6, 0x6d, 0x6b, 0xd5, 0x2d, 0x59, 0xbb,
|
||||
0x07, 0x96, 0x36, 0x58, 0x79, 0xef, 0xf8, 0x86,
|
||||
0xc6, 0x6d, 0xd5, 0x1a, 0x5b, 0x6a, 0x99, 0x74,
|
||||
0x4b, 0x50, 0x59, 0x0c, 0x87, 0xa2, 0x38, 0x84
|
||||
},
|
||||
{ 0xc1, 0x58, 0x5e, 0xf1, 0x5a, 0x43, 0xd8, 0x75
|
||||
},
|
||||
{ 0x00, 0xfa, 0xac, 0x24
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
},
|
||||
{ 0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1,
|
||||
0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1,
|
||||
0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x02
|
||||
},
|
||||
{ 0xf0, 0x5f, 0x21, 0x18, 0x3c, 0x91, 0x67, 0x2b,
|
||||
0x41, 0xe7, 0x0a, 0x00, 0x8c, 0x43, 0xbc, 0xa6,
|
||||
0xa8, 0x21, 0x79, 0x43, 0x9b, 0x96, 0x8b, 0x7d,
|
||||
0x4d, 0x29, 0x99, 0x06, 0x8f, 0x59, 0xb1, 0x03
|
||||
},
|
||||
{ 0xf0, 0x5e, 0x23, 0x1b, 0x38, 0x94, 0x61, 0x2c,
|
||||
0x49, 0xee, 0x00, 0x0b, 0x80, 0x4e, 0xb2, 0xa9,
|
||||
0xb8, 0x30, 0x6b, 0x50, 0x8f, 0x83, 0x9d, 0x6a,
|
||||
0x55, 0x30, 0x83, 0x1d, 0x93, 0x44, 0xaf, 0x1c
|
||||
}
|
||||
},
|
||||
{ 32, 36, /* Vector 9 */
|
||||
{ 0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4,
|
||||
0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2,
|
||||
0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf,
|
||||
0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
|
||||
},
|
||||
{ 0x51, 0xa5, 0x1d, 0x70, 0xa1, 0xc1, 0x11, 0x48
|
||||
},
|
||||
{ 0x00, 0x1c, 0xc5, 0xb7
|
||||
},
|
||||
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
||||
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20, 0x21, 0x22, 0x23
|
||||
},
|
||||
{ 0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x01,
|
||||
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x02,
|
||||
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70,
|
||||
0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x03
|
||||
},
|
||||
{ 0xeb, 0x6d, 0x50, 0x81, 0x19, 0x0e, 0xbd, 0xf0,
|
||||
0xc6, 0x7c, 0x9e, 0x4d, 0x26, 0xc7, 0x41, 0xa5,
|
||||
0xa4, 0x16, 0xcd, 0x95, 0x71, 0x7c, 0xeb, 0x10,
|
||||
0xec, 0x95, 0xda, 0xae, 0x9f, 0xcb, 0x19, 0x00,
|
||||
0x3e, 0xe1, 0xc4, 0x9b, 0xc6, 0xb9, 0xca, 0x21,
|
||||
0x3f, 0x6e, 0xe2, 0x71, 0xd0, 0xa9, 0x33, 0x39
|
||||
},
|
||||
{ 0xeb, 0x6c, 0x52, 0x82, 0x1d, 0x0b, 0xbb, 0xf7,
|
||||
0xce, 0x75, 0x94, 0x46, 0x2a, 0xca, 0x4f, 0xaa,
|
||||
0xb4, 0x07, 0xdf, 0x86, 0x65, 0x69, 0xfd, 0x07,
|
||||
0xf4, 0x8c, 0xc0, 0xb5, 0x83, 0xd6, 0x07, 0x1f,
|
||||
0x1e, 0xc0, 0xe6, 0xb8
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
void rfc3686_inc(unsigned char ctr_buf[AES_BLOCK_SIZE])
|
||||
{
|
||||
if(!(++(ctr_buf[15])))
|
||||
if(!(++(ctr_buf[14])))
|
||||
if(!(++(ctr_buf[13])))
|
||||
++(ctr_buf[12]);
|
||||
}
|
||||
|
||||
void rfc3686_init( unsigned char nonce[4], unsigned char iv[8], unsigned char ctr_buf[AES_BLOCK_SIZE])
|
||||
{
|
||||
memcpy(ctr_buf, nonce, 4);
|
||||
memcpy(ctr_buf + 4, iv, 8);
|
||||
memset(ctr_buf + 12, 0, 4);
|
||||
rfc3686_inc(ctr_buf);
|
||||
}
|
||||
|
||||
AES_RETURN rfc3686_crypt(const unsigned char *ibuf, unsigned char *obuf, int len,
|
||||
unsigned char *cbuf, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
return aes_ctr_crypt(ibuf, obuf, len, cbuf, rfc3686_inc, cx);
|
||||
}
|
||||
|
||||
void rfc3686_test(void)
|
||||
{ aes_encrypt_ctx aes_ctx[1];
|
||||
unsigned char ctr_buf[AES_BLOCK_SIZE];
|
||||
unsigned char obuf[36];
|
||||
unsigned int i;
|
||||
|
||||
for( i = 0 ; i < sizeof(tests) / sizeof(test_str) ; ++i )
|
||||
{
|
||||
aes_encrypt_key(tests[i].key, tests[i].k_len, aes_ctx);
|
||||
rfc3686_init(tests[i].nonce, tests[i].iv, ctr_buf);
|
||||
rfc3686_crypt(tests[i].p_txt, obuf, tests[i].m_len, ctr_buf, aes_ctx);
|
||||
if(memcmp(obuf, tests[i].c_txt, tests[i].m_len) != 0)
|
||||
printf("\nerror");
|
||||
}
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
rfc3686_test();
|
||||
return 0;
|
||||
}
|
319
src/java/kp2akeytransform/jni/aes/tablegen.c
Normal file
319
src/java/kp2akeytransform/jni/aes/tablegen.c
Normal file
@ -0,0 +1,319 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The redistribution and use of this software (with or without changes)
|
||||
is allowed without the payment of fees or royalties provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include <stdio.h>
|
||||
#include "aesopt.h"
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#include "aestab.h"
|
||||
|
||||
#define t_parm(m,n) "t_"#m#n, t_##m##n
|
||||
|
||||
void rtab(FILE *f, unsigned char *h, const unsigned int t[RC_LENGTH])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint_32t %s[RC_LENGTH] = \n{", h);
|
||||
|
||||
for(i = 0; i < RC_LENGTH; ++i)
|
||||
{
|
||||
if(i % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != RC_LENGTH - 1)
|
||||
fprintf(f, "0x%08x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void btab_1(FILE *f, unsigned char *h, const unsigned char t[256])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint_8t %s[256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
if(i % 8 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != 255)
|
||||
fprintf(f, "0x%02x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%02x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void wtab_1(FILE *f, unsigned char *h, const unsigned int t[256])
|
||||
{ int i;
|
||||
|
||||
fprintf(f, "\nuint_32t %s[256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
if(i % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(i != 255)
|
||||
fprintf(f, "0x%08x, ", t[i]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i]);
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
void wtab_4(FILE *f, unsigned char *h, const unsigned int t[4][256])
|
||||
{ int i, j;
|
||||
|
||||
fprintf(f, "\nuint_32t %s[4][256] = \n{", h);
|
||||
|
||||
for(i = 0; i < 4; ++i)
|
||||
{
|
||||
fprintf(f, "\n {");
|
||||
|
||||
for(j = 0; j < 256; ++j)
|
||||
{
|
||||
if(j % 4 == 0)
|
||||
fprintf(f, "\n ");
|
||||
if(j != 255)
|
||||
fprintf(f, "0x%08x, ", t[i][j]);
|
||||
else
|
||||
fprintf(f, "0x%08x ", t[i][j]);
|
||||
}
|
||||
|
||||
if(i != 3)
|
||||
fprintf(f, "\n },");
|
||||
else
|
||||
fprintf(f, "\n }");
|
||||
}
|
||||
|
||||
fprintf(f, "\n};\n");
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{ FILE *f;
|
||||
|
||||
f = fopen("aestab2.c", "w");
|
||||
|
||||
fprintf(f, "\n#include \"aes.h\"\n");
|
||||
fprintf(f, "\n#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))\n");
|
||||
fprintf(f, "\nvoid aes_init() \n{ \n}\n");
|
||||
|
||||
rtab(f, t_parm(r,c));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
btab_1(f, t_parm(s,box));
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
btab_1(f, t_parm(i,box));
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
wtab_1(f, t_parm(f,n));
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
wtab_4(f, t_parm(f,n));
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
wtab_1(f, t_parm(f,l));
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
wtab_4(f, t_parm(f,l));
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
wtab_1(f, t_parm(i,n));
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
wtab_4(f, t_parm(i,n));
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
wtab_1(f, t_parm(i,l));
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
wtab_4(f, t_parm(i,l));
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if !defined( FL1_SET )
|
||||
wtab_1(f, t_parm(l,s));
|
||||
#endif
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
#if !defined( FL4_SET )
|
||||
wtab_4(f, t_parm(l,s));
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
wtab_1(f, t_parm(i,m));
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
wtab_4(f, t_parm(i,m));
|
||||
#endif
|
||||
|
||||
fclose(f);
|
||||
return 0;
|
||||
}
|
263
src/java/kp2akeytransform/jni/aes/vb.txt
Normal file
263
src/java/kp2akeytransform/jni/aes/vb.txt
Normal file
@ -0,0 +1,263 @@
|
||||
|
||||
Private Const BlockLength = 16 ' maximum block length in bytes
|
||||
Private Const BlockLengthMax = 32 ' maximum block length in bytes
|
||||
Private Const KeyLengthMax = 32 ' maximum block length in bytes
|
||||
Private Const KeyScheduleLengthMax = 64 ' maximum key schedule length in bytes
|
||||
|
||||
Private Type EncCtx ' type to hold the AES encryption context data
|
||||
Ekey(0 To KeyScheduleLengthMax - 1) As Long
|
||||
End Type
|
||||
|
||||
Private Type DecCtx ' type to hold the AES decryption context data
|
||||
Ekey(0 To KeyScheduleLengthMax - 1) As Long
|
||||
End Type
|
||||
|
||||
Private Type Key ' type to hold user key data
|
||||
K(0 To KeyLengthMax - 1) As Byte
|
||||
End Type
|
||||
|
||||
Private Type InOut ' type to hold cipher input and output blocks
|
||||
IO(0 To BlockLength - 1) As Byte
|
||||
End Type
|
||||
|
||||
Private Type BigInOut ' type to hold cipher input and output blocks
|
||||
IO(0 To 128 * BlockLength - 1) As Byte
|
||||
End Type
|
||||
|
||||
Rem Change "c:\temp\" in the following lines to the directory path where the AES DLL is located
|
||||
Private Declare Function AesEncryptKey128 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_encrypt_key128@8" (K As Key, C As EncCtx) As Integer
|
||||
Private Declare Function AesEncryptKey192 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_encrypt_key192@8" (K As Key, C As EncCtx) As Integer
|
||||
Private Declare Function AesEncryptKey256 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_encrypt_key256@8" (K As Key, C As EncCtx) As Integer
|
||||
Private Declare Function AesEncryptKey Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_encrypt_key@12" (K As Key, ByVal N As Integer, C As EncCtx) As Integer
|
||||
Private Declare Function AesEncrypt Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_encrypt@12" (Ib As InOut, Ob As InOut, C As EncCtx) As Integer
|
||||
Private Declare Function AesDecryptKey128 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_decrypt_key128@8" (K As Key, C As DecCtx) As Integer
|
||||
Private Declare Function AesDecryptKey192 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_decrypt_key192@8" (K As Key, C As DecCtx) As Integer
|
||||
Private Declare Function AesDecryptKey256 Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_decrypt_key256@8" (K As Key, C As DecCtx) As Integer
|
||||
Private Declare Function AesDecryptKey Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_decrypt_key@12" (K As Key, ByVal N As Long, C As DecCtx) As Integer
|
||||
Private Declare Function AesDecrypt Lib "c:\temp\aes.dll" _
|
||||
Alias "_aes_decrypt@12" (Ib As InOut, Ob As InOut, C As DecCtx) As Integer
|
||||
|
||||
Private Declare Function AesModeReset Lib "c:\temp\aes.dll" Alias "_aes_mode_reset@4" _
|
||||
(C As EncCtx) As Integer
|
||||
Private Declare Function AesEcbEncrypt Lib "c:\temp\aes.dll" Alias "_aes_ecb_encrypt@16" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, C As EncCtx) As Integer
|
||||
Private Declare Function AesEcbDecrypt Lib "c:\temp\aes.dll" Alias "_aes_ecb_decrypt@16" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, C As DecCtx) As Integer
|
||||
Private Declare Function AesCbcEncrypt Lib "c:\temp\aes.dll" Alias "_aes_cbc_encrypt@20" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, C As EncCtx) As Integer
|
||||
Private Declare Function AesCbcDecrypt Lib "c:\temp\aes.dll" Alias "_aes_cbc_decrypt@20" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, C As DecCtx) As Integer
|
||||
Private Declare Function AesCfbEncrypt Lib "c:\temp\aes.dll" Alias "_aes_cfb_encrypt@20" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, C As EncCtx) As Integer
|
||||
Private Declare Function AesCfbDecrypt Lib "c:\temp\aes.dll" Alias "_aes_cfb_decrypt@20" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, C As EncCtx) As Integer
|
||||
Private Declare Function AesOfbCrypt Lib "c:\temp\aes.dll" Alias "_aes_ofb_crypt@20" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, C As EncCtx) As Integer
|
||||
Private Declare Function AesCtrCrypt Lib "c:\temp\aes.dll" Alias "_aes_ctr_crypt@24" _
|
||||
(Ib As BigInOut, Ob As BigInOut, ByVal N As Long, Iv As InOut, ByVal CtrFn As Long, C As EncCtx) As Integer
|
||||
|
||||
Private Sub Hex(X As Byte) ' output a byte in hexadecimal format
|
||||
Dim H As Byte
|
||||
H = Int(X / 16)
|
||||
If H < 10 Then Debug.Print Chr(48 + H); Else Debug.Print Chr(87 + H);
|
||||
H = Int(X Mod 16)
|
||||
If H < 10 Then Debug.Print Chr(48 + H); Else Debug.Print Chr(87 + H);
|
||||
End Sub
|
||||
|
||||
Private Sub OutKey(S As String, B As Key, ByVal KeyL As Integer) ' display a key value
|
||||
Debug.Print: Debug.Print S;
|
||||
For i = 0 To KeyL - 1
|
||||
Hex B.K(i)
|
||||
Next i
|
||||
End Sub
|
||||
|
||||
Private Sub OutBlock(S As String, B As InOut) ' display an input/output block
|
||||
Debug.Print: Debug.Print S;
|
||||
For i = 0 To BlockLength - 1
|
||||
Hex B.IO(i)
|
||||
Next i
|
||||
End Sub
|
||||
|
||||
Private Sub OutBigBlock(S As String, B As BigInOut) ' display an input/output block
|
||||
Debug.Print: Debug.Print S;
|
||||
For i = 0 To BlockLength - 1
|
||||
Hex B.IO(i)
|
||||
Next i
|
||||
Debug.Print " ... ";
|
||||
For i = 127 * BlockLength To 128 * BlockLength - 1
|
||||
Hex B.IO(i)
|
||||
Next i
|
||||
End Sub
|
||||
|
||||
Private Sub CtrInc(Ctr As InOut)
|
||||
Ctr.IO(0) = Ctr.IO(0) + 1
|
||||
If (Ctr.IO(0) = 0) Then
|
||||
Ctr.IO(1) = Ctr.IO(1) + 1
|
||||
If (Ctr.IO(1) = 0) Then
|
||||
Ctr.IO(2) = Ctr.IO(2) + 1
|
||||
If (Ctr.IO(3) = 0) Then
|
||||
Ctr.IO(3) = Ctr.IO(3) + 1
|
||||
End If
|
||||
End If
|
||||
End If
|
||||
End Sub
|
||||
|
||||
Rem The following Main routine should output the following in the immediate window:
|
||||
Rem Variable Key Length ( 16 )
|
||||
Rem Key = 00000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = 66e94bd4ef8a2c3b884cfa59ca342b2e
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
Rem Variable Key Length ( 24 )
|
||||
Rem Key = 000000000000000000000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = aae06992acbf52a3e8f4a96ec9300bd7
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
Rem Variable Key Length ( 32 )
|
||||
Rem Key = 0000000000000000000000000000000000000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = dc95c078a2408989ad48a21492842087
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
Rem Fixed Key Length ( 128 )
|
||||
Rem Key = 00000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = 66e94bd4ef8a2c3b884cfa59ca342b2e
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
Rem Fixed Key Length ( 192 )
|
||||
Rem Key = 000000000000000000000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = aae06992acbf52a3e8f4a96ec9300bd7
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
Rem Fixed Key Length ( 256 )
|
||||
Rem Key = 0000000000000000000000000000000000000000000000000000000000000000
|
||||
Rem Input = 00000000000000000000000000000000
|
||||
Rem Encrypted Text = dc95c078a2408989ad48a21492842087
|
||||
Rem Decrypted Text = 00000000000000000000000000000000
|
||||
|
||||
Sub Main()
|
||||
Dim Key As Key ' all these variables are initialised
|
||||
Dim Ib As InOut, Ob As InOut, Rb As InOut ' to zero by VBA
|
||||
Dim Iv1 As InOut, Iv2 As InOut
|
||||
Dim Ecx As EncCtx
|
||||
Dim Dcx As DecCtx
|
||||
Dim RetVal As Integer
|
||||
|
||||
For KeyL = 16 To 32 Step 8
|
||||
Debug.Print "Variable Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, KeyL
|
||||
OutBlock "Input = ", Ib
|
||||
RetVal = AesEncryptKey(Key, KeyL, Ecx) ' set an all zero encryption key
|
||||
RetVal = AesEncrypt(Ib, Ob, Ecx) ' encrypt Ib to Ob
|
||||
OutBlock "Encrypted Text = ", Ob
|
||||
RetVal = AesDecryptKey(Key, KeyL, Dcx) ' set an all zero decryption key
|
||||
RetVal = AesDecrypt(Ob, Rb, Dcx) ' decrypt Ob to Rb
|
||||
OutBlock "Decrypted Text = ", Rb
|
||||
Debug.Print
|
||||
Next KeyL
|
||||
|
||||
Debug.Print
|
||||
KeyL = 128: Debug.Print "Fixed Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, 16
|
||||
OutBlock "Input = ", Ib
|
||||
RetVal = AesEncryptKey128(Key, Ecx) ' set an all zero encryption key
|
||||
RetVal = AesEncrypt(Ib, Ob, Ecx) ' encrypt Ib to Ob
|
||||
OutBlock "Encrypted Text = ", Ob
|
||||
RetVal = AesDecryptKey128(Key, Dcx) ' set an all zero decryption key
|
||||
RetVal = AesDecrypt(Ob, Rb, Dcx) ' decrypt Ob to Rb
|
||||
OutBlock "Decrypted Text = ", Rb
|
||||
Debug.Print
|
||||
|
||||
Debug.Print
|
||||
KeyL = 192: Debug.Print "Fixed Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, 24
|
||||
OutBlock "Input = ", Ib
|
||||
RetVal = AesEncryptKey192(Key, Ecx) ' set an all zero encryption key
|
||||
RetVal = AesEncrypt(Ib, Ob, Ecx) ' encrypt Ib to Ob
|
||||
OutBlock "Encrypted Text = ", Ob
|
||||
RetVal = AesDecryptKey192(Key, Dcx) ' set an all zero decryption key
|
||||
RetVal = AesDecrypt(Ob, Rb, Dcx) ' decrypt Ob to Rb
|
||||
OutBlock "Decrypted Text = ", Rb
|
||||
Debug.Print
|
||||
|
||||
Debug.Print
|
||||
KeyL = 256: Debug.Print "Fixed Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, 32
|
||||
OutBlock "Input = ", Ib
|
||||
RetVal = AesEncryptKey256(Key, Ecx) ' set an all zero encryption key
|
||||
RetVal = AesEncrypt(Ib, Ob, Ecx) ' encrypt Ib to Ob
|
||||
OutBlock "Encrypted Text = ", Ob
|
||||
RetVal = AesDecryptKey256(Key, Dcx) ' set an all zero decryption key
|
||||
RetVal = AesDecrypt(Ob, Rb, Dcx) ' decrypt Ob to Rb
|
||||
OutBlock "Decrypted Text = ", Rb
|
||||
Debug.Print
|
||||
|
||||
Debug.Print
|
||||
KeyL = 128: Debug.Print "Fixed Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, 16
|
||||
OutBlock "Input = ", Ib
|
||||
RetVal = AesEncryptKey128(Key, Ecx) ' set an all zero encryption key
|
||||
OutBlock "Encrypted Text = ", Ob
|
||||
RetVal = AesDecryptKey128(Key, Dcx) ' set an all zero decryption key
|
||||
OutBlock "Decrypted Text = ", Rb
|
||||
Debug.Print
|
||||
|
||||
Debug.Print
|
||||
KeyL = 128: Debug.Print "Fixed Key Length ("; KeyL; ")";
|
||||
OutKey "Key = ", Key, 16
|
||||
RetVal = AesEncryptKey128(Key, Ecx) ' set an all zero encryption key
|
||||
RetVal = AesDecryptKey128(Key, Dcx) ' set an all zero decryption key
|
||||
Dim Pt1 As BigInOut, Pt2 As BigInOut, Ct As BigInOut
|
||||
|
||||
For i = 0 To 128 * BlockLength - 1
|
||||
Pt1.IO(i) = i Mod 256
|
||||
Next i
|
||||
|
||||
OutBigBlock "ECB Input = ", Pt1
|
||||
RetVal = AesEcbEncrypt(Pt1, Ct, 128 * BlockLength, Ecx)
|
||||
OutBigBlock "Encrypted Text = ", Ct
|
||||
RetVal = AesEcbDecrypt(Ct, Pt2, 128 * BlockLength, Dcx)
|
||||
OutBigBlock "Decrypted Text = ", Pt2
|
||||
Debug.Print
|
||||
|
||||
OutBigBlock "CBC Mode Input = ", Pt1
|
||||
RetVal = AesCbcEncrypt(Pt1, Ct, 128 * BlockLength, Iv1, Ecx)
|
||||
OutBigBlock "Encrypted Text = ", Ct
|
||||
RetVal = AesCbcDecrypt(Ct, Pt2, 128 * BlockLength, Iv2, Dcx)
|
||||
OutBigBlock "Decrypted Text = ", Pt2
|
||||
Debug.Print
|
||||
|
||||
OutBigBlock "CFB Mode Input = ", Pt1
|
||||
RetVal = AesCfbEncrypt(Pt1, Ct, 128 * BlockLength, Iv1, Ecx)
|
||||
OutBigBlock "Encrypted Text = ", Ct
|
||||
RetVal = AesCfbDecrypt(Ct, Pt2, 128 * BlockLength, Iv2, Ecx)
|
||||
OutBigBlock "Decrypted Text = ", Pt2
|
||||
Debug.Print
|
||||
|
||||
OutBigBlock "OFB Mode Input = ", Pt1
|
||||
RetVal = AesOfbCrypt(Pt1, Ct, 128 * BlockLength, Iv1, Ecx)
|
||||
OutBigBlock "Encrypted Text = ", Ct
|
||||
RetVal = AesOfbCrypt(Ct, Pt2, 128 * BlockLength, Iv2, Ecx)
|
||||
OutBigBlock "Decrypted Text = ", Pt2
|
||||
Debug.Print
|
||||
|
||||
#If False Then
|
||||
Rem CTR Mode is not working because of a problem with the 'AddressOf' operator
|
||||
OutBigBlock "CTR Mode Input = ", Pt1
|
||||
RetVal = AesCtrCrypt(Pt1, Ct, 128 * BlockLength, Iv1, AddressOf CtrInc, Ecx)
|
||||
OutBigBlock "Encrypted Text = ", Ct
|
||||
RetVal = AesCtrCrypt(Ct, Pt2, 128 * BlockLength, Iv2, AddressOf CtrInc, Ecx)
|
||||
OutBigBlock "Decrypted Text = ", Pt2
|
||||
Debug.Print
|
||||
#End If
|
||||
|
||||
Debug.Print
|
||||
End Sub
|
BIN
src/java/kp2akeytransform/jni/aes/vbaxam.doc
Normal file
BIN
src/java/kp2akeytransform/jni/aes/vbaxam.doc
Normal file
Binary file not shown.
158
src/java/kp2akeytransform/jni/aes/via_ace.txt
Normal file
158
src/java/kp2akeytransform/jni/aes/via_ace.txt
Normal file
@ -0,0 +1,158 @@
|
||||
|
||||
Support for the VIA Nehemiah Advanced Cryptography Engine (ACE)
|
||||
---------------------------------------------------------------
|
||||
|
||||
A. Introduction
|
||||
|
||||
The AES code now supports the VIA ACE engine. The engine is invoked by the
|
||||
multiple block AES modes calls in aes_modes.c and not by the basic AES code.
|
||||
|
||||
The define USE_VIA_ACE_IF_PRESENT is defined if VIA ACE detection and use is
|
||||
required with fallback to the normal AES code if it is not present.
|
||||
|
||||
The define ASSUME_VIA_ACE_PRESENT is used when it is known that the VIA ACE
|
||||
engine will always be present. Note, however, that this code will not work
|
||||
correctly if the VIA ACE engine is either not present or turned off.
|
||||
|
||||
To enable ACE support the appropriate defines in section 2 of the options in
|
||||
aesopt.h must be set. If ACE support is required then key scheduling must
|
||||
use the C code so only the generic C code in Win32 mode, ASM_X86_V1C and
|
||||
ASM_X86_V2C assembler code can be used (i.e ASM_X86_V2 and ASM_AMD64_C do
|
||||
NOT support VIA ACE).
|
||||
|
||||
B. Using ACE
|
||||
|
||||
ACE is used in the code that implements the subroutines used for the multiple
|
||||
block AES modes defined in aes_modes.h:
|
||||
|
||||
// used to reset modes to their start point without entering a new key
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#define aes_ofb_encrypt aes_ofb_crypt
|
||||
#define aes_ofb_decrypt aes_ofb_crypt
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
typedef void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
#define aes_ctr_encrypt aes_ctr_crypt
|
||||
#define aes_ctr_decrypt aes_ctr_crypt
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
|
||||
|
||||
Note that the single block AES calls defined in aes.h:
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
do NOT provide ACE support and should not be used if the ACE engine is
|
||||
available and ACE support is required.
|
||||
|
||||
C. Constraints and Optimisation
|
||||
|
||||
There are several constraints that have to be observed when ACE is used if
|
||||
the best performance is to be achieved:
|
||||
|
||||
1. As usual the appropriate key set up subroutine must be called before any
|
||||
of the above subroutines are used.
|
||||
|
||||
2. The AES contexts - aes_encryption_ctx and aes_decryption_ctx - used with
|
||||
these subroutines MUST be 16 byte aligned. Failure to align AES contexts
|
||||
will often cause memory alignment exceptions.
|
||||
|
||||
3. The buffers used for inputs, outputs and IVs do not need to be 16 byte
|
||||
aligned but the speed that is achieved will be much higher if this can be
|
||||
arranged. In a flat address space (as now typical in 32-bit systems) this
|
||||
means that: (a) that the lower nibble of all buffer addresses must be
|
||||
zero, and (b) the compiler used must arrange to load the data and stack
|
||||
segments on 16 byte address boundaries. The Microsoft VC++ compiler can
|
||||
align all variables in this way (see the example macros for doing this in
|
||||
aes_via_ace.txt). However it seems that the GCC compiler will only do this
|
||||
for static global variables but not for variables placed on the stack, that
|
||||
is local variables.
|
||||
|
||||
4. The data length in bytes (len) in calls to the ECB and CBC subroutines
|
||||
must be a multiple of the 16 byte block length. An error return will
|
||||
occur if this is not so.
|
||||
|
||||
5. The data length in all calls to the CFB, OFB and CTR subroutines must also
|
||||
be a multiple of 16 bytes if the VIA ACE engine is to be used. Otherwise
|
||||
these lengths can be of any value but the subroutines will only proceed at
|
||||
full speed for lengths that are multiples of 16 bytes. The CFB, OFB and
|
||||
CTR subroutines are incremental, with subsequent calls continuing from
|
||||
where previous calls finished. The subroutine aes_mode_reset() can be used
|
||||
to restart a mode without a key change but is not needed after a new key is
|
||||
entered. Such a reset is not needed when the data lengths in all individual
|
||||
calls to the AES mode subroutines are multiples of 16 bytes.
|
||||
|
||||
6. Note that the AES context contains mode details so only one type of mode
|
||||
can be run from a context at any one time. A reset is necessary if a new
|
||||
mode is used without a new context or a new key.
|
||||
|
||||
D. Expected Speeds
|
||||
|
||||
The speeds that have been obtained using a 1.2 GHz VIA C3 processor with
|
||||
this code are given below (note that since CTR mode is not available in
|
||||
the VIA hardware it is not present in the aligned timing figures):
|
||||
|
||||
AES Timing (Cycles/Byte) with the VIA ACE Engine (aligned in C)
|
||||
Mode Blocks: 1 10 100 1000 Peak Throughput
|
||||
ecb encrypt 8.25 1.36 0.69 0.63 1.9 Gbytes/second
|
||||
ecb decrypt 8.75 1.41 0.70 0.64 1.9 Gbytes/second
|
||||
cbc encrypt 11.56 2.41 1.47 1.38 870 Mbytes/second
|
||||
cbc decrypt 12.37 2.38 1.47 1.38 870 Mbytes/second
|
||||
cfb encrypt 11.93 2.46 1.48 1.38 870 Mbytes/second
|
||||
cfb decrypt 12.18 2.36 1.47 1.38 870 Mbytes/second
|
||||
ofb encrypt 13.31 3.88 2.92 2.82 425 Mbytes/second
|
||||
ofb decrypt 13.31 3.88 2.92 2.82 425 Mbytes/second
|
||||
|
||||
AES Timing (Cycles/Byte) with the VIA ACE Engine (unaligned in C)
|
||||
Mode Blocks: 1 10 100 1000 Peak Throughput
|
||||
ecb encrypt 17.68 4.31 3.15 3.05 390 Mbytes/second
|
||||
ecb decrypt 18.12 4.36 3.17 3.06 390 Mbytes/second
|
||||
cbc encrypt 20.68 5.70 4.39 4.27 280 Mbytes/second
|
||||
cbc decrypt 21.87 5.75 4.34 4.21 285 Mbytes/second
|
||||
cfb encrypt 21.06 5.81 4.43 4.31 280 Mbytes/second
|
||||
cfb decrypt 21.37 5.72 4.36 4.24 285 Mbytes/second
|
||||
ofb encrypt 22.43 7.23 5.85 5.72 210 Mbytes/second
|
||||
ofb decrypt 22.43 7.34 5.86 5.73 210 Mbytes/second
|
||||
ctr encrypt 16.43 6.90 6.00 5.89 205 Mbytes/second
|
||||
ctr decrypt 16.43 6.90 6.00 5.89 205 Mbytes/second
|
||||
|
||||
AES Timing (Cycles/Byte) with the VIA ACE Engine (unaligned assembler)
|
||||
Mode Blocks: 1 10 100 1000 Peak Throughput
|
||||
ecb encrypt 11.87 2.89 1.91 1.83 660 Mbytes/second
|
||||
ecb decrypt 12.18 2.83 1.97 1.87 640 Mbytes/second
|
||||
cbc encrypt 14.87 4.13 3.11 3.01 400 Mbytes/second
|
||||
cbc decrypt 14.43 3.87 2.89 2.80 430 Mbytes/second
|
||||
cfb encrypt 14.75 4.12 3.10 3.01 400 Mbytes/second
|
||||
cfb decrypt 14.12 4.10 2.88 2.79 430 Mbytes/second
|
||||
ofb encrypt 15.25 5.36 4.37 4.27 280 Mbytes/second
|
||||
ofb decrypt 15.25 5.36 4.36 4.27 280 Mbytes/second
|
||||
ctr encrypt 13.31 4.79 4.01 3.94 305 Mbytes/second
|
||||
ctr decrypt 13.31 4.79 4.01 3.94 305 Mbytes/second
|
||||
|
||||
Brian Gladman, Worcester, UK
|
16
src/java/kp2akeytransform/jni/final_key/Android.mk
Normal file
16
src/java/kp2akeytransform/jni/final_key/Android.mk
Normal file
@ -0,0 +1,16 @@
|
||||
LOCAL_PATH := $(call my-dir)
|
||||
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
LOCAL_MODULE := final-key
|
||||
|
||||
LOCAL_SRC_FILES := \
|
||||
kpd_jni.c
|
||||
|
||||
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../sha $(LOCAL_PATH)/../aes
|
||||
|
||||
LOCAL_STATIC_LIBRARIES := aes sha
|
||||
|
||||
LOCAL_LDLIBS := -llog
|
||||
|
||||
include $(BUILD_SHARED_LIBRARY)
|
512
src/java/kp2akeytransform/jni/final_key/kpd_jni.c
Normal file
512
src/java/kp2akeytransform/jni/final_key/kpd_jni.c
Normal file
@ -0,0 +1,512 @@
|
||||
/*
|
||||
This is a JNI wrapper for AES & SHA source code on Android.
|
||||
Copyright (C) 2010 Michael Mohr
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <inttypes.h>
|
||||
#include <string.h>
|
||||
#include <pthread.h>
|
||||
#include <jni.h>
|
||||
|
||||
/* Tune as desired */
|
||||
#undef KPD_PROFILE
|
||||
#undef KPD_DEBUG
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
#include <time.h>
|
||||
#endif
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
#include <android/log.h>
|
||||
#endif
|
||||
|
||||
#include "aes.h"
|
||||
#include "sha2.h"
|
||||
|
||||
static JavaVM *cached_vm;
|
||||
static jclass bad_arg, no_mem, bad_padding, short_buf, block_size;
|
||||
|
||||
typedef enum {
|
||||
ENCRYPTION,
|
||||
DECRYPTION,
|
||||
FINALIZED
|
||||
} edir_t;
|
||||
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define CACHE_SIZE 32
|
||||
|
||||
typedef struct _aes_state {
|
||||
edir_t direction;
|
||||
uint32_t cache_len;
|
||||
uint8_t iv[16], cache[CACHE_SIZE];
|
||||
uint8_t ctx[sizeof(aes_encrypt_ctx)]; // 244
|
||||
} aes_state;
|
||||
|
||||
#define ENC_CTX(state) (((aes_encrypt_ctx *)((state)->ctx)))
|
||||
#define DEC_CTX(state) (((aes_decrypt_ctx *)((state)->ctx)))
|
||||
#define ALIGN_EXTRA 15
|
||||
#define ALIGN16(x) (void *)(((uintptr_t)(x)+ALIGN_EXTRA) & ~ 0x0F)
|
||||
|
||||
JNIEXPORT jint JNICALL JNI_OnLoad( JavaVM *vm, void *reserved ) {
|
||||
JNIEnv *env;
|
||||
jclass cls;
|
||||
|
||||
cached_vm = vm;
|
||||
if((*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_6))
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "java/lang/IllegalArgumentException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
bad_arg = (*env)->NewGlobalRef(env, cls);
|
||||
if( bad_arg == NULL )
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "java/lang/OutOfMemoryError");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
no_mem = (*env)->NewGlobalRef(env, cls);
|
||||
if( no_mem == NULL )
|
||||
return JNI_ERR;
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/BadPaddingException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
bad_padding = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/ShortBufferException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
short_buf = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
cls = (*env)->FindClass(env, "javax/crypto/IllegalBlockSizeException");
|
||||
if( cls == NULL )
|
||||
return JNI_ERR;
|
||||
block_size = (*env)->NewGlobalRef(env, cls);
|
||||
|
||||
aes_init();
|
||||
|
||||
return JNI_VERSION_1_6;
|
||||
}
|
||||
|
||||
// called on garbage collection
|
||||
JNIEXPORT void JNICALL JNI_OnUnload( JavaVM *vm, void *reserved ) {
|
||||
JNIEnv *env;
|
||||
if((*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_6)) {
|
||||
return;
|
||||
}
|
||||
(*env)->DeleteGlobalRef(env, bad_arg);
|
||||
(*env)->DeleteGlobalRef(env, no_mem);
|
||||
(*env)->DeleteGlobalRef(env, bad_padding);
|
||||
(*env)->DeleteGlobalRef(env, short_buf);
|
||||
(*env)->DeleteGlobalRef(env, block_size);
|
||||
return;
|
||||
}
|
||||
|
||||
JNIEXPORT jlong JNICALL Java_com_keepassdroid_crypto_NativeAESCipherSpi_nInit(JNIEnv *env, jobject this, jboolean encrypting, jbyteArray key, jbyteArray iv) {
|
||||
uint8_t ckey[32];
|
||||
aes_state *state;
|
||||
jint key_len = (*env)->GetArrayLength(env, key);
|
||||
jint iv_len = (*env)->GetArrayLength(env, iv);
|
||||
|
||||
if( ! ( key_len == 16 || key_len == 24 || key_len == 32 ) || iv_len != 16 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid length of key or iv");
|
||||
return -1;
|
||||
}
|
||||
|
||||
state = (aes_state *)malloc(sizeof(aes_state));
|
||||
if( state == NULL ) {
|
||||
(*env)->ThrowNew(env, no_mem, "Cannot allocate memory for the encryption state");
|
||||
return -1;
|
||||
}
|
||||
memset(state, 0, sizeof(aes_state));
|
||||
|
||||
(*env)->GetByteArrayRegion(env, key, (jint)0, key_len, (jbyte *)ckey);
|
||||
(*env)->GetByteArrayRegion(env, iv, (jint)0, iv_len, (jbyte *)state->iv);
|
||||
|
||||
if( encrypting ) {
|
||||
state->direction = ENCRYPTION;
|
||||
aes_encrypt_key(ckey, key_len, ENC_CTX(state));
|
||||
} else {
|
||||
state->direction = DECRYPTION;
|
||||
aes_decrypt_key(ckey, key_len, DEC_CTX(state));
|
||||
}
|
||||
|
||||
return (jlong)state;
|
||||
}
|
||||
|
||||
JNIEXPORT void JNICALL Java_com_keepassdroid_crypto_NativeAESCipherSpi_nCleanup(JNIEnv *env, jclass this, jlong state) {
|
||||
if( state <= 0 ) return;
|
||||
free((void *)state);
|
||||
}
|
||||
|
||||
/*
|
||||
TODO:
|
||||
It seems like the android implementation of the AES cipher stays a
|
||||
block behind with update calls. So, if you do an update for 16 bytes,
|
||||
it will return nothing in the output buffer. Then, it is the finalize
|
||||
call that will return the last block stripping off padding if it is
|
||||
not a full block.
|
||||
*/
|
||||
|
||||
JNIEXPORT jint JNICALL Java_com_keepassdroid_crypto_NativeAESCipherSpi_nUpdate(JNIEnv *env, jobject this,
|
||||
jlong state, jbyteArray input, jint inputOffset, jint inputLen, jbyteArray output, jint outputOffset, jint outputSize) {
|
||||
int aes_ret;
|
||||
uint32_t outLen, bytes2cache, cryptLen;
|
||||
void *in, *out;
|
||||
uint8_t *c_input, *c_output;
|
||||
aes_state *c_state;
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nUpdate", "entry: inputLen=%d, outputSize=%d", inputLen, outputSize);
|
||||
#endif
|
||||
|
||||
// step 1: first, some housecleaning
|
||||
if( !inputLen || !outputSize || outputOffset < 0 || state <= 0 || !input || !output ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "nUpdate: called with 1 or more invalid arguments");
|
||||
return -1;
|
||||
}
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Trying to update a finalized state");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// step 1.5: calculate cryptLen and outLen
|
||||
cryptLen = inputLen + c_state->cache_len;
|
||||
if( cryptLen < CACHE_SIZE ) {
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)(c_state->cache + c_state->cache_len));
|
||||
c_state->cache_len = cryptLen;
|
||||
return 0;
|
||||
}
|
||||
// now we're guaranteed that cryptLen >= CACHE_SIZE (32)
|
||||
bytes2cache = (cryptLen & 15) + AES_BLOCK_SIZE; // mask bottom 4 bits plus 1 block
|
||||
outLen = (cryptLen - bytes2cache); // output length is now aligned to a 16-byte boundary
|
||||
if( outLen > (uint32_t)outputSize ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Output buffer does not have enough space");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// step 2: allocate memory to hold input and output data
|
||||
in = malloc(cryptLen+ALIGN_EXTRA);
|
||||
if( in == NULL ) {
|
||||
(*env)->ThrowNew(env, no_mem, "Unable to allocate heap space for encryption input");
|
||||
return -1;
|
||||
}
|
||||
c_input = ALIGN16(in);
|
||||
|
||||
out = malloc(outLen+ALIGN_EXTRA);
|
||||
if( out == NULL ) {
|
||||
free(in);
|
||||
(*env)->ThrowNew(env, no_mem, "Unable to allocate heap space for encryption output");
|
||||
return -1;
|
||||
}
|
||||
c_output = ALIGN16(out);
|
||||
|
||||
// step 3: copy data from Java and en/decrypt it
|
||||
if( c_state->cache_len ) {
|
||||
memcpy(c_input, c_state->cache, c_state->cache_len);
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)(c_input + c_state->cache_len));
|
||||
} else {
|
||||
(*env)->GetByteArrayRegion(env, input, inputOffset, inputLen, (jbyte *)c_input);
|
||||
}
|
||||
if( c_state->direction == ENCRYPTION )
|
||||
aes_ret = aes_cbc_encrypt(c_input, c_output, outLen, c_state->iv, ENC_CTX(c_state));
|
||||
else
|
||||
aes_ret = aes_cbc_decrypt(c_input, c_output, outLen, c_state->iv, DEC_CTX(c_state));
|
||||
if( aes_ret != EXIT_SUCCESS ) {
|
||||
free(in);
|
||||
free(out);
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to encrypt input data"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, outLen, (jbyte *)c_output);
|
||||
|
||||
// step 4: cleanup and return
|
||||
if( bytes2cache ) {
|
||||
c_state->cache_len = bytes2cache; // set new cache length
|
||||
memcpy(c_state->cache, (c_input + outLen), bytes2cache); // cache overflow bytes for next call
|
||||
} else {
|
||||
c_state->cache_len = 0;
|
||||
}
|
||||
|
||||
free(in);
|
||||
free(out);
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nUpdate", "exit: outLen=%d", outLen);
|
||||
#endif
|
||||
|
||||
return outLen;
|
||||
}
|
||||
|
||||
/*
|
||||
outputSize must be at least 32 for encryption since the buffer may contain >= 1 full block
|
||||
outputSize must be at least 16 for decryption
|
||||
*/
|
||||
JNIEXPORT jint JNICALL Java_com_keepassdroid_crypto_NativeAESCipherSpi_nFinal(JNIEnv *env, jobject this,
|
||||
jlong state, jboolean doPadding, jbyteArray output, jint outputOffset, jint outputSize) {
|
||||
int i;
|
||||
uint32_t padValue, paddedCacheLen, j;
|
||||
uint8_t final_output[CACHE_SIZE] __attribute__ ((aligned (16)));
|
||||
aes_state *c_state;
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "entry: outputOffset=%d, outputSize=%d", outputOffset, outputSize);
|
||||
#endif
|
||||
|
||||
if( !output || outputOffset < 0 || state <= 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid argument(s) passed to nFinal");
|
||||
return -1;
|
||||
}
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "This state has already been finalized");
|
||||
return -1;
|
||||
}
|
||||
|
||||
// allow fetching of remaining bytes from cache
|
||||
if( !doPadding ) {
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, c_state->cache_len, (jbyte *)c_state->cache);
|
||||
c_state->direction = FINALIZED;
|
||||
return c_state->cache_len;
|
||||
}
|
||||
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "crypto operation starts");
|
||||
#endif
|
||||
|
||||
if( c_state->direction == ENCRYPTION ) {
|
||||
if( c_state->cache_len >= 16 ) {
|
||||
paddedCacheLen = 32;
|
||||
} else {
|
||||
paddedCacheLen = 16;
|
||||
}
|
||||
if( outputSize < (jint)paddedCacheLen ) {
|
||||
(*env)->ThrowNew(env, short_buf, "Insufficient space in output buffer");
|
||||
return -1;
|
||||
}
|
||||
padValue = paddedCacheLen - c_state->cache_len;
|
||||
if(!padValue) padValue = 16;
|
||||
memset(c_state->cache + c_state->cache_len, padValue, padValue);
|
||||
if( aes_cbc_encrypt(c_state->cache, final_output, paddedCacheLen, c_state->iv, ENC_CTX(c_state)) != EXIT_SUCCESS ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to encrypt the final data block(s)"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, paddedCacheLen, (jbyte *)final_output);
|
||||
c_state->direction = FINALIZED;
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "encryption operation completed, returning %d bytes", paddedCacheLen);
|
||||
#endif
|
||||
return paddedCacheLen;
|
||||
} else { // DECRYPTION
|
||||
paddedCacheLen = c_state->cache_len;
|
||||
if( outputSize < (jint)paddedCacheLen ) {
|
||||
(*env)->ThrowNew(env, short_buf, "Insufficient space in output buffer");
|
||||
return -1;
|
||||
}
|
||||
if( paddedCacheLen != 16 ) {
|
||||
(*env)->ThrowNew(env, bad_padding, "Incomplete final block in cache for decryption state");
|
||||
return -1;
|
||||
}
|
||||
if( aes_cbc_decrypt(c_state->cache, final_output, paddedCacheLen, c_state->iv, DEC_CTX(c_state)) != EXIT_SUCCESS ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Failed to decrypt the final data block(s)"); // FIXME: get a better exception class for this...
|
||||
return -1;
|
||||
}
|
||||
padValue = final_output[paddedCacheLen-1];
|
||||
for(i = (paddedCacheLen-1), j = 0; final_output[i] == padValue && i >= 0; i--, j++);
|
||||
if( padValue != j ) {
|
||||
(*env)->ThrowNew(env, bad_padding, "Failed to verify padding during decryption");
|
||||
return -1;
|
||||
}
|
||||
j = 16 - j;
|
||||
(*env)->SetByteArrayRegion(env, output, outputOffset, j, (jbyte *)final_output);
|
||||
c_state->direction = FINALIZED;
|
||||
#if defined(KPD_DEBUG)
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nFinal", "decryption operation completed, returning %d bytes", j);
|
||||
#endif
|
||||
return j;
|
||||
}
|
||||
}
|
||||
|
||||
JNIEXPORT jint JNICALL Java_com_keepassdroid_crypto_NativeAESCipherSpi_nGetCacheSize(JNIEnv* env, jobject this, jlong state) {
|
||||
aes_state *c_state;
|
||||
|
||||
if( state <= 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid state");
|
||||
return -1;
|
||||
}
|
||||
c_state = (aes_state *)state;
|
||||
if( c_state->direction == FINALIZED ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "Invalid state");
|
||||
return -1;
|
||||
}
|
||||
return c_state->cache_len;
|
||||
}
|
||||
|
||||
#define MASTER_KEY_SIZE 32
|
||||
|
||||
typedef struct _master_key {
|
||||
uint32_t rounds, done[2];
|
||||
pthread_mutex_t lock1, lock2; // these lock the two halves of the key material
|
||||
uint8_t c_seed[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
uint8_t key1[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
uint8_t key2[MASTER_KEY_SIZE] __attribute__ ((aligned (16)));
|
||||
} master_key;
|
||||
|
||||
|
||||
void *generate_key_material(void *arg) {
|
||||
#if defined(KPD_PROFILE)
|
||||
struct timespec start, end;
|
||||
#endif
|
||||
uint32_t i, flip = 0;
|
||||
uint8_t *key1, *key2;
|
||||
master_key *mk = (master_key *)arg;
|
||||
aes_encrypt_ctx e_ctx[1] __attribute__ ((aligned (16)));
|
||||
|
||||
if( mk->done[0] == 0 && pthread_mutex_trylock(&mk->lock1) == 0 ) {
|
||||
key1 = mk->key1;
|
||||
key2 = mk->key2;
|
||||
} else if( mk->done[1] == 0 && pthread_mutex_trylock(&mk->lock2) == 0 ) {
|
||||
key1 = mk->key1 + (MASTER_KEY_SIZE/2);
|
||||
key2 = mk->key2 + (MASTER_KEY_SIZE/2);
|
||||
} else {
|
||||
// this can only be scaled to two threads
|
||||
pthread_exit( (void *)(-1) );
|
||||
}
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &start);
|
||||
#endif
|
||||
|
||||
aes_encrypt_key256(mk->c_seed, e_ctx);
|
||||
for (i = 0; i < mk->rounds; i++) {
|
||||
if ( flip ) {
|
||||
aes_encrypt(key2, key1, e_ctx);
|
||||
flip = 0;
|
||||
} else {
|
||||
aes_encrypt(key1, key2, e_ctx);
|
||||
flip = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(KPD_PROFILE)
|
||||
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &end);
|
||||
if( key1 == mk->key1 )
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nTransformMasterKey", "Thread 1 master key transformation took ~%d seconds", (end.tv_sec-start.tv_sec));
|
||||
else
|
||||
__android_log_print(ANDROID_LOG_INFO, "kpd_jni.c/nTransformMasterKey", "Thread 2 master key transformation took ~%d seconds", (end.tv_sec-start.tv_sec));
|
||||
#endif
|
||||
|
||||
if( key1 == mk->key1 ) {
|
||||
mk->done[0] = 1;
|
||||
pthread_mutex_unlock(&mk->lock1);
|
||||
} else {
|
||||
mk->done[1] = 1;
|
||||
pthread_mutex_unlock(&mk->lock2);
|
||||
}
|
||||
|
||||
return (void *)flip;
|
||||
}
|
||||
|
||||
JNIEXPORT jbyteArray JNICALL Java_com_keepassdroid_crypto_finalkey_NativeFinalKey_nTransformMasterKey(JNIEnv *env, jobject this, jbyteArray seed, jbyteArray key, jint rounds) {
|
||||
master_key mk;
|
||||
uint32_t flip;
|
||||
pthread_t t1, t2;
|
||||
int iret;
|
||||
void *vret1, *vret2;
|
||||
jbyteArray result;
|
||||
sha256_ctx h_ctx[1] __attribute__ ((aligned (16)));
|
||||
|
||||
// step 1: housekeeping - sanity checks and fetch data from the JVM
|
||||
if( (*env)->GetArrayLength(env, seed) != MASTER_KEY_SIZE ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: the seed is not the correct size");
|
||||
return NULL;
|
||||
}
|
||||
if( (*env)->GetArrayLength(env, key) != MASTER_KEY_SIZE ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: the key is not the correct size");
|
||||
return NULL;
|
||||
}
|
||||
if( rounds < 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: illegal number of encryption rounds");
|
||||
return NULL;
|
||||
}
|
||||
mk.rounds = (uint32_t)rounds;
|
||||
mk.done[0] = mk.done[1] = 0;
|
||||
if( pthread_mutex_init(&mk.lock1, NULL) != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to initialize the mutex for thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
if( pthread_mutex_init(&mk.lock2, NULL) != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to initialize the mutex for thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
(*env)->GetByteArrayRegion(env, seed, 0, MASTER_KEY_SIZE, (jbyte *)mk.c_seed);
|
||||
(*env)->GetByteArrayRegion(env, key, 0, MASTER_KEY_SIZE, (jbyte *)mk.key1);
|
||||
|
||||
// step 2: encrypt the hash "rounds" (default: 6000) times
|
||||
iret = pthread_create( &t1, NULL, generate_key_material, (void*)&mk );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to launch thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_create( &t2, NULL, generate_key_material, (void*)&mk );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to launch thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_join( t1, &vret1 );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to join thread 1"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
iret = pthread_join( t2, &vret2 );
|
||||
if( iret != 0 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: failed to join thread 2"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
}
|
||||
if( vret1 == (void *)(-1) || vret2 == (void *)(-1) || vret1 != vret2 ) {
|
||||
(*env)->ThrowNew(env, bad_arg, "TransformMasterKey: invalid flip value(s) from completed thread(s)"); // FIXME: get a better exception class for this...
|
||||
return NULL;
|
||||
} else {
|
||||
flip = (uint32_t)vret1;
|
||||
}
|
||||
|
||||
// step 3: final SHA256 hash
|
||||
sha256_begin(h_ctx);
|
||||
if( flip ) {
|
||||
sha256_hash(mk.key2, MASTER_KEY_SIZE, h_ctx);
|
||||
sha256_end(mk.key1, h_ctx);
|
||||
flip = 0;
|
||||
} else {
|
||||
sha256_hash(mk.key1, MASTER_KEY_SIZE, h_ctx);
|
||||
sha256_end(mk.key2, h_ctx);
|
||||
flip = 1;
|
||||
}
|
||||
|
||||
// step 4: send the hash into the JVM
|
||||
result = (*env)->NewByteArray(env, MASTER_KEY_SIZE);
|
||||
if( flip )
|
||||
(*env)->SetByteArrayRegion(env, result, 0, MASTER_KEY_SIZE, (jbyte *)mk.key2);
|
||||
else
|
||||
(*env)->SetByteArrayRegion(env, result, 0, MASTER_KEY_SIZE, (jbyte *)mk.key1);
|
||||
|
||||
return result;
|
||||
}
|
||||
#undef MASTER_KEY_SIZE
|
||||
|
5
src/java/kp2akeytransform/jni/prep_build.sh
Normal file
5
src/java/kp2akeytransform/jni/prep_build.sh
Normal file
@ -0,0 +1,5 @@
|
||||
#!/bin/sh
|
||||
SHA_FILE="sha2-07-01-07.zip"
|
||||
|
||||
curl http://gladman.plushost.co.uk/oldsite/cryptography_technology/sha/$SHA_FILE > $SHA_FILE
|
||||
unzip $SHA_FILE -d sha
|
13
src/java/kp2akeytransform/jni/sha/.gitignore
vendored
Normal file
13
src/java/kp2akeytransform/jni/sha/.gitignore
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
brg_endian.h
|
||||
brg_types.h
|
||||
hmac.c
|
||||
hmac.h
|
||||
pwd2key.c
|
||||
pwd2key.h
|
||||
sha1b.c
|
||||
sha1.c
|
||||
sha1.h
|
||||
sha2b.c
|
||||
sha2.c
|
||||
sha2.h
|
||||
shasum.c
|
14
src/java/kp2akeytransform/jni/sha/Android.mk
Normal file
14
src/java/kp2akeytransform/jni/sha/Android.mk
Normal file
@ -0,0 +1,14 @@
|
||||
LOCAL_PATH := $(call my-dir)
|
||||
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
LOCAL_MODULE := sha
|
||||
|
||||
LOCAL_SRC_FILES := \
|
||||
sha1.c \
|
||||
sha2.c \
|
||||
hmac.c
|
||||
|
||||
LOCAL_CFLAGS := -DUSE_SHA256
|
||||
|
||||
include $(BUILD_STATIC_LIBRARY)
|
8
src/java/kp2akeytransform/libs/.gitignore
vendored
Normal file
8
src/java/kp2akeytransform/libs/.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
[^.]
|
||||
armeabi
|
||||
armeabi-v7a
|
||||
x86
|
||||
mips
|
||||
mips-r2
|
||||
mips-r2-sf
|
||||
ant-contrib-0.3.jar
|
15
src/java/kp2akeytransform/project.properties
Normal file
15
src/java/kp2akeytransform/project.properties
Normal file
@ -0,0 +1,15 @@
|
||||
# This file is automatically generated by Android Tools.
|
||||
# Do not modify this file -- YOUR CHANGES WILL BE ERASED!
|
||||
#
|
||||
# This file must be checked in Version Control Systems.
|
||||
#
|
||||
# To customize properties used by the Ant build system use,
|
||||
# "ant.properties", and override values to adapt the script to your
|
||||
# project structure.
|
||||
|
||||
# Indicates whether an apk should be generated for each density.
|
||||
split.density=false
|
||||
# Project target.
|
||||
target=android-12
|
||||
apk-configurations=
|
||||
android.library=true
|
@ -0,0 +1,45 @@
|
||||
/*
|
||||
* Copyright 2009 Brian Pellin.
|
||||
*
|
||||
* This file is part of KeePassDroid.
|
||||
*
|
||||
* KeePassDroid is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDroid is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDroid. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.keepassdroid.crypto;
|
||||
|
||||
public class NativeLib {
|
||||
private static boolean isLoaded = false;
|
||||
private static boolean loadSuccess = false;
|
||||
|
||||
public static boolean loaded() {
|
||||
return init();
|
||||
}
|
||||
|
||||
public static boolean init() {
|
||||
if ( ! isLoaded ) {
|
||||
try {
|
||||
System.loadLibrary("final-key");
|
||||
} catch ( UnsatisfiedLinkError e) {
|
||||
return false;
|
||||
}
|
||||
isLoaded = true;
|
||||
loadSuccess = true;
|
||||
}
|
||||
|
||||
return loadSuccess;
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,78 @@
|
||||
/*
|
||||
* Copyright 2009 Brian Pellin.
|
||||
*
|
||||
* This file is part of KeePassDroid.
|
||||
*
|
||||
* KeePassDroid is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDroid is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDroid. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.keepassdroid.crypto.finalkey;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.security.InvalidKeyException;
|
||||
import java.security.MessageDigest;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
import javax.crypto.Cipher;
|
||||
import javax.crypto.NoSuchPaddingException;
|
||||
import javax.crypto.ShortBufferException;
|
||||
import javax.crypto.spec.SecretKeySpec;
|
||||
|
||||
public class AndroidFinalKey extends FinalKey {
|
||||
|
||||
@Override
|
||||
public byte[] transformMasterKey(byte[] pKeySeed, byte[] pKey, int rounds) throws IOException {
|
||||
Cipher cipher;
|
||||
try {
|
||||
cipher = Cipher.getInstance("AES/ECB/NoPadding");
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
throw new IOException("NoSuchAlgorithm: " + e.getMessage());
|
||||
} catch (NoSuchPaddingException e) {
|
||||
throw new IOException("NoSuchPadding: " + e.getMessage());
|
||||
}
|
||||
|
||||
try {
|
||||
cipher.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(pKeySeed, "AES"));
|
||||
} catch (InvalidKeyException e) {
|
||||
throw new IOException("InvalidPasswordException: " + e.getMessage());
|
||||
}
|
||||
|
||||
// Encrypt key rounds times
|
||||
byte[] newKey = new byte[pKey.length];
|
||||
System.arraycopy(pKey, 0, newKey, 0, pKey.length);
|
||||
byte[] destKey = new byte[pKey.length];
|
||||
for (int i = 0; i < rounds; i++) {
|
||||
try {
|
||||
cipher.update(newKey, 0, newKey.length, destKey, 0);
|
||||
System.arraycopy(destKey, 0, newKey, 0, newKey.length);
|
||||
|
||||
} catch (ShortBufferException e) {
|
||||
throw new IOException("Short buffer: " + e.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
// Hash the key
|
||||
MessageDigest md = null;
|
||||
try {
|
||||
md = MessageDigest.getInstance("SHA-256");
|
||||
} catch (NoSuchAlgorithmException e) {
|
||||
assert true;
|
||||
throw new IOException("SHA-256 not implemented here: " + e.getMessage());
|
||||
}
|
||||
|
||||
md.update(newKey);
|
||||
return md.digest();
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright 2009 Brian Pellin.
|
||||
*
|
||||
* This file is part of KeePassDroid.
|
||||
*
|
||||
* KeePassDroid is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDroid is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDroid. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.keepassdroid.crypto.finalkey;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
public abstract class FinalKey {
|
||||
public abstract byte[] transformMasterKey(byte[] seed, byte[] key, int rounds) throws IOException;
|
||||
}
|
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright 2009 Brian Pellin.
|
||||
*
|
||||
* This file is part of KeePassDroid.
|
||||
*
|
||||
* KeePassDroid is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDroid is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDroid. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.keepassdroid.crypto.finalkey;
|
||||
|
||||
public class FinalKeyFactory {
|
||||
public static FinalKey createFinalKey() {
|
||||
return createFinalKey(false);
|
||||
}
|
||||
|
||||
public static FinalKey createFinalKey(boolean androidOverride) {
|
||||
// Prefer the native final key implementation
|
||||
if ( ! androidOverride && NativeFinalKey.availble() ) {
|
||||
return new NativeFinalKey();
|
||||
} else {
|
||||
// Fall back on the android crypto implementation
|
||||
return new AndroidFinalKey();
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,55 @@
|
||||
/*
|
||||
* Copyright 2009 Brian Pellin.
|
||||
*
|
||||
* This file is part of KeePassDroid.
|
||||
*
|
||||
* KeePassDroid is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* KeePassDroid is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with KeePassDroid. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
package com.keepassdroid.crypto.finalkey;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
import com.keepassdroid.crypto.NativeLib;
|
||||
|
||||
|
||||
public class NativeFinalKey extends FinalKey {
|
||||
|
||||
public static boolean availble() {
|
||||
return NativeLib.init();
|
||||
}
|
||||
|
||||
@Override
|
||||
public byte[] transformMasterKey(byte[] seed, byte[] key, int rounds) throws IOException {
|
||||
NativeLib.init();
|
||||
|
||||
return nTransformMasterKey(seed, key, rounds);
|
||||
|
||||
}
|
||||
|
||||
private static native byte[] nTransformMasterKey(byte[] seed, byte[] key, int rounds);
|
||||
|
||||
// For testing
|
||||
/*
|
||||
public static byte[] reflect(byte[] key) {
|
||||
NativeLib.init();
|
||||
|
||||
return nativeReflect(key);
|
||||
}
|
||||
|
||||
private static native byte[] nativeReflect(byte[] key);
|
||||
*/
|
||||
|
||||
|
||||
}
|
@ -259,6 +259,9 @@
|
||||
<None Include="Resources\values-vi\strings.xml">
|
||||
<Visible>False</Visible>
|
||||
</None>
|
||||
<None Include="..\java\kp2akeytransform\libs\mips\libfinal-key.so">
|
||||
<Link>libs\mips\libfinal-key.so</Link>
|
||||
</None>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<AndroidResource Include="Resources\drawable\ic00.png" />
|
||||
@ -627,12 +630,20 @@
|
||||
<Folder Include="Resources\values-zh-rTW\" />
|
||||
<Folder Include="SupportLib\" />
|
||||
<Folder Include="Assets\" />
|
||||
<Folder Include="libs\" />
|
||||
<Folder Include="libs\armeabi-v7a\" />
|
||||
<Folder Include="libs\armeabi\" />
|
||||
<Folder Include="libs\mips\" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ProjectReference Include="..\KeePassLib2Android\KeePassLib2Android.csproj">
|
||||
<Project>{545B4A6B-8BBA-4FBE-92FC-4AC060122A54}</Project>
|
||||
<Name>KeePassLib2Android</Name>
|
||||
</ProjectReference>
|
||||
<ProjectReference Include="..\kp2akeytransform\kp2akeytransform.csproj">
|
||||
<Project>{A57B3ACE-5634-469A-88C4-858BB409F356}</Project>
|
||||
<Name>kp2akeytransform</Name>
|
||||
</ProjectReference>
|
||||
</ItemGroup>
|
||||
<ProjectExtensions>
|
||||
<MonoDevelop>
|
||||
@ -646,4 +657,14 @@
|
||||
<ItemGroup>
|
||||
<AndroidJavaLibrary Include="SupportLib\android-support-v4.jar" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<AndroidNativeLibrary Include="..\java\kp2akeytransform\libs\armeabi\libfinal-key.so">
|
||||
<Link>libs\armeabi\libfinal-key.so</Link>
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</AndroidNativeLibrary>
|
||||
<AndroidNativeLibrary Include="..\java\kp2akeytransform\libs\armeabi-v7a\libfinal-key.so">
|
||||
<Link>libs\armeabi-v7a\libfinal-key.so</Link>
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</AndroidNativeLibrary>
|
||||
</ItemGroup>
|
||||
</Project>
|
48
src/kp2akeytransform/Additions/AboutAdditions.txt
Normal file
48
src/kp2akeytransform/Additions/AboutAdditions.txt
Normal file
@ -0,0 +1,48 @@
|
||||
Additions allow you to add arbitrary C# to the generated classes
|
||||
before they are compiled. This can be helpful for providing convenience
|
||||
methods or adding pure C# classes.
|
||||
|
||||
== Adding Methods to Generated Classes ==
|
||||
|
||||
Let's say the library being bound has a Rectangle class with a constructor
|
||||
that takes an x and y position, and a width and length size. It will look like
|
||||
this:
|
||||
|
||||
public partial class Rectangle
|
||||
{
|
||||
public Rectangle (int x, int y, int width, int height)
|
||||
{
|
||||
// JNI bindings
|
||||
}
|
||||
}
|
||||
|
||||
Imagine we want to add a constructor to this class that takes a Point and
|
||||
Size structure instead of 4 ints. We can add a new file called Rectangle.cs
|
||||
with a partial class containing our new method:
|
||||
|
||||
public partial class Rectangle
|
||||
{
|
||||
public Rectangle (Point location, Size size) :
|
||||
this (location.X, location.Y, size.Width, size.Height)
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
At compile time, the additions class will be added to the generated class
|
||||
and the final assembly will a Rectangle class with both constructors.
|
||||
|
||||
|
||||
== Adding C# Classes ==
|
||||
|
||||
Another thing that can be done is adding fully C# managed classes to the
|
||||
generated library. In the above example, let's assume that there isn't a
|
||||
Point class available in Java or our library. The one we create doesn't need
|
||||
to interact with Java, so we'll create it like a normal class in C#.
|
||||
|
||||
By adding a Point.cs file with this class, it will end up in the binding library:
|
||||
|
||||
public class Point
|
||||
{
|
||||
public int X { get; set; }
|
||||
public int Y { get; set; }
|
||||
}
|
37
src/kp2akeytransform/Jars/AboutJars.txt
Normal file
37
src/kp2akeytransform/Jars/AboutJars.txt
Normal file
@ -0,0 +1,37 @@
|
||||
This directory is for Android .jars.
|
||||
|
||||
There are 3 types of jars that are supported:
|
||||
|
||||
== Input Jar and Embedded Jar ==
|
||||
|
||||
This is the jar that bindings should be generated for.
|
||||
|
||||
For example, if you were binding the Google Maps library, this would
|
||||
be Google's "maps.jar".
|
||||
|
||||
The difference between EmbeddedJar and InputJar is, EmbeddedJar is to be
|
||||
embedded in the resulting dll as EmbeddedResource, while InputJar is not.
|
||||
There are couple of reasons you wouldn't like to embed the target jar
|
||||
in your dll (the ones that could be internally loaded by <uses-library>
|
||||
feature e.g. maps.jar, or you cannot embed jars that are under some
|
||||
proprietary license).
|
||||
|
||||
Set the build action for these jars in the properties page to "InputJar".
|
||||
|
||||
|
||||
== Reference Jar and Embedded Reference Jar ==
|
||||
|
||||
These are jars that are referenced by the input jar. C# bindings will
|
||||
not be created for these jars. These jars will be used to resolve
|
||||
types used by the input jar.
|
||||
|
||||
NOTE: Do not add "android.jar" as a reference jar. It will be added automatically
|
||||
based on the Target Framework selected.
|
||||
|
||||
Set the build action for these jars in the properties page to "ReferenceJar".
|
||||
|
||||
"EmbeddedJar" works like "ReferenceJar", but like "EmbeddedJar", it is
|
||||
embedded in your dll. But at application build time, they are not included
|
||||
in the final apk, like ReferenceJar files.
|
||||
|
||||
|
28
src/kp2akeytransform/Properties/AssemblyInfo.cs
Normal file
28
src/kp2akeytransform/Properties/AssemblyInfo.cs
Normal file
@ -0,0 +1,28 @@
|
||||
using System.Reflection;
|
||||
using System.Runtime.CompilerServices;
|
||||
using Android.App;
|
||||
|
||||
// Information about this assembly is defined by the following attributes.
|
||||
// Change them to the values specific to your project.
|
||||
|
||||
[assembly: AssemblyTitle("kp2akeytransform")]
|
||||
[assembly: AssemblyDescription("")]
|
||||
[assembly: AssemblyConfiguration("")]
|
||||
[assembly: AssemblyCompany("")]
|
||||
[assembly: AssemblyProduct("")]
|
||||
[assembly: AssemblyCopyright("Philipp")]
|
||||
[assembly: AssemblyTrademark("")]
|
||||
[assembly: AssemblyCulture("")]
|
||||
|
||||
// The assembly version has the format "{Major}.{Minor}.{Build}.{Revision}".
|
||||
// The form "{Major}.{Minor}.*" will automatically update the build and revision,
|
||||
// and "{Major}.{Minor}.{Build}.*" will update just the revision.
|
||||
|
||||
[assembly: AssemblyVersion("1.0.0")]
|
||||
|
||||
// The following attributes are used to specify the signing key for the assembly,
|
||||
// if desired. See the Mono documentation for more information about signing.
|
||||
|
||||
//[assembly: AssemblyDelaySign(false)]
|
||||
//[assembly: AssemblyKeyFile("")]
|
||||
|
14
src/kp2akeytransform/Transforms/EnumFields.xml
Normal file
14
src/kp2akeytransform/Transforms/EnumFields.xml
Normal file
@ -0,0 +1,14 @@
|
||||
<enum-field-mappings>
|
||||
<!--
|
||||
This example converts the constants Fragment_id, Fragment_name,
|
||||
and Fragment_tag from android.support.v4.app.FragmentActivity.FragmentTag
|
||||
to an enum called Android.Support.V4.App.FragmentTagType with values
|
||||
Id, Name, and Tag.
|
||||
|
||||
<type enum-type="Android\Support\V4\App\FragmentTagType" java-class="android/support/v4/app/FragmentActivity$FragmentTag">
|
||||
<member enum="Id" java="Fragment_id" value="1" />
|
||||
<member enum="Name" java="Fragment_name" value="0" />
|
||||
<member enum="Tag" java="Fragment_tag" value="2" />
|
||||
</type>
|
||||
-->
|
||||
</enum-field-mappings>
|
11
src/kp2akeytransform/Transforms/EnumMethods.xml
Normal file
11
src/kp2akeytransform/Transforms/EnumMethods.xml
Normal file
@ -0,0 +1,11 @@
|
||||
<enum-method-mappings>
|
||||
<!--
|
||||
This example changes the Java method:
|
||||
android.support.v4.app.Fragment.SavedState.writeToParcel (int flags)
|
||||
to be:
|
||||
android.support.v4.app.Fragment.SavedState.writeToParcel (Android.OS.ParcelableWriteFlags flags)
|
||||
when bound in C#.
|
||||
|
||||
<map package="android.support.v4.app" class="Fragment.SavedState" method="writeToParcel" parameter="flags" enum="Android.OS.ParcelableWriteFlags" />
|
||||
-->
|
||||
</enum-method-mappings>
|
9
src/kp2akeytransform/Transforms/Metadata.xml
Normal file
9
src/kp2akeytransform/Transforms/Metadata.xml
Normal file
@ -0,0 +1,9 @@
|
||||
<metadata>
|
||||
<!--
|
||||
This sample removes the class: android.support.v4.content.AsyncTaskLoader.LoadTask:
|
||||
<remove-node path="/api/package[@name='android.support.v4.content']/class[@name='AsyncTaskLoader.LoadTask']" />
|
||||
|
||||
This sample removes the method: android.support.v4.content.CursorLoader.loadInBackground:
|
||||
<remove-node path="/api/package[@name='android.support.v4.content']/class[@name='CursorLoader']/method[@name='loadInBackground']" />
|
||||
-->
|
||||
</metadata>
|
77
src/kp2akeytransform/kp2akeytransform.csproj
Normal file
77
src/kp2akeytransform/kp2akeytransform.csproj
Normal file
@ -0,0 +1,77 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||
<PropertyGroup>
|
||||
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
|
||||
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
|
||||
<ProductVersion>10.0.0</ProductVersion>
|
||||
<SchemaVersion>2.0</SchemaVersion>
|
||||
<ProjectGuid>{A57B3ACE-5634-469A-88C4-858BB409F356}</ProjectGuid>
|
||||
<ProjectTypeGuids>{EFBA0AD7-5A72-4C68-AF49-83D382785DCF};{10368E6C-D01B-4462-8E8B-01FC667A7035};{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>
|
||||
<OutputType>Library</OutputType>
|
||||
<RootNamespace>kp2akeytransform</RootNamespace>
|
||||
<MonoAndroidAssetsPrefix>Assets</MonoAndroidAssetsPrefix>
|
||||
<MonoAndroidResourcePrefix>Resources</MonoAndroidResourcePrefix>
|
||||
<AssemblyName>kp2akeytransform</AssemblyName>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
|
||||
<DebugSymbols>True</DebugSymbols>
|
||||
<DebugType>full</DebugType>
|
||||
<Optimize>False</Optimize>
|
||||
<OutputPath>bin\Debug</OutputPath>
|
||||
<DefineConstants>DEBUG;</DefineConstants>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
<ConsolePause>False</ConsolePause>
|
||||
<AndroidLinkMode>None</AndroidLinkMode>
|
||||
</PropertyGroup>
|
||||
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
|
||||
<DebugType>none</DebugType>
|
||||
<Optimize>True</Optimize>
|
||||
<OutputPath>bin\Release</OutputPath>
|
||||
<ErrorReport>prompt</ErrorReport>
|
||||
<WarningLevel>4</WarningLevel>
|
||||
<AndroidUseSharedRuntime>False</AndroidUseSharedRuntime>
|
||||
<ConsolePause>False</ConsolePause>
|
||||
<AndroidLinkMode>SdkOnly</AndroidLinkMode>
|
||||
</PropertyGroup>
|
||||
<ItemGroup>
|
||||
<Reference Include="System" />
|
||||
<Reference Include="System.Xml" />
|
||||
<Reference Include="System.Core" />
|
||||
<Reference Include="Mono.Android" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Compile Include="Properties\AssemblyInfo.cs" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<None Include="Additions\AboutAdditions.txt" />
|
||||
<None Include="Jars\AboutJars.txt" />
|
||||
<None Include="..\java\kp2akeytransform\libs\armeabi\libfinal-key.so">
|
||||
<Link>libs\armeabi\libfinal-key.so</Link>
|
||||
</None>
|
||||
<None Include="..\java\kp2akeytransform\libs\armeabi-v7a\libfinal-key.so">
|
||||
<Link>libs\armeabi-v7a\libfinal-key.so</Link>
|
||||
</None>
|
||||
<None Include="..\java\kp2akeytransform\libs\mips\libfinal-key.so">
|
||||
<Link>libs\mips\libfinal-key.so</Link>
|
||||
</None>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<TransformFile Include="Transforms\EnumFields.xml" />
|
||||
<TransformFile Include="Transforms\EnumMethods.xml" />
|
||||
<TransformFile Include="Transforms\Metadata.xml" />
|
||||
</ItemGroup>
|
||||
<Import Project="$(MSBuildExtensionsPath)\Novell\Xamarin.Android.Bindings.targets" />
|
||||
<ItemGroup>
|
||||
<Folder Include="libs\" />
|
||||
<Folder Include="libs\armeabi\" />
|
||||
<Folder Include="libs\armeabi-v7a\" />
|
||||
<Folder Include="libs\mips\" />
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<EmbeddedJar Include="..\java\kp2akeytransform\bin\kp2akeytransform.jar">
|
||||
<Link>Jars\kp2akeytransform.jar</Link>
|
||||
<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
|
||||
</EmbeddedJar>
|
||||
</ItemGroup>
|
||||
</Project>
|
Loading…
Reference in New Issue
Block a user