mirror of
https://github.com/moparisthebest/k-9
synced 2024-12-03 22:42:18 -05:00
ecc10e572f
Implement DEFLATE compression for IMAP communication, enabled by default. User can disable compression for Wi-Fi, Mobile, or Other networks, if it causes problems or if uncompressed communication is faster, which is possible on Wi-Fi and wired networks, especially. "Other" is to allow for the Android platform to introduce new networking types without having to immediately change K-9 Mail. However, as those arise, new network types should be added as explicit types in K-9 Mail.
1624 lines
53 KiB
Java
1624 lines
53 KiB
Java
/* -*-mode:java; c-basic-offset:2; -*- */
|
|
/*
|
|
Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of the authors may not be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
|
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
|
|
INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
|
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* This program is based on zlib-1.1.3, so all credit should go authors
|
|
* Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
|
|
* and contributors of zlib.
|
|
*/
|
|
|
|
package com.jcraft.jzlib;
|
|
|
|
public
|
|
final class Deflate{
|
|
|
|
static final private int MAX_MEM_LEVEL=9;
|
|
|
|
static final private int Z_DEFAULT_COMPRESSION=-1;
|
|
|
|
static final private int MAX_WBITS=15; // 32K LZ77 window
|
|
static final private int DEF_MEM_LEVEL=8;
|
|
|
|
static class Config{
|
|
int good_length; // reduce lazy search above this match length
|
|
int max_lazy; // do not perform lazy search above this match length
|
|
int nice_length; // quit search above this match length
|
|
int max_chain;
|
|
int func;
|
|
Config(int good_length, int max_lazy,
|
|
int nice_length, int max_chain, int func){
|
|
this.good_length=good_length;
|
|
this.max_lazy=max_lazy;
|
|
this.nice_length=nice_length;
|
|
this.max_chain=max_chain;
|
|
this.func=func;
|
|
}
|
|
}
|
|
|
|
static final private int STORED=0;
|
|
static final private int FAST=1;
|
|
static final private int SLOW=2;
|
|
static final private Config[] config_table;
|
|
static{
|
|
config_table=new Config[10];
|
|
// good lazy nice chain
|
|
config_table[0]=new Config(0, 0, 0, 0, STORED);
|
|
config_table[1]=new Config(4, 4, 8, 4, FAST);
|
|
config_table[2]=new Config(4, 5, 16, 8, FAST);
|
|
config_table[3]=new Config(4, 6, 32, 32, FAST);
|
|
|
|
config_table[4]=new Config(4, 4, 16, 16, SLOW);
|
|
config_table[5]=new Config(8, 16, 32, 32, SLOW);
|
|
config_table[6]=new Config(8, 16, 128, 128, SLOW);
|
|
config_table[7]=new Config(8, 32, 128, 256, SLOW);
|
|
config_table[8]=new Config(32, 128, 258, 1024, SLOW);
|
|
config_table[9]=new Config(32, 258, 258, 4096, SLOW);
|
|
}
|
|
|
|
static final private String[] z_errmsg = {
|
|
"need dictionary", // Z_NEED_DICT 2
|
|
"stream end", // Z_STREAM_END 1
|
|
"", // Z_OK 0
|
|
"file error", // Z_ERRNO (-1)
|
|
"stream error", // Z_STREAM_ERROR (-2)
|
|
"data error", // Z_DATA_ERROR (-3)
|
|
"insufficient memory", // Z_MEM_ERROR (-4)
|
|
"buffer error", // Z_BUF_ERROR (-5)
|
|
"incompatible version",// Z_VERSION_ERROR (-6)
|
|
""
|
|
};
|
|
|
|
// block not completed, need more input or more output
|
|
static final private int NeedMore=0;
|
|
|
|
// block flush performed
|
|
static final private int BlockDone=1;
|
|
|
|
// finish started, need only more output at next deflate
|
|
static final private int FinishStarted=2;
|
|
|
|
// finish done, accept no more input or output
|
|
static final private int FinishDone=3;
|
|
|
|
// preset dictionary flag in zlib header
|
|
static final private int PRESET_DICT=0x20;
|
|
|
|
static final private int Z_FILTERED=1;
|
|
static final private int Z_HUFFMAN_ONLY=2;
|
|
static final private int Z_DEFAULT_STRATEGY=0;
|
|
|
|
static final private int Z_NO_FLUSH=0;
|
|
static final private int Z_PARTIAL_FLUSH=1;
|
|
static final private int Z_SYNC_FLUSH=2;
|
|
static final private int Z_FULL_FLUSH=3;
|
|
static final private int Z_FINISH=4;
|
|
|
|
static final private int Z_OK=0;
|
|
static final private int Z_STREAM_END=1;
|
|
static final private int Z_NEED_DICT=2;
|
|
static final private int Z_ERRNO=-1;
|
|
static final private int Z_STREAM_ERROR=-2;
|
|
static final private int Z_DATA_ERROR=-3;
|
|
static final private int Z_MEM_ERROR=-4;
|
|
static final private int Z_BUF_ERROR=-5;
|
|
static final private int Z_VERSION_ERROR=-6;
|
|
|
|
static final private int INIT_STATE=42;
|
|
static final private int BUSY_STATE=113;
|
|
static final private int FINISH_STATE=666;
|
|
|
|
// The deflate compression method
|
|
static final private int Z_DEFLATED=8;
|
|
|
|
static final private int STORED_BLOCK=0;
|
|
static final private int STATIC_TREES=1;
|
|
static final private int DYN_TREES=2;
|
|
|
|
// The three kinds of block type
|
|
static final private int Z_BINARY=0;
|
|
static final private int Z_ASCII=1;
|
|
static final private int Z_UNKNOWN=2;
|
|
|
|
static final private int Buf_size=8*2;
|
|
|
|
// repeat previous bit length 3-6 times (2 bits of repeat count)
|
|
static final private int REP_3_6=16;
|
|
|
|
// repeat a zero length 3-10 times (3 bits of repeat count)
|
|
static final private int REPZ_3_10=17;
|
|
|
|
// repeat a zero length 11-138 times (7 bits of repeat count)
|
|
static final private int REPZ_11_138=18;
|
|
|
|
static final private int MIN_MATCH=3;
|
|
static final private int MAX_MATCH=258;
|
|
static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1);
|
|
|
|
static final private int MAX_BITS=15;
|
|
static final private int D_CODES=30;
|
|
static final private int BL_CODES=19;
|
|
static final private int LENGTH_CODES=29;
|
|
static final private int LITERALS=256;
|
|
static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
|
|
static final private int HEAP_SIZE=(2*L_CODES+1);
|
|
|
|
static final private int END_BLOCK=256;
|
|
|
|
ZStream strm; // pointer back to this zlib stream
|
|
int status; // as the name implies
|
|
byte[] pending_buf; // output still pending
|
|
int pending_buf_size; // size of pending_buf
|
|
int pending_out; // next pending byte to output to the stream
|
|
int pending; // nb of bytes in the pending buffer
|
|
int noheader; // suppress zlib header and adler32
|
|
byte data_type; // UNKNOWN, BINARY or ASCII
|
|
byte method; // STORED (for zip only) or DEFLATED
|
|
int last_flush; // value of flush param for previous deflate call
|
|
|
|
int w_size; // LZ77 window size (32K by default)
|
|
int w_bits; // log2(w_size) (8..16)
|
|
int w_mask; // w_size - 1
|
|
|
|
byte[] window;
|
|
// Sliding window. Input bytes are read into the second half of the window,
|
|
// and move to the first half later to keep a dictionary of at least wSize
|
|
// bytes. With this organization, matches are limited to a distance of
|
|
// wSize-MAX_MATCH bytes, but this ensures that IO is always
|
|
// performed with a length multiple of the block size. Also, it limits
|
|
// the window size to 64K, which is quite useful on MSDOS.
|
|
// To do: use the user input buffer as sliding window.
|
|
|
|
int window_size;
|
|
// Actual size of window: 2*wSize, except when the user input buffer
|
|
// is directly used as sliding window.
|
|
|
|
short[] prev;
|
|
// Link to older string with same hash index. To limit the size of this
|
|
// array to 64K, this link is maintained only for the last 32K strings.
|
|
// An index in this array is thus a window index modulo 32K.
|
|
|
|
short[] head; // Heads of the hash chains or NIL.
|
|
|
|
int ins_h; // hash index of string to be inserted
|
|
int hash_size; // number of elements in hash table
|
|
int hash_bits; // log2(hash_size)
|
|
int hash_mask; // hash_size-1
|
|
|
|
// Number of bits by which ins_h must be shifted at each input
|
|
// step. It must be such that after MIN_MATCH steps, the oldest
|
|
// byte no longer takes part in the hash key, that is:
|
|
// hash_shift * MIN_MATCH >= hash_bits
|
|
int hash_shift;
|
|
|
|
// Window position at the beginning of the current output block. Gets
|
|
// negative when the window is moved backwards.
|
|
|
|
int block_start;
|
|
|
|
int match_length; // length of best match
|
|
int prev_match; // previous match
|
|
int match_available; // set if previous match exists
|
|
int strstart; // start of string to insert
|
|
int match_start; // start of matching string
|
|
int lookahead; // number of valid bytes ahead in window
|
|
|
|
// Length of the best match at previous step. Matches not greater than this
|
|
// are discarded. This is used in the lazy match evaluation.
|
|
int prev_length;
|
|
|
|
// To speed up deflation, hash chains are never searched beyond this
|
|
// length. A higher limit improves compression ratio but degrades the speed.
|
|
int max_chain_length;
|
|
|
|
// Attempt to find a better match only when the current match is strictly
|
|
// smaller than this value. This mechanism is used only for compression
|
|
// levels >= 4.
|
|
int max_lazy_match;
|
|
|
|
// Insert new strings in the hash table only if the match length is not
|
|
// greater than this length. This saves time but degrades compression.
|
|
// max_insert_length is used only for compression levels <= 3.
|
|
|
|
int level; // compression level (1..9)
|
|
int strategy; // favor or force Huffman coding
|
|
|
|
// Use a faster search when the previous match is longer than this
|
|
int good_match;
|
|
|
|
// Stop searching when current match exceeds this
|
|
int nice_match;
|
|
|
|
short[] dyn_ltree; // literal and length tree
|
|
short[] dyn_dtree; // distance tree
|
|
short[] bl_tree; // Huffman tree for bit lengths
|
|
|
|
Tree l_desc=new Tree(); // desc for literal tree
|
|
Tree d_desc=new Tree(); // desc for distance tree
|
|
Tree bl_desc=new Tree(); // desc for bit length tree
|
|
|
|
// number of codes at each bit length for an optimal tree
|
|
short[] bl_count=new short[MAX_BITS+1];
|
|
|
|
// heap used to build the Huffman trees
|
|
int[] heap=new int[2*L_CODES+1];
|
|
|
|
int heap_len; // number of elements in the heap
|
|
int heap_max; // element of largest frequency
|
|
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
|
// The same heap array is used to build all trees.
|
|
|
|
// Depth of each subtree used as tie breaker for trees of equal frequency
|
|
byte[] depth=new byte[2*L_CODES+1];
|
|
|
|
int l_buf; // index for literals or lengths */
|
|
|
|
// Size of match buffer for literals/lengths. There are 4 reasons for
|
|
// limiting lit_bufsize to 64K:
|
|
// - frequencies can be kept in 16 bit counters
|
|
// - if compression is not successful for the first block, all input
|
|
// data is still in the window so we can still emit a stored block even
|
|
// when input comes from standard input. (This can also be done for
|
|
// all blocks if lit_bufsize is not greater than 32K.)
|
|
// - if compression is not successful for a file smaller than 64K, we can
|
|
// even emit a stored file instead of a stored block (saving 5 bytes).
|
|
// This is applicable only for zip (not gzip or zlib).
|
|
// - creating new Huffman trees less frequently may not provide fast
|
|
// adaptation to changes in the input data statistics. (Take for
|
|
// example a binary file with poorly compressible code followed by
|
|
// a highly compressible string table.) Smaller buffer sizes give
|
|
// fast adaptation but have of course the overhead of transmitting
|
|
// trees more frequently.
|
|
// - I can't count above 4
|
|
int lit_bufsize;
|
|
|
|
int last_lit; // running index in l_buf
|
|
|
|
// Buffer for distances. To simplify the code, d_buf and l_buf have
|
|
// the same number of elements. To use different lengths, an extra flag
|
|
// array would be necessary.
|
|
|
|
int d_buf; // index of pendig_buf
|
|
|
|
int opt_len; // bit length of current block with optimal trees
|
|
int static_len; // bit length of current block with static trees
|
|
int matches; // number of string matches in current block
|
|
int last_eob_len; // bit length of EOB code for last block
|
|
|
|
// Output buffer. bits are inserted starting at the bottom (least
|
|
// significant bits).
|
|
short bi_buf;
|
|
|
|
// Number of valid bits in bi_buf. All bits above the last valid bit
|
|
// are always zero.
|
|
int bi_valid;
|
|
|
|
Deflate(){
|
|
dyn_ltree=new short[HEAP_SIZE*2];
|
|
dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree
|
|
bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths
|
|
}
|
|
|
|
void lm_init() {
|
|
window_size=2*w_size;
|
|
|
|
head[hash_size-1]=0;
|
|
for(int i=0; i<hash_size-1; i++){
|
|
head[i]=0;
|
|
}
|
|
|
|
// Set the default configuration parameters:
|
|
max_lazy_match = Deflate.config_table[level].max_lazy;
|
|
good_match = Deflate.config_table[level].good_length;
|
|
nice_match = Deflate.config_table[level].nice_length;
|
|
max_chain_length = Deflate.config_table[level].max_chain;
|
|
|
|
strstart = 0;
|
|
block_start = 0;
|
|
lookahead = 0;
|
|
match_length = prev_length = MIN_MATCH-1;
|
|
match_available = 0;
|
|
ins_h = 0;
|
|
}
|
|
|
|
// Initialize the tree data structures for a new zlib stream.
|
|
void tr_init(){
|
|
|
|
l_desc.dyn_tree = dyn_ltree;
|
|
l_desc.stat_desc = StaticTree.static_l_desc;
|
|
|
|
d_desc.dyn_tree = dyn_dtree;
|
|
d_desc.stat_desc = StaticTree.static_d_desc;
|
|
|
|
bl_desc.dyn_tree = bl_tree;
|
|
bl_desc.stat_desc = StaticTree.static_bl_desc;
|
|
|
|
bi_buf = 0;
|
|
bi_valid = 0;
|
|
last_eob_len = 8; // enough lookahead for inflate
|
|
|
|
// Initialize the first block of the first file:
|
|
init_block();
|
|
}
|
|
|
|
void init_block(){
|
|
// Initialize the trees.
|
|
for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0;
|
|
for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0;
|
|
for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0;
|
|
|
|
dyn_ltree[END_BLOCK*2] = 1;
|
|
opt_len = static_len = 0;
|
|
last_lit = matches = 0;
|
|
}
|
|
|
|
// Restore the heap property by moving down the tree starting at node k,
|
|
// exchanging a node with the smallest of its two sons if necessary, stopping
|
|
// when the heap property is re-established (each father smaller than its
|
|
// two sons).
|
|
void pqdownheap(short[] tree, // the tree to restore
|
|
int k // node to move down
|
|
){
|
|
int v = heap[k];
|
|
int j = k << 1; // left son of k
|
|
while (j <= heap_len) {
|
|
// Set j to the smallest of the two sons:
|
|
if (j < heap_len &&
|
|
smaller(tree, heap[j+1], heap[j], depth)){
|
|
j++;
|
|
}
|
|
// Exit if v is smaller than both sons
|
|
if(smaller(tree, v, heap[j], depth)) break;
|
|
|
|
// Exchange v with the smallest son
|
|
heap[k]=heap[j]; k = j;
|
|
// And continue down the tree, setting j to the left son of k
|
|
j <<= 1;
|
|
}
|
|
heap[k] = v;
|
|
}
|
|
|
|
static boolean smaller(short[] tree, int n, int m, byte[] depth){
|
|
short tn2=tree[n*2];
|
|
short tm2=tree[m*2];
|
|
return (tn2<tm2 ||
|
|
(tn2==tm2 && depth[n] <= depth[m]));
|
|
}
|
|
|
|
// Scan a literal or distance tree to determine the frequencies of the codes
|
|
// in the bit length tree.
|
|
void scan_tree (short[] tree,// the tree to be scanned
|
|
int max_code // and its largest code of non zero frequency
|
|
){
|
|
int n; // iterates over all tree elements
|
|
int prevlen = -1; // last emitted length
|
|
int curlen; // length of current code
|
|
int nextlen = tree[0*2+1]; // length of next code
|
|
int count = 0; // repeat count of the current code
|
|
int max_count = 7; // max repeat count
|
|
int min_count = 4; // min repeat count
|
|
|
|
if (nextlen == 0){ max_count = 138; min_count = 3; }
|
|
tree[(max_code+1)*2+1] = (short)0xffff; // guard
|
|
|
|
for(n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[(n+1)*2+1];
|
|
if(++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
}
|
|
else if(count < min_count) {
|
|
bl_tree[curlen*2] += count;
|
|
}
|
|
else if(curlen != 0) {
|
|
if(curlen != prevlen) bl_tree[curlen*2]++;
|
|
bl_tree[REP_3_6*2]++;
|
|
}
|
|
else if(count <= 10) {
|
|
bl_tree[REPZ_3_10*2]++;
|
|
}
|
|
else{
|
|
bl_tree[REPZ_11_138*2]++;
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if(nextlen == 0) {
|
|
max_count = 138; min_count = 3;
|
|
}
|
|
else if(curlen == nextlen) {
|
|
max_count = 6; min_count = 3;
|
|
}
|
|
else{
|
|
max_count = 7; min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct the Huffman tree for the bit lengths and return the index in
|
|
// bl_order of the last bit length code to send.
|
|
int build_bl_tree(){
|
|
int max_blindex; // index of last bit length code of non zero freq
|
|
|
|
// Determine the bit length frequencies for literal and distance trees
|
|
scan_tree(dyn_ltree, l_desc.max_code);
|
|
scan_tree(dyn_dtree, d_desc.max_code);
|
|
|
|
// Build the bit length tree:
|
|
bl_desc.build_tree(this);
|
|
// opt_len now includes the length of the tree representations, except
|
|
// the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
|
|
|
// Determine the number of bit length codes to send. The pkzip format
|
|
// requires that at least 4 bit length codes be sent. (appnote.txt says
|
|
// 3 but the actual value used is 4.)
|
|
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
|
if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break;
|
|
}
|
|
// Update opt_len to include the bit length tree and counts
|
|
opt_len += 3*(max_blindex+1) + 5+5+4;
|
|
|
|
return max_blindex;
|
|
}
|
|
|
|
|
|
// Send the header for a block using dynamic Huffman trees: the counts, the
|
|
// lengths of the bit length codes, the literal tree and the distance tree.
|
|
// IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
|
void send_all_trees(int lcodes, int dcodes, int blcodes){
|
|
int rank; // index in bl_order
|
|
|
|
send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
|
|
send_bits(dcodes-1, 5);
|
|
send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt
|
|
for (rank = 0; rank < blcodes; rank++) {
|
|
send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3);
|
|
}
|
|
send_tree(dyn_ltree, lcodes-1); // literal tree
|
|
send_tree(dyn_dtree, dcodes-1); // distance tree
|
|
}
|
|
|
|
// Send a literal or distance tree in compressed form, using the codes in
|
|
// bl_tree.
|
|
void send_tree (short[] tree,// the tree to be sent
|
|
int max_code // and its largest code of non zero frequency
|
|
){
|
|
int n; // iterates over all tree elements
|
|
int prevlen = -1; // last emitted length
|
|
int curlen; // length of current code
|
|
int nextlen = tree[0*2+1]; // length of next code
|
|
int count = 0; // repeat count of the current code
|
|
int max_count = 7; // max repeat count
|
|
int min_count = 4; // min repeat count
|
|
|
|
if (nextlen == 0){ max_count = 138; min_count = 3; }
|
|
|
|
for (n = 0; n <= max_code; n++) {
|
|
curlen = nextlen; nextlen = tree[(n+1)*2+1];
|
|
if(++count < max_count && curlen == nextlen) {
|
|
continue;
|
|
}
|
|
else if(count < min_count) {
|
|
do { send_code(curlen, bl_tree); } while (--count != 0);
|
|
}
|
|
else if(curlen != 0){
|
|
if(curlen != prevlen){
|
|
send_code(curlen, bl_tree); count--;
|
|
}
|
|
send_code(REP_3_6, bl_tree);
|
|
send_bits(count-3, 2);
|
|
}
|
|
else if(count <= 10){
|
|
send_code(REPZ_3_10, bl_tree);
|
|
send_bits(count-3, 3);
|
|
}
|
|
else{
|
|
send_code(REPZ_11_138, bl_tree);
|
|
send_bits(count-11, 7);
|
|
}
|
|
count = 0; prevlen = curlen;
|
|
if(nextlen == 0){
|
|
max_count = 138; min_count = 3;
|
|
}
|
|
else if(curlen == nextlen){
|
|
max_count = 6; min_count = 3;
|
|
}
|
|
else{
|
|
max_count = 7; min_count = 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output a byte on the stream.
|
|
// IN assertion: there is enough room in pending_buf.
|
|
final void put_byte(byte[] p, int start, int len){
|
|
System.arraycopy(p, start, pending_buf, pending, len);
|
|
pending+=len;
|
|
}
|
|
|
|
final void put_byte(byte c){
|
|
pending_buf[pending++]=c;
|
|
}
|
|
final void put_short(int w) {
|
|
put_byte((byte)(w/*&0xff*/));
|
|
put_byte((byte)(w>>>8));
|
|
}
|
|
final void putShortMSB(int b){
|
|
put_byte((byte)(b>>8));
|
|
put_byte((byte)(b/*&0xff*/));
|
|
}
|
|
|
|
final void send_code(int c, short[] tree){
|
|
int c2=c*2;
|
|
send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff));
|
|
}
|
|
|
|
void send_bits(int value, int length){
|
|
int len = length;
|
|
if (bi_valid > (int)Buf_size - len) {
|
|
int val = value;
|
|
// bi_buf |= (val << bi_valid);
|
|
bi_buf |= ((val << bi_valid)&0xffff);
|
|
put_short(bi_buf);
|
|
bi_buf = (short)(val >>> (Buf_size - bi_valid));
|
|
bi_valid += len - Buf_size;
|
|
} else {
|
|
// bi_buf |= (value) << bi_valid;
|
|
bi_buf |= (((value) << bi_valid)&0xffff);
|
|
bi_valid += len;
|
|
}
|
|
}
|
|
|
|
// Send one empty static block to give enough lookahead for inflate.
|
|
// This takes 10 bits, of which 7 may remain in the bit buffer.
|
|
// The current inflate code requires 9 bits of lookahead. If the
|
|
// last two codes for the previous block (real code plus EOB) were coded
|
|
// on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
|
|
// the last real code. In this case we send two empty static blocks instead
|
|
// of one. (There are no problems if the previous block is stored or fixed.)
|
|
// To simplify the code, we assume the worst case of last real code encoded
|
|
// on one bit only.
|
|
void _tr_align(){
|
|
send_bits(STATIC_TREES<<1, 3);
|
|
send_code(END_BLOCK, StaticTree.static_ltree);
|
|
|
|
bi_flush();
|
|
|
|
// Of the 10 bits for the empty block, we have already sent
|
|
// (10 - bi_valid) bits. The lookahead for the last real code (before
|
|
// the EOB of the previous block) was thus at least one plus the length
|
|
// of the EOB plus what we have just sent of the empty static block.
|
|
if (1 + last_eob_len + 10 - bi_valid < 9) {
|
|
send_bits(STATIC_TREES<<1, 3);
|
|
send_code(END_BLOCK, StaticTree.static_ltree);
|
|
bi_flush();
|
|
}
|
|
last_eob_len = 7;
|
|
}
|
|
|
|
|
|
// Save the match info and tally the frequency counts. Return true if
|
|
// the current block must be flushed.
|
|
boolean _tr_tally (int dist, // distance of matched string
|
|
int lc // match length-MIN_MATCH or unmatched char (if dist==0)
|
|
){
|
|
|
|
pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8);
|
|
pending_buf[d_buf+last_lit*2+1] = (byte)dist;
|
|
|
|
pending_buf[l_buf+last_lit] = (byte)lc; last_lit++;
|
|
|
|
if (dist == 0) {
|
|
// lc is the unmatched char
|
|
dyn_ltree[lc*2]++;
|
|
}
|
|
else {
|
|
matches++;
|
|
// Here, lc is the match length - MIN_MATCH
|
|
dist--; // dist = match distance - 1
|
|
dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++;
|
|
dyn_dtree[Tree.d_code(dist)*2]++;
|
|
}
|
|
|
|
if ((last_lit & 0x1fff) == 0 && level > 2) {
|
|
// Compute an upper bound for the compressed length
|
|
int out_length = last_lit*8;
|
|
int in_length = strstart - block_start;
|
|
int dcode;
|
|
for (dcode = 0; dcode < D_CODES; dcode++) {
|
|
out_length += (int)dyn_dtree[dcode*2] *
|
|
(5L+Tree.extra_dbits[dcode]);
|
|
}
|
|
out_length >>>= 3;
|
|
if ((matches < (last_lit/2)) && out_length < in_length/2) return true;
|
|
}
|
|
|
|
return (last_lit == lit_bufsize-1);
|
|
// We avoid equality with lit_bufsize because of wraparound at 64K
|
|
// on 16 bit machines and because stored blocks are restricted to
|
|
// 64K-1 bytes.
|
|
}
|
|
|
|
// Send the block data compressed using the given Huffman trees
|
|
void compress_block(short[] ltree, short[] dtree){
|
|
int dist; // distance of matched string
|
|
int lc; // match length or unmatched char (if dist == 0)
|
|
int lx = 0; // running index in l_buf
|
|
int code; // the code to send
|
|
int extra; // number of extra bits to send
|
|
|
|
if (last_lit != 0){
|
|
do{
|
|
dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)|
|
|
(pending_buf[d_buf+lx*2+1]&0xff);
|
|
lc=(pending_buf[l_buf+lx])&0xff; lx++;
|
|
|
|
if(dist == 0){
|
|
send_code(lc, ltree); // send a literal byte
|
|
}
|
|
else{
|
|
// Here, lc is the match length - MIN_MATCH
|
|
code = Tree._length_code[lc];
|
|
|
|
send_code(code+LITERALS+1, ltree); // send the length code
|
|
extra = Tree.extra_lbits[code];
|
|
if(extra != 0){
|
|
lc -= Tree.base_length[code];
|
|
send_bits(lc, extra); // send the extra length bits
|
|
}
|
|
dist--; // dist is now the match distance - 1
|
|
code = Tree.d_code(dist);
|
|
|
|
send_code(code, dtree); // send the distance code
|
|
extra = Tree.extra_dbits[code];
|
|
if (extra != 0) {
|
|
dist -= Tree.base_dist[code];
|
|
send_bits(dist, extra); // send the extra distance bits
|
|
}
|
|
} // literal or match pair ?
|
|
|
|
// Check that the overlay between pending_buf and d_buf+l_buf is ok:
|
|
}
|
|
while (lx < last_lit);
|
|
}
|
|
|
|
send_code(END_BLOCK, ltree);
|
|
last_eob_len = ltree[END_BLOCK*2+1];
|
|
}
|
|
|
|
// Set the data type to ASCII or BINARY, using a crude approximation:
|
|
// binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
|
// IN assertion: the fields freq of dyn_ltree are set and the total of all
|
|
// frequencies does not exceed 64K (to fit in an int on 16 bit machines).
|
|
void set_data_type(){
|
|
int n = 0;
|
|
int ascii_freq = 0;
|
|
int bin_freq = 0;
|
|
while(n<7){ bin_freq += dyn_ltree[n*2]; n++;}
|
|
while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;}
|
|
while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;}
|
|
data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII);
|
|
}
|
|
|
|
// Flush the bit buffer, keeping at most 7 bits in it.
|
|
void bi_flush(){
|
|
if (bi_valid == 16) {
|
|
put_short(bi_buf);
|
|
bi_buf=0;
|
|
bi_valid=0;
|
|
}
|
|
else if (bi_valid >= 8) {
|
|
put_byte((byte)bi_buf);
|
|
bi_buf>>>=8;
|
|
bi_valid-=8;
|
|
}
|
|
}
|
|
|
|
// Flush the bit buffer and align the output on a byte boundary
|
|
void bi_windup(){
|
|
if (bi_valid > 8) {
|
|
put_short(bi_buf);
|
|
} else if (bi_valid > 0) {
|
|
put_byte((byte)bi_buf);
|
|
}
|
|
bi_buf = 0;
|
|
bi_valid = 0;
|
|
}
|
|
|
|
// Copy a stored block, storing first the length and its
|
|
// one's complement if requested.
|
|
void copy_block(int buf, // the input data
|
|
int len, // its length
|
|
boolean header // true if block header must be written
|
|
){
|
|
int index=0;
|
|
bi_windup(); // align on byte boundary
|
|
last_eob_len = 8; // enough lookahead for inflate
|
|
|
|
if (header) {
|
|
put_short((short)len);
|
|
put_short((short)~len);
|
|
}
|
|
|
|
// while(len--!=0) {
|
|
// put_byte(window[buf+index]);
|
|
// index++;
|
|
// }
|
|
put_byte(window, buf, len);
|
|
}
|
|
|
|
void flush_block_only(boolean eof){
|
|
_tr_flush_block(block_start>=0 ? block_start : -1,
|
|
strstart-block_start,
|
|
eof);
|
|
block_start=strstart;
|
|
strm.flush_pending();
|
|
}
|
|
|
|
// Copy without compression as much as possible from the input stream, return
|
|
// the current block state.
|
|
// This function does not insert new strings in the dictionary since
|
|
// uncompressible data is probably not useful. This function is used
|
|
// only for the level=0 compression option.
|
|
// NOTE: this function should be optimized to avoid extra copying from
|
|
// window to pending_buf.
|
|
int deflate_stored(int flush){
|
|
// Stored blocks are limited to 0xffff bytes, pending_buf is limited
|
|
// to pending_buf_size, and each stored block has a 5 byte header:
|
|
|
|
int max_block_size = 0xffff;
|
|
int max_start;
|
|
|
|
if(max_block_size > pending_buf_size - 5) {
|
|
max_block_size = pending_buf_size - 5;
|
|
}
|
|
|
|
// Copy as much as possible from input to output:
|
|
while(true){
|
|
// Fill the window as much as possible:
|
|
if(lookahead<=1){
|
|
fill_window();
|
|
if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore;
|
|
if(lookahead==0) break; // flush the current block
|
|
}
|
|
|
|
strstart+=lookahead;
|
|
lookahead=0;
|
|
|
|
// Emit a stored block if pending_buf will be full:
|
|
max_start=block_start+max_block_size;
|
|
if(strstart==0|| strstart>=max_start) {
|
|
// strstart == 0 is possible when wraparound on 16-bit machine
|
|
lookahead = (int)(strstart-max_start);
|
|
strstart = (int)max_start;
|
|
|
|
flush_block_only(false);
|
|
if(strm.avail_out==0) return NeedMore;
|
|
|
|
}
|
|
|
|
// Flush if we may have to slide, otherwise block_start may become
|
|
// negative and the data will be gone:
|
|
if(strstart-block_start >= w_size-MIN_LOOKAHEAD) {
|
|
flush_block_only(false);
|
|
if(strm.avail_out==0) return NeedMore;
|
|
}
|
|
}
|
|
|
|
flush_block_only(flush == Z_FINISH);
|
|
if(strm.avail_out==0)
|
|
return (flush == Z_FINISH) ? FinishStarted : NeedMore;
|
|
|
|
return flush == Z_FINISH ? FinishDone : BlockDone;
|
|
}
|
|
|
|
// Send a stored block
|
|
void _tr_stored_block(int buf, // input block
|
|
int stored_len, // length of input block
|
|
boolean eof // true if this is the last block for a file
|
|
){
|
|
send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type
|
|
copy_block(buf, stored_len, true); // with header
|
|
}
|
|
|
|
// Determine the best encoding for the current block: dynamic trees, static
|
|
// trees or store, and output the encoded block to the zip file.
|
|
void _tr_flush_block(int buf, // input block, or NULL if too old
|
|
int stored_len, // length of input block
|
|
boolean eof // true if this is the last block for a file
|
|
) {
|
|
int opt_lenb, static_lenb;// opt_len and static_len in bytes
|
|
int max_blindex = 0; // index of last bit length code of non zero freq
|
|
|
|
// Build the Huffman trees unless a stored block is forced
|
|
if(level > 0) {
|
|
// Check if the file is ascii or binary
|
|
if(data_type == Z_UNKNOWN) set_data_type();
|
|
|
|
// Construct the literal and distance trees
|
|
l_desc.build_tree(this);
|
|
|
|
d_desc.build_tree(this);
|
|
|
|
// At this point, opt_len and static_len are the total bit lengths of
|
|
// the compressed block data, excluding the tree representations.
|
|
|
|
// Build the bit length tree for the above two trees, and get the index
|
|
// in bl_order of the last bit length code to send.
|
|
max_blindex=build_bl_tree();
|
|
|
|
// Determine the best encoding. Compute first the block length in bytes
|
|
opt_lenb=(opt_len+3+7)>>>3;
|
|
static_lenb=(static_len+3+7)>>>3;
|
|
|
|
if(static_lenb<=opt_lenb) opt_lenb=static_lenb;
|
|
}
|
|
else {
|
|
opt_lenb=static_lenb=stored_len+5; // force a stored block
|
|
}
|
|
|
|
if(stored_len+4<=opt_lenb && buf != -1){
|
|
// 4: two words for the lengths
|
|
// The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
|
// Otherwise we can't have processed more than WSIZE input bytes since
|
|
// the last block flush, because compression would have been
|
|
// successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
|
// transform a block into a stored block.
|
|
_tr_stored_block(buf, stored_len, eof);
|
|
}
|
|
else if(static_lenb == opt_lenb){
|
|
send_bits((STATIC_TREES<<1)+(eof?1:0), 3);
|
|
compress_block(StaticTree.static_ltree, StaticTree.static_dtree);
|
|
}
|
|
else{
|
|
send_bits((DYN_TREES<<1)+(eof?1:0), 3);
|
|
send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
|
|
compress_block(dyn_ltree, dyn_dtree);
|
|
}
|
|
|
|
// The above check is made mod 2^32, for files larger than 512 MB
|
|
// and uLong implemented on 32 bits.
|
|
|
|
init_block();
|
|
|
|
if(eof){
|
|
bi_windup();
|
|
}
|
|
}
|
|
|
|
// Fill the window when the lookahead becomes insufficient.
|
|
// Updates strstart and lookahead.
|
|
//
|
|
// IN assertion: lookahead < MIN_LOOKAHEAD
|
|
// OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
|
|
// At least one byte has been read, or avail_in == 0; reads are
|
|
// performed for at least two bytes (required for the zip translate_eol
|
|
// option -- not supported here).
|
|
void fill_window(){
|
|
int n, m;
|
|
int p;
|
|
int more; // Amount of free space at the end of the window.
|
|
|
|
do{
|
|
more = (window_size-lookahead-strstart);
|
|
|
|
// Deal with !@#$% 64K limit:
|
|
if(more==0 && strstart==0 && lookahead==0){
|
|
more = w_size;
|
|
}
|
|
else if(more==-1) {
|
|
// Very unlikely, but possible on 16 bit machine if strstart == 0
|
|
// and lookahead == 1 (input done one byte at time)
|
|
more--;
|
|
|
|
// If the window is almost full and there is insufficient lookahead,
|
|
// move the upper half to the lower one to make room in the upper half.
|
|
}
|
|
else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) {
|
|
System.arraycopy(window, w_size, window, 0, w_size);
|
|
match_start-=w_size;
|
|
strstart-=w_size; // we now have strstart >= MAX_DIST
|
|
block_start-=w_size;
|
|
|
|
// Slide the hash table (could be avoided with 32 bit values
|
|
// at the expense of memory usage). We slide even when level == 0
|
|
// to keep the hash table consistent if we switch back to level > 0
|
|
// later. (Using level 0 permanently is not an optimal usage of
|
|
// zlib, so we don't care about this pathological case.)
|
|
|
|
n = hash_size;
|
|
p=n;
|
|
do {
|
|
m = (head[--p]&0xffff);
|
|
head[p]=(m>=w_size ? (short)(m-w_size) : 0);
|
|
}
|
|
while (--n != 0);
|
|
|
|
n = w_size;
|
|
p = n;
|
|
do {
|
|
m = (prev[--p]&0xffff);
|
|
prev[p] = (m >= w_size ? (short)(m-w_size) : 0);
|
|
// If n is not on any hash chain, prev[n] is garbage but
|
|
// its value will never be used.
|
|
}
|
|
while (--n!=0);
|
|
more += w_size;
|
|
}
|
|
|
|
if (strm.avail_in == 0) return;
|
|
|
|
// If there was no sliding:
|
|
// strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
|
|
// more == window_size - lookahead - strstart
|
|
// => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
|
|
// => more >= window_size - 2*WSIZE + 2
|
|
// In the BIG_MEM or MMAP case (not yet supported),
|
|
// window_size == input_size + MIN_LOOKAHEAD &&
|
|
// strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
|
|
// Otherwise, window_size == 2*WSIZE so more >= 2.
|
|
// If there was sliding, more >= WSIZE. So in all cases, more >= 2.
|
|
|
|
n = strm.read_buf(window, strstart + lookahead, more);
|
|
lookahead += n;
|
|
|
|
// Initialize the hash value now that we have some input:
|
|
if(lookahead >= MIN_MATCH) {
|
|
ins_h = window[strstart]&0xff;
|
|
ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
|
|
}
|
|
// If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
|
|
// but this is not important since only literal bytes will be emitted.
|
|
}
|
|
while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0);
|
|
}
|
|
|
|
// Compress as much as possible from the input stream, return the current
|
|
// block state.
|
|
// This function does not perform lazy evaluation of matches and inserts
|
|
// new strings in the dictionary only for unmatched strings or for short
|
|
// matches. It is used only for the fast compression options.
|
|
int deflate_fast(int flush){
|
|
// short hash_head = 0; // head of the hash chain
|
|
int hash_head = 0; // head of the hash chain
|
|
boolean bflush; // set if current block must be flushed
|
|
|
|
while(true){
|
|
// Make sure that we always have enough lookahead, except
|
|
// at the end of the input file. We need MAX_MATCH bytes
|
|
// for the next match, plus MIN_MATCH bytes to insert the
|
|
// string following the next match.
|
|
if(lookahead < MIN_LOOKAHEAD){
|
|
fill_window();
|
|
if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){
|
|
return NeedMore;
|
|
}
|
|
if(lookahead == 0) break; // flush the current block
|
|
}
|
|
|
|
// Insert the string window[strstart .. strstart+2] in the
|
|
// dictionary, and set hash_head to the head of the hash chain:
|
|
if(lookahead >= MIN_MATCH){
|
|
ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
|
|
|
|
// prev[strstart&w_mask]=hash_head=head[ins_h];
|
|
hash_head=(head[ins_h]&0xffff);
|
|
prev[strstart&w_mask]=head[ins_h];
|
|
head[ins_h]=(short)strstart;
|
|
}
|
|
|
|
// Find the longest match, discarding those <= prev_length.
|
|
// At this point we have always match_length < MIN_MATCH
|
|
|
|
if(hash_head!=0L &&
|
|
((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
|
|
){
|
|
// To simplify the code, we prevent matches with the string
|
|
// of window index 0 (in particular we have to avoid a match
|
|
// of the string with itself at the start of the input file).
|
|
if(strategy != Z_HUFFMAN_ONLY){
|
|
match_length=longest_match (hash_head);
|
|
}
|
|
// longest_match() sets match_start
|
|
}
|
|
if(match_length>=MIN_MATCH){
|
|
// check_match(strstart, match_start, match_length);
|
|
|
|
bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH);
|
|
|
|
lookahead -= match_length;
|
|
|
|
// Insert new strings in the hash table only if the match length
|
|
// is not too large. This saves time but degrades compression.
|
|
if(match_length <= max_lazy_match &&
|
|
lookahead >= MIN_MATCH) {
|
|
match_length--; // string at strstart already in hash table
|
|
do{
|
|
strstart++;
|
|
|
|
ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
|
|
// prev[strstart&w_mask]=hash_head=head[ins_h];
|
|
hash_head=(head[ins_h]&0xffff);
|
|
prev[strstart&w_mask]=head[ins_h];
|
|
head[ins_h]=(short)strstart;
|
|
|
|
// strstart never exceeds WSIZE-MAX_MATCH, so there are
|
|
// always MIN_MATCH bytes ahead.
|
|
}
|
|
while (--match_length != 0);
|
|
strstart++;
|
|
}
|
|
else{
|
|
strstart += match_length;
|
|
match_length = 0;
|
|
ins_h = window[strstart]&0xff;
|
|
|
|
ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
|
|
// If lookahead < MIN_MATCH, ins_h is garbage, but it does not
|
|
// matter since it will be recomputed at next deflate call.
|
|
}
|
|
}
|
|
else {
|
|
// No match, output a literal byte
|
|
|
|
bflush=_tr_tally(0, window[strstart]&0xff);
|
|
lookahead--;
|
|
strstart++;
|
|
}
|
|
if (bflush){
|
|
|
|
flush_block_only(false);
|
|
if(strm.avail_out==0) return NeedMore;
|
|
}
|
|
}
|
|
|
|
flush_block_only(flush == Z_FINISH);
|
|
if(strm.avail_out==0){
|
|
if(flush == Z_FINISH) return FinishStarted;
|
|
else return NeedMore;
|
|
}
|
|
return flush==Z_FINISH ? FinishDone : BlockDone;
|
|
}
|
|
|
|
// Same as above, but achieves better compression. We use a lazy
|
|
// evaluation for matches: a match is finally adopted only if there is
|
|
// no better match at the next window position.
|
|
int deflate_slow(int flush){
|
|
// short hash_head = 0; // head of hash chain
|
|
int hash_head = 0; // head of hash chain
|
|
boolean bflush; // set if current block must be flushed
|
|
|
|
// Process the input block.
|
|
while(true){
|
|
// Make sure that we always have enough lookahead, except
|
|
// at the end of the input file. We need MAX_MATCH bytes
|
|
// for the next match, plus MIN_MATCH bytes to insert the
|
|
// string following the next match.
|
|
|
|
if (lookahead < MIN_LOOKAHEAD) {
|
|
fill_window();
|
|
if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
|
|
return NeedMore;
|
|
}
|
|
if(lookahead == 0) break; // flush the current block
|
|
}
|
|
|
|
// Insert the string window[strstart .. strstart+2] in the
|
|
// dictionary, and set hash_head to the head of the hash chain:
|
|
|
|
if(lookahead >= MIN_MATCH) {
|
|
ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask;
|
|
// prev[strstart&w_mask]=hash_head=head[ins_h];
|
|
hash_head=(head[ins_h]&0xffff);
|
|
prev[strstart&w_mask]=head[ins_h];
|
|
head[ins_h]=(short)strstart;
|
|
}
|
|
|
|
// Find the longest match, discarding those <= prev_length.
|
|
prev_length = match_length; prev_match = match_start;
|
|
match_length = MIN_MATCH-1;
|
|
|
|
if (hash_head != 0 && prev_length < max_lazy_match &&
|
|
((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
|
|
){
|
|
// To simplify the code, we prevent matches with the string
|
|
// of window index 0 (in particular we have to avoid a match
|
|
// of the string with itself at the start of the input file).
|
|
|
|
if(strategy != Z_HUFFMAN_ONLY) {
|
|
match_length = longest_match(hash_head);
|
|
}
|
|
// longest_match() sets match_start
|
|
|
|
if (match_length <= 5 && (strategy == Z_FILTERED ||
|
|
(match_length == MIN_MATCH &&
|
|
strstart - match_start > 4096))) {
|
|
|
|
// If prev_match is also MIN_MATCH, match_start is garbage
|
|
// but we will ignore the current match anyway.
|
|
match_length = MIN_MATCH-1;
|
|
}
|
|
}
|
|
|
|
// If there was a match at the previous step and the current
|
|
// match is not better, output the previous match:
|
|
if(prev_length >= MIN_MATCH && match_length <= prev_length) {
|
|
int max_insert = strstart + lookahead - MIN_MATCH;
|
|
// Do not insert strings in hash table beyond this.
|
|
|
|
// check_match(strstart-1, prev_match, prev_length);
|
|
|
|
bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH);
|
|
|
|
// Insert in hash table all strings up to the end of the match.
|
|
// strstart-1 and strstart are already inserted. If there is not
|
|
// enough lookahead, the last two strings are not inserted in
|
|
// the hash table.
|
|
lookahead -= prev_length-1;
|
|
prev_length -= 2;
|
|
do{
|
|
if(++strstart <= max_insert) {
|
|
ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
|
|
//prev[strstart&w_mask]=hash_head=head[ins_h];
|
|
hash_head=(head[ins_h]&0xffff);
|
|
prev[strstart&w_mask]=head[ins_h];
|
|
head[ins_h]=(short)strstart;
|
|
}
|
|
}
|
|
while(--prev_length != 0);
|
|
match_available = 0;
|
|
match_length = MIN_MATCH-1;
|
|
strstart++;
|
|
|
|
if (bflush){
|
|
flush_block_only(false);
|
|
if(strm.avail_out==0) return NeedMore;
|
|
}
|
|
} else if (match_available!=0) {
|
|
|
|
// If there was no match at the previous position, output a
|
|
// single literal. If there was a match but the current match
|
|
// is longer, truncate the previous match to a single literal.
|
|
|
|
bflush=_tr_tally(0, window[strstart-1]&0xff);
|
|
|
|
if (bflush) {
|
|
flush_block_only(false);
|
|
}
|
|
strstart++;
|
|
lookahead--;
|
|
if(strm.avail_out == 0) return NeedMore;
|
|
} else {
|
|
// There is no previous match to compare with, wait for
|
|
// the next step to decide.
|
|
|
|
match_available = 1;
|
|
strstart++;
|
|
lookahead--;
|
|
}
|
|
}
|
|
|
|
if(match_available!=0) {
|
|
bflush=_tr_tally(0, window[strstart-1]&0xff);
|
|
match_available = 0;
|
|
}
|
|
flush_block_only(flush == Z_FINISH);
|
|
|
|
if(strm.avail_out==0){
|
|
if(flush == Z_FINISH) return FinishStarted;
|
|
else return NeedMore;
|
|
}
|
|
|
|
return flush == Z_FINISH ? FinishDone : BlockDone;
|
|
}
|
|
|
|
int longest_match(int cur_match){
|
|
int chain_length = max_chain_length; // max hash chain length
|
|
int scan = strstart; // current string
|
|
int match; // matched string
|
|
int len; // length of current match
|
|
int best_len = prev_length; // best match length so far
|
|
int limit = strstart>(w_size-MIN_LOOKAHEAD) ?
|
|
strstart-(w_size-MIN_LOOKAHEAD) : 0;
|
|
int nice_match=this.nice_match;
|
|
|
|
// Stop when cur_match becomes <= limit. To simplify the code,
|
|
// we prevent matches with the string of window index 0.
|
|
|
|
int wmask = w_mask;
|
|
|
|
int strend = strstart + MAX_MATCH;
|
|
byte scan_end1 = window[scan+best_len-1];
|
|
byte scan_end = window[scan+best_len];
|
|
|
|
// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
|
|
// It is easy to get rid of this optimization if necessary.
|
|
|
|
// Do not waste too much time if we already have a good match:
|
|
if (prev_length >= good_match) {
|
|
chain_length >>= 2;
|
|
}
|
|
|
|
// Do not look for matches beyond the end of the input. This is necessary
|
|
// to make deflate deterministic.
|
|
if (nice_match > lookahead) nice_match = lookahead;
|
|
|
|
do {
|
|
match = cur_match;
|
|
|
|
// Skip to next match if the match length cannot increase
|
|
// or if the match length is less than 2:
|
|
if (window[match+best_len] != scan_end ||
|
|
window[match+best_len-1] != scan_end1 ||
|
|
window[match] != window[scan] ||
|
|
window[++match] != window[scan+1]) continue;
|
|
|
|
// The check at best_len-1 can be removed because it will be made
|
|
// again later. (This heuristic is not always a win.)
|
|
// It is not necessary to compare scan[2] and match[2] since they
|
|
// are always equal when the other bytes match, given that
|
|
// the hash keys are equal and that HASH_BITS >= 8.
|
|
scan += 2; match++;
|
|
|
|
// We check for insufficient lookahead only every 8th comparison;
|
|
// the 256th check will be made at strstart+258.
|
|
do {
|
|
} while (window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
window[++scan] == window[++match] &&
|
|
scan < strend);
|
|
|
|
len = MAX_MATCH - (int)(strend - scan);
|
|
scan = strend - MAX_MATCH;
|
|
|
|
if(len>best_len) {
|
|
match_start = cur_match;
|
|
best_len = len;
|
|
if (len >= nice_match) break;
|
|
scan_end1 = window[scan+best_len-1];
|
|
scan_end = window[scan+best_len];
|
|
}
|
|
|
|
} while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit
|
|
&& --chain_length != 0);
|
|
|
|
if (best_len <= lookahead) return best_len;
|
|
return lookahead;
|
|
}
|
|
|
|
int deflateInit(ZStream strm, int level, int bits){
|
|
return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL,
|
|
Z_DEFAULT_STRATEGY);
|
|
}
|
|
int deflateInit(ZStream strm, int level){
|
|
return deflateInit(strm, level, MAX_WBITS);
|
|
}
|
|
int deflateInit2(ZStream strm, int level, int method, int windowBits,
|
|
int memLevel, int strategy){
|
|
int noheader = 0;
|
|
// byte[] my_version=ZLIB_VERSION;
|
|
|
|
//
|
|
// if (version == null || version[0] != my_version[0]
|
|
// || stream_size != sizeof(z_stream)) {
|
|
// return Z_VERSION_ERROR;
|
|
// }
|
|
|
|
strm.msg = null;
|
|
|
|
if (level == Z_DEFAULT_COMPRESSION) level = 6;
|
|
|
|
if (windowBits < 0) { // undocumented feature: suppress zlib header
|
|
noheader = 1;
|
|
windowBits = -windowBits;
|
|
}
|
|
|
|
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL ||
|
|
method != Z_DEFLATED ||
|
|
windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
|
|
strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
|
|
strm.dstate = (Deflate)this;
|
|
|
|
this.noheader = noheader;
|
|
w_bits = windowBits;
|
|
w_size = 1 << w_bits;
|
|
w_mask = w_size - 1;
|
|
|
|
hash_bits = memLevel + 7;
|
|
hash_size = 1 << hash_bits;
|
|
hash_mask = hash_size - 1;
|
|
hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH);
|
|
|
|
window = new byte[w_size*2];
|
|
prev = new short[w_size];
|
|
head = new short[hash_size];
|
|
|
|
lit_bufsize = 1 << (memLevel + 6); // 16K elements by default
|
|
|
|
// We overlay pending_buf and d_buf+l_buf. This works since the average
|
|
// output size for (length,distance) codes is <= 24 bits.
|
|
pending_buf = new byte[lit_bufsize*4];
|
|
pending_buf_size = lit_bufsize*4;
|
|
|
|
d_buf = lit_bufsize/2;
|
|
l_buf = (1+2)*lit_bufsize;
|
|
|
|
this.level = level;
|
|
|
|
//System.out.println("level="+level);
|
|
|
|
this.strategy = strategy;
|
|
this.method = (byte)method;
|
|
|
|
return deflateReset(strm);
|
|
}
|
|
|
|
int deflateReset(ZStream strm){
|
|
strm.total_in = strm.total_out = 0;
|
|
strm.msg = null; //
|
|
strm.data_type = Z_UNKNOWN;
|
|
|
|
pending = 0;
|
|
pending_out = 0;
|
|
|
|
if(noheader < 0) {
|
|
noheader = 0; // was set to -1 by deflate(..., Z_FINISH);
|
|
}
|
|
status = (noheader!=0) ? BUSY_STATE : INIT_STATE;
|
|
strm.adler=strm._adler.adler32(0, null, 0, 0);
|
|
|
|
last_flush = Z_NO_FLUSH;
|
|
|
|
tr_init();
|
|
lm_init();
|
|
return Z_OK;
|
|
}
|
|
|
|
int deflateEnd(){
|
|
if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
// Deallocate in reverse order of allocations:
|
|
pending_buf=null;
|
|
head=null;
|
|
prev=null;
|
|
window=null;
|
|
// free
|
|
// dstate=null;
|
|
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
|
|
}
|
|
|
|
int deflateParams(ZStream strm, int _level, int _strategy){
|
|
int err=Z_OK;
|
|
|
|
if(_level == Z_DEFAULT_COMPRESSION){
|
|
_level = 6;
|
|
}
|
|
if(_level < 0 || _level > 9 ||
|
|
_strategy < 0 || _strategy > Z_HUFFMAN_ONLY) {
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
|
|
if(config_table[level].func!=config_table[_level].func &&
|
|
strm.total_in != 0) {
|
|
// Flush the last buffer:
|
|
err = strm.deflate(Z_PARTIAL_FLUSH);
|
|
}
|
|
|
|
if(level != _level) {
|
|
level = _level;
|
|
max_lazy_match = config_table[level].max_lazy;
|
|
good_match = config_table[level].good_length;
|
|
nice_match = config_table[level].nice_length;
|
|
max_chain_length = config_table[level].max_chain;
|
|
}
|
|
strategy = _strategy;
|
|
return err;
|
|
}
|
|
|
|
int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){
|
|
int length = dictLength;
|
|
int index=0;
|
|
|
|
if(dictionary == null || status != INIT_STATE)
|
|
return Z_STREAM_ERROR;
|
|
|
|
strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength);
|
|
|
|
if(length < MIN_MATCH) return Z_OK;
|
|
if(length > w_size-MIN_LOOKAHEAD){
|
|
length = w_size-MIN_LOOKAHEAD;
|
|
index=dictLength-length; // use the tail of the dictionary
|
|
}
|
|
System.arraycopy(dictionary, index, window, 0, length);
|
|
strstart = length;
|
|
block_start = length;
|
|
|
|
// Insert all strings in the hash table (except for the last two bytes).
|
|
// s->lookahead stays null, so s->ins_h will be recomputed at the next
|
|
// call of fill_window.
|
|
|
|
ins_h = window[0]&0xff;
|
|
ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask;
|
|
|
|
for(int n=0; n<=length-MIN_MATCH; n++){
|
|
ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask;
|
|
prev[n&w_mask]=head[ins_h];
|
|
head[ins_h]=(short)n;
|
|
}
|
|
return Z_OK;
|
|
}
|
|
|
|
int deflate(ZStream strm, int flush){
|
|
int old_flush;
|
|
|
|
if(flush>Z_FINISH || flush<0){
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
|
|
if(strm.next_out == null ||
|
|
(strm.next_in == null && strm.avail_in != 0) ||
|
|
(status == FINISH_STATE && flush != Z_FINISH)) {
|
|
strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)];
|
|
return Z_STREAM_ERROR;
|
|
}
|
|
if(strm.avail_out == 0){
|
|
strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
|
|
return Z_BUF_ERROR;
|
|
}
|
|
|
|
this.strm = strm; // just in case
|
|
old_flush = last_flush;
|
|
last_flush = flush;
|
|
|
|
// Write the zlib header
|
|
if(status == INIT_STATE) {
|
|
int header = (Z_DEFLATED+((w_bits-8)<<4))<<8;
|
|
int level_flags=((level-1)&0xff)>>1;
|
|
|
|
if(level_flags>3) level_flags=3;
|
|
header |= (level_flags<<6);
|
|
if(strstart!=0) header |= PRESET_DICT;
|
|
header+=31-(header % 31);
|
|
|
|
status=BUSY_STATE;
|
|
putShortMSB(header);
|
|
|
|
|
|
// Save the adler32 of the preset dictionary:
|
|
if(strstart!=0){
|
|
putShortMSB((int)(strm.adler>>>16));
|
|
putShortMSB((int)(strm.adler&0xffff));
|
|
}
|
|
strm.adler=strm._adler.adler32(0, null, 0, 0);
|
|
}
|
|
|
|
// Flush as much pending output as possible
|
|
if(pending != 0) {
|
|
strm.flush_pending();
|
|
if(strm.avail_out == 0) {
|
|
//System.out.println(" avail_out==0");
|
|
// Since avail_out is 0, deflate will be called again with
|
|
// more output space, but possibly with both pending and
|
|
// avail_in equal to zero. There won't be anything to do,
|
|
// but this is not an error situation so make sure we
|
|
// return OK instead of BUF_ERROR at next call of deflate:
|
|
last_flush = -1;
|
|
return Z_OK;
|
|
}
|
|
|
|
// Make sure there is something to do and avoid duplicate consecutive
|
|
// flushes. For repeated and useless calls with Z_FINISH, we keep
|
|
// returning Z_STREAM_END instead of Z_BUFF_ERROR.
|
|
}
|
|
else if(strm.avail_in==0 && flush <= old_flush &&
|
|
flush != Z_FINISH) {
|
|
strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
|
|
return Z_BUF_ERROR;
|
|
}
|
|
|
|
// User must not provide more input after the first FINISH:
|
|
if(status == FINISH_STATE && strm.avail_in != 0) {
|
|
strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
|
|
return Z_BUF_ERROR;
|
|
}
|
|
|
|
// Start a new block or continue the current one.
|
|
if(strm.avail_in!=0 || lookahead!=0 ||
|
|
(flush != Z_NO_FLUSH && status != FINISH_STATE)) {
|
|
int bstate=-1;
|
|
switch(config_table[level].func){
|
|
case STORED:
|
|
bstate = deflate_stored(flush);
|
|
break;
|
|
case FAST:
|
|
bstate = deflate_fast(flush);
|
|
break;
|
|
case SLOW:
|
|
bstate = deflate_slow(flush);
|
|
break;
|
|
default:
|
|
}
|
|
|
|
if (bstate==FinishStarted || bstate==FinishDone) {
|
|
status = FINISH_STATE;
|
|
}
|
|
if (bstate==NeedMore || bstate==FinishStarted) {
|
|
if(strm.avail_out == 0) {
|
|
last_flush = -1; // avoid BUF_ERROR next call, see above
|
|
}
|
|
return Z_OK;
|
|
// If flush != Z_NO_FLUSH && avail_out == 0, the next call
|
|
// of deflate should use the same flush parameter to make sure
|
|
// that the flush is complete. So we don't have to output an
|
|
// empty block here, this will be done at next call. This also
|
|
// ensures that for a very small output buffer, we emit at most
|
|
// one empty block.
|
|
}
|
|
|
|
if (bstate==BlockDone) {
|
|
if(flush == Z_PARTIAL_FLUSH) {
|
|
_tr_align();
|
|
}
|
|
else { // FULL_FLUSH or SYNC_FLUSH
|
|
_tr_stored_block(0, 0, false);
|
|
// For a full flush, this empty block will be recognized
|
|
// as a special marker by inflate_sync().
|
|
if(flush == Z_FULL_FLUSH) {
|
|
//state.head[s.hash_size-1]=0;
|
|
for(int i=0; i<hash_size/*-1*/; i++) // forget history
|
|
head[i]=0;
|
|
}
|
|
}
|
|
strm.flush_pending();
|
|
if(strm.avail_out == 0) {
|
|
last_flush = -1; // avoid BUF_ERROR at next call, see above
|
|
return Z_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(flush!=Z_FINISH) return Z_OK;
|
|
if(noheader!=0) return Z_STREAM_END;
|
|
|
|
// Write the zlib trailer (adler32)
|
|
putShortMSB((int)(strm.adler>>>16));
|
|
putShortMSB((int)(strm.adler&0xffff));
|
|
strm.flush_pending();
|
|
|
|
// If avail_out is zero, the application will call deflate again
|
|
// to flush the rest.
|
|
noheader = -1; // write the trailer only once!
|
|
return pending != 0 ? Z_OK : Z_STREAM_END;
|
|
}
|
|
}
|