mirror of
https://github.com/moparisthebest/curl
synced 2024-11-17 23:15:08 -05:00
c43127414d
Remove internal separated behavior of the easy vs multi intercace. curl_easy_perform() is now using the multi interface itself. Several minor multi interface quirks and bugs have been fixed in the process. Much help with debugging this has been provided by: Yang Tse
2694 lines
85 KiB
C
2694 lines
85 KiB
C
/***************************************************************************
|
|
* _ _ ____ _
|
|
* Project ___| | | | _ \| |
|
|
* / __| | | | |_) | |
|
|
* | (__| |_| | _ <| |___
|
|
* \___|\___/|_| \_\_____|
|
|
*
|
|
* Copyright (C) 1998 - 2013, Daniel Stenberg, <daniel@haxx.se>, et al.
|
|
*
|
|
* This software is licensed as described in the file COPYING, which
|
|
* you should have received as part of this distribution. The terms
|
|
* are also available at http://curl.haxx.se/docs/copyright.html.
|
|
*
|
|
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
|
|
* copies of the Software, and permit persons to whom the Software is
|
|
* furnished to do so, under the terms of the COPYING file.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
***************************************************************************/
|
|
|
|
#include "curl_setup.h"
|
|
|
|
#include <curl/curl.h>
|
|
|
|
#include "urldata.h"
|
|
#include "transfer.h"
|
|
#include "url.h"
|
|
#include "connect.h"
|
|
#include "progress.h"
|
|
#include "easyif.h"
|
|
#include "multiif.h"
|
|
#include "sendf.h"
|
|
#include "timeval.h"
|
|
#include "http.h"
|
|
#include "select.h"
|
|
#include "warnless.h"
|
|
#include "speedcheck.h"
|
|
#include "conncache.h"
|
|
#include "bundles.h"
|
|
#include "multihandle.h"
|
|
|
|
#define _MPRINTF_REPLACE /* use our functions only */
|
|
#include <curl/mprintf.h>
|
|
|
|
#include "curl_memory.h"
|
|
/* The last #include file should be: */
|
|
#include "memdebug.h"
|
|
|
|
/*
|
|
CURL_SOCKET_HASH_TABLE_SIZE should be a prime number. Increasing it from 97
|
|
to 911 takes on a 32-bit machine 4 x 804 = 3211 more bytes. Still, every
|
|
CURL handle takes 45-50 K memory, therefore this 3K are not significant.
|
|
*/
|
|
#ifndef CURL_SOCKET_HASH_TABLE_SIZE
|
|
#define CURL_SOCKET_HASH_TABLE_SIZE 911
|
|
#endif
|
|
|
|
|
|
#define CURL_MULTI_HANDLE 0x000bab1e
|
|
|
|
#define GOOD_MULTI_HANDLE(x) \
|
|
((x) && (((struct Curl_multi *)(x))->type == CURL_MULTI_HANDLE))
|
|
#define GOOD_EASY_HANDLE(x) \
|
|
((x) && (((struct SessionHandle *)(x))->magic == CURLEASY_MAGIC_NUMBER))
|
|
|
|
static void singlesocket(struct Curl_multi *multi,
|
|
struct Curl_one_easy *easy);
|
|
static int update_timer(struct Curl_multi *multi);
|
|
|
|
static CURLcode addHandleToSendOrPendPipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn);
|
|
static int checkPendPipeline(struct connectdata *conn);
|
|
static void moveHandleFromSendToRecvPipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn);
|
|
static void moveHandleFromRecvToDonePipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn);
|
|
static bool isHandleAtHead(struct SessionHandle *handle,
|
|
struct curl_llist *pipeline);
|
|
static CURLMcode add_next_timeout(struct timeval now,
|
|
struct Curl_multi *multi,
|
|
struct SessionHandle *d);
|
|
|
|
#ifdef DEBUGBUILD
|
|
static const char * const statename[]={
|
|
"INIT",
|
|
"CONNECT",
|
|
"WAITRESOLVE",
|
|
"WAITCONNECT",
|
|
"WAITPROXYCONNECT",
|
|
"PROTOCONNECT",
|
|
"WAITDO",
|
|
"DO",
|
|
"DOING",
|
|
"DO_MORE",
|
|
"DO_DONE",
|
|
"WAITPERFORM",
|
|
"PERFORM",
|
|
"TOOFAST",
|
|
"DONE",
|
|
"COMPLETED",
|
|
"MSGSENT",
|
|
};
|
|
#endif
|
|
|
|
static void multi_freetimeout(void *a, void *b);
|
|
|
|
/* always use this function to change state, to make debugging easier */
|
|
static void mstate(struct Curl_one_easy *easy, CURLMstate state
|
|
#ifdef DEBUGBUILD
|
|
, int lineno
|
|
#endif
|
|
)
|
|
{
|
|
#ifdef DEBUGBUILD
|
|
long connection_id = -5000;
|
|
#endif
|
|
CURLMstate oldstate = easy->state;
|
|
|
|
if(oldstate == state)
|
|
/* don't bother when the new state is the same as the old state */
|
|
return;
|
|
|
|
easy->state = state;
|
|
|
|
#ifdef DEBUGBUILD
|
|
if(easy->easy_conn) {
|
|
if(easy->state > CURLM_STATE_CONNECT &&
|
|
easy->state < CURLM_STATE_COMPLETED)
|
|
connection_id = easy->easy_conn->connection_id;
|
|
|
|
infof(easy->easy_handle,
|
|
"STATE: %s => %s handle %p; line %d (connection #%ld) \n",
|
|
statename[oldstate], statename[easy->state],
|
|
(char *)easy, lineno, connection_id);
|
|
}
|
|
#endif
|
|
if(state == CURLM_STATE_COMPLETED)
|
|
/* changing to COMPLETED means there's one less easy handle 'alive' */
|
|
easy->easy_handle->multi->num_alive--;
|
|
}
|
|
|
|
#ifndef DEBUGBUILD
|
|
#define multistate(x,y) mstate(x,y)
|
|
#else
|
|
#define multistate(x,y) mstate(x,y, __LINE__)
|
|
#endif
|
|
|
|
/*
|
|
* We add one of these structs to the sockhash for a particular socket
|
|
*/
|
|
|
|
struct Curl_sh_entry {
|
|
struct SessionHandle *easy;
|
|
time_t timestamp;
|
|
int action; /* what action READ/WRITE this socket waits for */
|
|
curl_socket_t socket; /* mainly to ease debugging */
|
|
void *socketp; /* settable by users with curl_multi_assign() */
|
|
};
|
|
/* bits for 'action' having no bits means this socket is not expecting any
|
|
action */
|
|
#define SH_READ 1
|
|
#define SH_WRITE 2
|
|
|
|
/* make sure this socket is present in the hash for this handle */
|
|
static struct Curl_sh_entry *sh_addentry(struct curl_hash *sh,
|
|
curl_socket_t s,
|
|
struct SessionHandle *data)
|
|
{
|
|
struct Curl_sh_entry *there =
|
|
Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
|
|
struct Curl_sh_entry *check;
|
|
|
|
if(there)
|
|
/* it is present, return fine */
|
|
return there;
|
|
|
|
/* not present, add it */
|
|
check = calloc(1, sizeof(struct Curl_sh_entry));
|
|
if(!check)
|
|
return NULL; /* major failure */
|
|
check->easy = data;
|
|
check->socket = s;
|
|
|
|
/* make/add new hash entry */
|
|
if(NULL == Curl_hash_add(sh, (char *)&s, sizeof(curl_socket_t), check)) {
|
|
free(check);
|
|
return NULL; /* major failure */
|
|
}
|
|
|
|
return check; /* things are good in sockhash land */
|
|
}
|
|
|
|
|
|
/* delete the given socket + handle from the hash */
|
|
static void sh_delentry(struct curl_hash *sh, curl_socket_t s)
|
|
{
|
|
struct Curl_sh_entry *there =
|
|
Curl_hash_pick(sh, (char *)&s, sizeof(curl_socket_t));
|
|
|
|
if(there) {
|
|
/* this socket is in the hash */
|
|
/* We remove the hash entry. (This'll end up in a call to
|
|
sh_freeentry().) */
|
|
Curl_hash_delete(sh, (char *)&s, sizeof(curl_socket_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free a sockhash entry
|
|
*/
|
|
static void sh_freeentry(void *freethis)
|
|
{
|
|
struct Curl_sh_entry *p = (struct Curl_sh_entry *) freethis;
|
|
|
|
if(p)
|
|
free(p);
|
|
}
|
|
|
|
static size_t fd_key_compare(void*k1, size_t k1_len, void*k2, size_t k2_len)
|
|
{
|
|
(void) k1_len; (void) k2_len;
|
|
|
|
return (*((int* ) k1)) == (*((int* ) k2));
|
|
}
|
|
|
|
static size_t hash_fd(void* key, size_t key_length, size_t slots_num)
|
|
{
|
|
int fd = * ((int* ) key);
|
|
(void) key_length;
|
|
|
|
return (fd % (int)slots_num);
|
|
}
|
|
|
|
/*
|
|
* sh_init() creates a new socket hash and returns the handle for it.
|
|
*
|
|
* Quote from README.multi_socket:
|
|
*
|
|
* "Some tests at 7000 and 9000 connections showed that the socket hash lookup
|
|
* is somewhat of a bottle neck. Its current implementation may be a bit too
|
|
* limiting. It simply has a fixed-size array, and on each entry in the array
|
|
* it has a linked list with entries. So the hash only checks which list to
|
|
* scan through. The code I had used so for used a list with merely 7 slots
|
|
* (as that is what the DNS hash uses) but with 7000 connections that would
|
|
* make an average of 1000 nodes in each list to run through. I upped that to
|
|
* 97 slots (I believe a prime is suitable) and noticed a significant speed
|
|
* increase. I need to reconsider the hash implementation or use a rather
|
|
* large default value like this. At 9000 connections I was still below 10us
|
|
* per call."
|
|
*
|
|
*/
|
|
static struct curl_hash *sh_init(void)
|
|
{
|
|
return Curl_hash_alloc(CURL_SOCKET_HASH_TABLE_SIZE, hash_fd, fd_key_compare,
|
|
sh_freeentry);
|
|
}
|
|
|
|
/*
|
|
* multi_addmsg()
|
|
*
|
|
* Called when a transfer is completed. Adds the given msg pointer to
|
|
* the list kept in the multi handle.
|
|
*/
|
|
static CURLMcode multi_addmsg(struct Curl_multi *multi,
|
|
struct Curl_message *msg)
|
|
{
|
|
if(!Curl_llist_insert_next(multi->msglist, multi->msglist->tail, msg))
|
|
return CURLM_OUT_OF_MEMORY;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
/*
|
|
* multi_freeamsg()
|
|
*
|
|
* Callback used by the llist system when a single list entry is destroyed.
|
|
*/
|
|
static void multi_freeamsg(void *a, void *b)
|
|
{
|
|
(void)a;
|
|
(void)b;
|
|
}
|
|
|
|
CURLM *curl_multi_init(void)
|
|
{
|
|
struct Curl_multi *multi = calloc(1, sizeof(struct Curl_multi));
|
|
|
|
if(!multi)
|
|
return NULL;
|
|
|
|
multi->type = CURL_MULTI_HANDLE;
|
|
|
|
multi->hostcache = Curl_mk_dnscache();
|
|
if(!multi->hostcache)
|
|
goto error;
|
|
|
|
multi->sockhash = sh_init();
|
|
if(!multi->sockhash)
|
|
goto error;
|
|
|
|
multi->conn_cache = Curl_conncache_init();
|
|
if(!multi->conn_cache)
|
|
goto error;
|
|
|
|
multi->msglist = Curl_llist_alloc(multi_freeamsg);
|
|
if(!multi->msglist)
|
|
goto error;
|
|
|
|
/* Let's make the doubly-linked list a circular list. This makes
|
|
the linked list code simpler and allows inserting at the end
|
|
with less work (we didn't keep a tail pointer before). */
|
|
multi->easy.next = &multi->easy;
|
|
multi->easy.prev = &multi->easy;
|
|
|
|
return (CURLM *) multi;
|
|
|
|
error:
|
|
|
|
Curl_hash_destroy(multi->sockhash);
|
|
multi->sockhash = NULL;
|
|
Curl_hash_destroy(multi->hostcache);
|
|
multi->hostcache = NULL;
|
|
Curl_conncache_destroy(multi->conn_cache);
|
|
multi->conn_cache = NULL;
|
|
|
|
free(multi);
|
|
return NULL;
|
|
}
|
|
|
|
CURLMcode curl_multi_add_handle(CURLM *multi_handle,
|
|
CURL *easy_handle)
|
|
{
|
|
struct curl_llist *timeoutlist;
|
|
struct Curl_one_easy *easy;
|
|
struct Curl_multi *multi = (struct Curl_multi *)multi_handle;
|
|
struct SessionHandle *data = (struct SessionHandle *)easy_handle;
|
|
struct SessionHandle *new_closure = NULL;
|
|
struct curl_hash *hostcache = NULL;
|
|
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
/* Verify that we got a somewhat good easy handle too */
|
|
if(!GOOD_EASY_HANDLE(easy_handle))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
/* Prevent users from adding same easy handle more than
|
|
once and prevent adding to more than one multi stack */
|
|
if(data->multi)
|
|
/* possibly we should create a new unique error code for this condition */
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
/* Allocate and initialize timeout list for easy handle */
|
|
timeoutlist = Curl_llist_alloc(multi_freetimeout);
|
|
if(!timeoutlist)
|
|
return CURLM_OUT_OF_MEMORY;
|
|
|
|
/* Allocate new node for the doubly-linked circular list of
|
|
Curl_one_easy structs that holds pointers to easy handles */
|
|
easy = calloc(1, sizeof(struct Curl_one_easy));
|
|
if(!easy) {
|
|
Curl_llist_destroy(timeoutlist, NULL);
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
|
|
/* In case multi handle has no hostcache yet, allocate one */
|
|
if(!multi->hostcache) {
|
|
hostcache = Curl_mk_dnscache();
|
|
if(!hostcache) {
|
|
free(easy);
|
|
Curl_llist_destroy(timeoutlist, NULL);
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
/* In case multi handle has no closure_handle yet, allocate
|
|
a new easy handle to use when closing cached connections */
|
|
if(!multi->closure_handle) {
|
|
new_closure = (struct SessionHandle *)curl_easy_init();
|
|
if(!new_closure) {
|
|
Curl_hash_destroy(hostcache);
|
|
free(easy);
|
|
Curl_llist_destroy(timeoutlist, NULL);
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** No failure allowed in this function beyond this point. And
|
|
** no modification of easy nor multi handle allowed before this
|
|
** except for potential multi's connection cache growing which
|
|
** won't be undone in this function no matter what.
|
|
*/
|
|
|
|
/* In case a new closure handle has been initialized above, it
|
|
is associated now with the multi handle which lacked one. */
|
|
if(new_closure) {
|
|
multi->closure_handle = new_closure;
|
|
Curl_easy_addmulti(multi->closure_handle, multi_handle);
|
|
multi->closure_handle->state.conn_cache = multi->conn_cache;
|
|
}
|
|
|
|
/* In case hostcache has been allocated above,
|
|
it is associated now with the multi handle. */
|
|
if(hostcache)
|
|
multi->hostcache = hostcache;
|
|
|
|
/* Make easy handle use timeout list initialized above */
|
|
data->state.timeoutlist = timeoutlist;
|
|
timeoutlist = NULL;
|
|
|
|
/* set the easy handle */
|
|
easy->easy_handle = data;
|
|
multistate(easy, CURLM_STATE_INIT);
|
|
|
|
/* set the back pointer to one_easy to assist in removal */
|
|
easy->easy_handle->multi_pos = easy;
|
|
|
|
/* for multi interface connections, we share DNS cache automatically if the
|
|
easy handle's one is currently not set. */
|
|
if(!easy->easy_handle->dns.hostcache ||
|
|
(easy->easy_handle->dns.hostcachetype == HCACHE_NONE)) {
|
|
easy->easy_handle->dns.hostcache = multi->hostcache;
|
|
easy->easy_handle->dns.hostcachetype = HCACHE_MULTI;
|
|
}
|
|
|
|
/* Point to the multi's connection cache */
|
|
easy->easy_handle->state.conn_cache = multi->conn_cache;
|
|
|
|
/* This adds the new entry at the 'end' of the doubly-linked circular
|
|
list of Curl_one_easy structs to try and maintain a FIFO queue so
|
|
the pipelined requests are in order. */
|
|
|
|
/* We add this new entry last in the list. We make our 'next' point to the
|
|
'first' struct and our 'prev' point to the previous 'prev' */
|
|
easy->next = &multi->easy;
|
|
easy->prev = multi->easy.prev;
|
|
|
|
/* make 'easy' the last node in the chain */
|
|
multi->easy.prev = easy;
|
|
|
|
/* if there was a prev node, make sure its 'next' pointer links to
|
|
the new node */
|
|
easy->prev->next = easy;
|
|
|
|
/* make the SessionHandle refer back to this multi handle */
|
|
Curl_easy_addmulti(easy_handle, multi_handle);
|
|
|
|
/* make the SessionHandle struct refer back to this struct */
|
|
easy->easy_handle->set.one_easy = easy;
|
|
|
|
/* Set the timeout for this handle to expire really soon so that it will
|
|
be taken care of even when this handle is added in the midst of operation
|
|
when only the curl_multi_socket() API is used. During that flow, only
|
|
sockets that time-out or have actions will be dealt with. Since this
|
|
handle has no action yet, we make sure it times out to get things to
|
|
happen. */
|
|
Curl_expire(easy->easy_handle, 1);
|
|
|
|
/* increase the node-counter */
|
|
multi->num_easy++;
|
|
|
|
/* increase the alive-counter */
|
|
multi->num_alive++;
|
|
|
|
/* A somewhat crude work-around for a little glitch in update_timer() that
|
|
happens if the lastcall time is set to the same time when the handle is
|
|
removed as when the next handle is added, as then the check in
|
|
update_timer() that prevents calling the application multiple times with
|
|
the same timer infor will not trigger and then the new handle's timeout
|
|
will not be notified to the app.
|
|
|
|
The work-around is thus simply to clear the 'lastcall' variable to force
|
|
update_timer() to always trigger a callback to the app when a new easy
|
|
handle is added */
|
|
memset(&multi->timer_lastcall, 0, sizeof(multi->timer_lastcall));
|
|
|
|
update_timer(multi);
|
|
return CURLM_OK;
|
|
}
|
|
|
|
#if 0
|
|
/* Debug-function, used like this:
|
|
*
|
|
* Curl_hash_print(multi->sockhash, debug_print_sock_hash);
|
|
*
|
|
* Enable the hash print function first by editing hash.c
|
|
*/
|
|
static void debug_print_sock_hash(void *p)
|
|
{
|
|
struct Curl_sh_entry *sh = (struct Curl_sh_entry *)p;
|
|
|
|
fprintf(stderr, " [easy %p/magic %x/socket %d]",
|
|
(void *)sh->easy, sh->easy->magic, (int)sh->socket);
|
|
}
|
|
#endif
|
|
|
|
CURLMcode curl_multi_remove_handle(CURLM *multi_handle,
|
|
CURL *curl_handle)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
struct SessionHandle *data = curl_handle;
|
|
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
/* Verify that we got a somewhat good easy handle too */
|
|
if(!GOOD_EASY_HANDLE(curl_handle))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
/* pick-up from the 'curl_handle' the kept position in the list */
|
|
easy = data->multi_pos;
|
|
|
|
if(easy) {
|
|
bool premature = (easy->state < CURLM_STATE_COMPLETED) ? TRUE : FALSE;
|
|
bool easy_owns_conn = (easy->easy_conn &&
|
|
(easy->easy_conn->data == easy->easy_handle)) ?
|
|
TRUE : FALSE;
|
|
|
|
/* If the 'state' is not INIT or COMPLETED, we might need to do something
|
|
nice to put the easy_handle in a good known state when this returns. */
|
|
if(premature)
|
|
/* this handle is "alive" so we need to count down the total number of
|
|
alive connections when this is removed */
|
|
multi->num_alive--;
|
|
|
|
if(easy->easy_conn &&
|
|
(easy->easy_conn->send_pipe->size +
|
|
easy->easy_conn->recv_pipe->size > 1) &&
|
|
easy->state > CURLM_STATE_WAITDO &&
|
|
easy->state < CURLM_STATE_COMPLETED) {
|
|
/* If the handle is in a pipeline and has started sending off its
|
|
request but not received its response yet, we need to close
|
|
connection. */
|
|
easy->easy_conn->bits.close = TRUE;
|
|
/* Set connection owner so that Curl_done() closes it.
|
|
We can sefely do this here since connection is killed. */
|
|
easy->easy_conn->data = easy->easy_handle;
|
|
}
|
|
|
|
/* The timer must be shut down before easy->multi is set to NULL,
|
|
else the timenode will remain in the splay tree after
|
|
curl_easy_cleanup is called. */
|
|
Curl_expire(easy->easy_handle, 0);
|
|
|
|
/* destroy the timeout list that is held in the easy handle */
|
|
if(data->state.timeoutlist) {
|
|
Curl_llist_destroy(data->state.timeoutlist, NULL);
|
|
data->state.timeoutlist = NULL;
|
|
}
|
|
|
|
if(easy->easy_handle->dns.hostcachetype == HCACHE_MULTI) {
|
|
/* stop using the multi handle's DNS cache */
|
|
easy->easy_handle->dns.hostcache = NULL;
|
|
easy->easy_handle->dns.hostcachetype = HCACHE_NONE;
|
|
}
|
|
|
|
if(easy->easy_conn) {
|
|
|
|
/* we must call Curl_done() here (if we still "own it") so that we don't
|
|
leave a half-baked one around */
|
|
if(easy_owns_conn) {
|
|
|
|
/* Curl_done() clears the conn->data field to lose the association
|
|
between the easy handle and the connection
|
|
|
|
Note that this ignores the return code simply because there's
|
|
nothing really useful to do with it anyway! */
|
|
(void)Curl_done(&easy->easy_conn, easy->result, premature);
|
|
}
|
|
else
|
|
/* Clear connection pipelines, if Curl_done above was not called */
|
|
Curl_getoff_all_pipelines(easy->easy_handle, easy->easy_conn);
|
|
}
|
|
|
|
/* as this was using a shared connection cache we clear the pointer
|
|
to that since we're not part of that multi handle anymore */
|
|
easy->easy_handle->state.conn_cache = NULL;
|
|
|
|
/* change state without using multistate(), only to make singlesocket() do
|
|
what we want */
|
|
easy->state = CURLM_STATE_COMPLETED;
|
|
singlesocket(multi, easy); /* to let the application know what sockets
|
|
that vanish with this handle */
|
|
|
|
/* Remove the association between the connection and the handle */
|
|
if(easy->easy_conn) {
|
|
easy->easy_conn->data = NULL;
|
|
easy->easy_conn = NULL;
|
|
}
|
|
|
|
Curl_easy_addmulti(easy->easy_handle, NULL); /* clear the association
|
|
to this multi handle */
|
|
|
|
{
|
|
/* make sure there's no pending message in the queue sent from this easy
|
|
handle */
|
|
struct curl_llist_element *e;
|
|
|
|
for(e = multi->msglist->head; e; e = e->next) {
|
|
struct Curl_message *msg = e->ptr;
|
|
|
|
if(msg->extmsg.easy_handle == easy->easy_handle) {
|
|
Curl_llist_remove(multi->msglist, e, NULL);
|
|
/* there can only be one from this specific handle */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make the previous node point to our next */
|
|
if(easy->prev)
|
|
easy->prev->next = easy->next;
|
|
/* make our next point to our previous node */
|
|
if(easy->next)
|
|
easy->next->prev = easy->prev;
|
|
|
|
easy->easy_handle->set.one_easy = NULL; /* detached */
|
|
|
|
/* Null the position in the controlling structure */
|
|
easy->easy_handle->multi_pos = NULL;
|
|
|
|
/* NOTE NOTE NOTE
|
|
We do not touch the easy handle here! */
|
|
free(easy);
|
|
|
|
multi->num_easy--; /* one less to care about now */
|
|
|
|
update_timer(multi);
|
|
return CURLM_OK;
|
|
}
|
|
else
|
|
return CURLM_BAD_EASY_HANDLE; /* twasn't found */
|
|
}
|
|
|
|
bool Curl_multi_canPipeline(const struct Curl_multi* multi)
|
|
{
|
|
return multi->pipelining_enabled;
|
|
}
|
|
|
|
void Curl_multi_handlePipeBreak(struct SessionHandle *data)
|
|
{
|
|
struct Curl_one_easy *one_easy = data->set.one_easy;
|
|
|
|
if(one_easy)
|
|
one_easy->easy_conn = NULL;
|
|
}
|
|
|
|
static int waitconnect_getsock(struct connectdata *conn,
|
|
curl_socket_t *sock,
|
|
int numsocks)
|
|
{
|
|
if(!numsocks)
|
|
return GETSOCK_BLANK;
|
|
|
|
sock[0] = conn->sock[FIRSTSOCKET];
|
|
|
|
/* when we've sent a CONNECT to a proxy, we should rather wait for the
|
|
socket to become readable to be able to get the response headers */
|
|
if(conn->tunnel_state[FIRSTSOCKET] == TUNNEL_CONNECT)
|
|
return GETSOCK_READSOCK(0);
|
|
|
|
return GETSOCK_WRITESOCK(0);
|
|
}
|
|
|
|
static int domore_getsock(struct connectdata *conn,
|
|
curl_socket_t *socks,
|
|
int numsocks)
|
|
{
|
|
if(conn && conn->handler->domore_getsock)
|
|
return conn->handler->domore_getsock(conn, socks, numsocks);
|
|
return GETSOCK_BLANK;
|
|
}
|
|
|
|
/* returns bitmapped flags for this handle and its sockets */
|
|
static int multi_getsock(struct Curl_one_easy *easy,
|
|
curl_socket_t *socks, /* points to numsocks number
|
|
of sockets */
|
|
int numsocks)
|
|
{
|
|
/* If the pipe broke, or if there's no connection left for this easy handle,
|
|
then we MUST bail out now with no bitmask set. The no connection case can
|
|
happen when this is called from curl_multi_remove_handle() =>
|
|
singlesocket() => multi_getsock().
|
|
*/
|
|
if(easy->easy_handle->state.pipe_broke || !easy->easy_conn)
|
|
return 0;
|
|
|
|
if(easy->state > CURLM_STATE_CONNECT &&
|
|
easy->state < CURLM_STATE_COMPLETED) {
|
|
/* Set up ownership correctly */
|
|
easy->easy_conn->data = easy->easy_handle;
|
|
}
|
|
|
|
switch(easy->state) {
|
|
default:
|
|
#if 0 /* switch back on these cases to get the compiler to check for all enums
|
|
to be present */
|
|
case CURLM_STATE_TOOFAST: /* returns 0, so will not select. */
|
|
case CURLM_STATE_COMPLETED:
|
|
case CURLM_STATE_MSGSENT:
|
|
case CURLM_STATE_INIT:
|
|
case CURLM_STATE_CONNECT:
|
|
case CURLM_STATE_WAITDO:
|
|
case CURLM_STATE_DONE:
|
|
case CURLM_STATE_LAST:
|
|
/* this will get called with CURLM_STATE_COMPLETED when a handle is
|
|
removed */
|
|
#endif
|
|
return 0;
|
|
|
|
case CURLM_STATE_WAITRESOLVE:
|
|
return Curl_resolver_getsock(easy->easy_conn, socks, numsocks);
|
|
|
|
case CURLM_STATE_PROTOCONNECT:
|
|
return Curl_protocol_getsock(easy->easy_conn, socks, numsocks);
|
|
|
|
case CURLM_STATE_DO:
|
|
case CURLM_STATE_DOING:
|
|
return Curl_doing_getsock(easy->easy_conn, socks, numsocks);
|
|
|
|
case CURLM_STATE_WAITPROXYCONNECT:
|
|
case CURLM_STATE_WAITCONNECT:
|
|
return waitconnect_getsock(easy->easy_conn, socks, numsocks);
|
|
|
|
case CURLM_STATE_DO_MORE:
|
|
return domore_getsock(easy->easy_conn, socks, numsocks);
|
|
|
|
case CURLM_STATE_DO_DONE: /* since is set after DO is completed, we switch
|
|
to waiting for the same as the *PERFORM
|
|
states */
|
|
case CURLM_STATE_PERFORM:
|
|
case CURLM_STATE_WAITPERFORM:
|
|
return Curl_single_getsock(easy->easy_conn, socks, numsocks);
|
|
}
|
|
|
|
}
|
|
|
|
CURLMcode curl_multi_fdset(CURLM *multi_handle,
|
|
fd_set *read_fd_set, fd_set *write_fd_set,
|
|
fd_set *exc_fd_set, int *max_fd)
|
|
{
|
|
/* Scan through all the easy handles to get the file descriptors set.
|
|
Some easy handles may not have connected to the remote host yet,
|
|
and then we must make sure that is done. */
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
int this_max_fd=-1;
|
|
curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
|
|
int bitmap;
|
|
int i;
|
|
(void)exc_fd_set; /* not used */
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
easy=multi->easy.next;
|
|
while(easy != &multi->easy) {
|
|
bitmap = multi_getsock(easy, sockbunch, MAX_SOCKSPEREASYHANDLE);
|
|
|
|
for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
|
|
if((bitmap & GETSOCK_READSOCK(i)) && VALID_SOCK((sockbunch[i]))) {
|
|
FD_SET(sockbunch[i], read_fd_set);
|
|
s = sockbunch[i];
|
|
}
|
|
if((bitmap & GETSOCK_WRITESOCK(i)) && VALID_SOCK((sockbunch[i]))) {
|
|
FD_SET(sockbunch[i], write_fd_set);
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD)
|
|
/* this socket is unused, break out of loop */
|
|
break;
|
|
else {
|
|
if((int)s > this_max_fd)
|
|
this_max_fd = (int)s;
|
|
}
|
|
}
|
|
|
|
easy = easy->next; /* check next handle */
|
|
}
|
|
|
|
*max_fd = this_max_fd;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
CURLMcode curl_multi_wait(CURLM *multi_handle,
|
|
struct curl_waitfd extra_fds[],
|
|
unsigned int extra_nfds,
|
|
int timeout_ms,
|
|
int *ret)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
curl_socket_t sockbunch[MAX_SOCKSPEREASYHANDLE];
|
|
int bitmap;
|
|
unsigned int i;
|
|
unsigned int nfds = extra_nfds;
|
|
struct pollfd *ufds = NULL;
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
/* Count up how many fds we have from the multi handle */
|
|
easy=multi->easy.next;
|
|
while(easy != &multi->easy) {
|
|
bitmap = multi_getsock(easy, sockbunch, MAX_SOCKSPEREASYHANDLE);
|
|
|
|
for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
|
|
if(bitmap & GETSOCK_READSOCK(i)) {
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(bitmap & GETSOCK_WRITESOCK(i)) {
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
easy = easy->next; /* check next handle */
|
|
}
|
|
|
|
if(nfds) {
|
|
ufds = malloc(nfds * sizeof(struct pollfd));
|
|
if(!ufds)
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
nfds = 0;
|
|
|
|
/* Add the curl handles to our pollfds first */
|
|
easy=multi->easy.next;
|
|
while(easy != &multi->easy) {
|
|
bitmap = multi_getsock(easy, sockbunch, MAX_SOCKSPEREASYHANDLE);
|
|
|
|
for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++) {
|
|
curl_socket_t s = CURL_SOCKET_BAD;
|
|
|
|
if(bitmap & GETSOCK_READSOCK(i)) {
|
|
ufds[nfds].fd = sockbunch[i];
|
|
ufds[nfds].events = POLLIN;
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(bitmap & GETSOCK_WRITESOCK(i)) {
|
|
ufds[nfds].fd = sockbunch[i];
|
|
ufds[nfds].events = POLLOUT;
|
|
++nfds;
|
|
s = sockbunch[i];
|
|
}
|
|
if(s == CURL_SOCKET_BAD) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
easy = easy->next; /* check next handle */
|
|
}
|
|
|
|
/* Add external file descriptions from poll-like struct curl_waitfd */
|
|
for(i = 0; i < extra_nfds; i++) {
|
|
ufds[nfds].fd = extra_fds[i].fd;
|
|
ufds[nfds].events = 0;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLIN)
|
|
ufds[nfds].events |= POLLIN;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLPRI)
|
|
ufds[nfds].events |= POLLPRI;
|
|
if(extra_fds[i].events & CURL_WAIT_POLLOUT)
|
|
ufds[nfds].events |= POLLOUT;
|
|
++nfds;
|
|
}
|
|
|
|
if(nfds)
|
|
/* wait... */
|
|
i = Curl_poll(ufds, nfds, timeout_ms);
|
|
else
|
|
i = 0;
|
|
|
|
Curl_safefree(ufds);
|
|
if(ret)
|
|
*ret = i;
|
|
return CURLM_OK;
|
|
}
|
|
|
|
static CURLMcode multi_runsingle(struct Curl_multi *multi,
|
|
struct timeval now,
|
|
struct Curl_one_easy *easy)
|
|
{
|
|
struct Curl_message *msg = NULL;
|
|
bool connected;
|
|
bool async;
|
|
bool protocol_connect = FALSE;
|
|
bool dophase_done = FALSE;
|
|
bool done = FALSE;
|
|
CURLMcode result = CURLM_OK;
|
|
struct SingleRequest *k;
|
|
struct SessionHandle *data;
|
|
long timeout_ms;
|
|
|
|
if(!GOOD_EASY_HANDLE(easy->easy_handle))
|
|
return CURLM_BAD_EASY_HANDLE;
|
|
|
|
data = easy->easy_handle;
|
|
|
|
do {
|
|
/* this is a single-iteration do-while loop just to allow a
|
|
break to skip to the end of it */
|
|
bool disconnect_conn = FALSE;
|
|
|
|
/* Handle the case when the pipe breaks, i.e., the connection
|
|
we're using gets cleaned up and we're left with nothing. */
|
|
if(data->state.pipe_broke) {
|
|
infof(data, "Pipe broke: handle 0x%p, url = %s\n",
|
|
easy, data->state.path);
|
|
|
|
if(easy->state < CURLM_STATE_COMPLETED) {
|
|
/* Head back to the CONNECT state */
|
|
multistate(easy, CURLM_STATE_CONNECT);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
easy->result = CURLE_OK;
|
|
}
|
|
|
|
data->state.pipe_broke = FALSE;
|
|
easy->easy_conn = NULL;
|
|
break;
|
|
}
|
|
|
|
if(!easy->easy_conn &&
|
|
easy->state > CURLM_STATE_CONNECT &&
|
|
easy->state < CURLM_STATE_DONE) {
|
|
/* In all these states, the code will blindly access 'easy->easy_conn'
|
|
so this is precaution that it isn't NULL. And it silences static
|
|
analyzers. */
|
|
failf(data, "In state %d with no easy_conn, bail out!\n", easy->state);
|
|
return CURLM_INTERNAL_ERROR;
|
|
}
|
|
|
|
if(easy->easy_conn && easy->state > CURLM_STATE_CONNECT &&
|
|
easy->state < CURLM_STATE_COMPLETED)
|
|
/* Make sure we set the connection's current owner */
|
|
easy->easy_conn->data = data;
|
|
|
|
if(easy->easy_conn &&
|
|
(easy->state >= CURLM_STATE_CONNECT) &&
|
|
(easy->state < CURLM_STATE_COMPLETED)) {
|
|
/* we need to wait for the connect state as only then is the start time
|
|
stored, but we must not check already completed handles */
|
|
|
|
timeout_ms = Curl_timeleft(data, &now,
|
|
(easy->state <= CURLM_STATE_WAITDO)?
|
|
TRUE:FALSE);
|
|
|
|
if(timeout_ms < 0) {
|
|
/* Handle timed out */
|
|
if(easy->state == CURLM_STATE_WAITRESOLVE)
|
|
failf(data, "Resolving timed out after %ld milliseconds",
|
|
Curl_tvdiff(now, data->progress.t_startsingle));
|
|
else if(easy->state == CURLM_STATE_WAITCONNECT)
|
|
failf(data, "Connection timed out after %ld milliseconds",
|
|
Curl_tvdiff(now, data->progress.t_startsingle));
|
|
else {
|
|
k = &data->req;
|
|
failf(data, "Operation timed out after %ld milliseconds with %"
|
|
FORMAT_OFF_T " out of %" FORMAT_OFF_T " bytes received",
|
|
Curl_tvdiff(now, data->progress.t_startsingle), k->bytecount,
|
|
k->size);
|
|
}
|
|
|
|
/* Force the connection closed because the server could continue to
|
|
send us stuff at any time. (The disconnect_conn logic used below
|
|
doesn't work at this point). */
|
|
easy->easy_conn->bits.close = TRUE;
|
|
easy->result = CURLE_OPERATION_TIMEDOUT;
|
|
multistate(easy, CURLM_STATE_COMPLETED);
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch(easy->state) {
|
|
case CURLM_STATE_INIT:
|
|
/* init this transfer. */
|
|
easy->result=Curl_pretransfer(data);
|
|
|
|
if(CURLE_OK == easy->result) {
|
|
/* after init, go CONNECT */
|
|
multistate(easy, CURLM_STATE_CONNECT);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_CONNECT:
|
|
/* Connect. We get a connection identifier filled in. */
|
|
Curl_pgrsTime(data, TIMER_STARTSINGLE);
|
|
easy->result = Curl_connect(data, &easy->easy_conn,
|
|
&async, &protocol_connect);
|
|
|
|
if(CURLE_OK == easy->result) {
|
|
/* Add this handle to the send or pend pipeline */
|
|
easy->result = addHandleToSendOrPendPipeline(data,
|
|
easy->easy_conn);
|
|
if(CURLE_OK != easy->result)
|
|
disconnect_conn = TRUE;
|
|
else {
|
|
if(async)
|
|
/* We're now waiting for an asynchronous name lookup */
|
|
multistate(easy, CURLM_STATE_WAITRESOLVE);
|
|
else {
|
|
/* after the connect has been sent off, go WAITCONNECT unless the
|
|
protocol connect is already done and we can go directly to
|
|
WAITDO or DO! */
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
|
|
if(protocol_connect)
|
|
multistate(easy, multi->pipelining_enabled?
|
|
CURLM_STATE_WAITDO:CURLM_STATE_DO);
|
|
else {
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(easy->easy_conn->tunnel_state[FIRSTSOCKET] == TUNNEL_CONNECT)
|
|
multistate(easy, CURLM_STATE_WAITPROXYCONNECT);
|
|
else
|
|
#endif
|
|
multistate(easy, CURLM_STATE_WAITCONNECT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_WAITRESOLVE:
|
|
/* awaiting an asynch name resolve to complete */
|
|
{
|
|
struct Curl_dns_entry *dns = NULL;
|
|
|
|
/* check if we have the name resolved by now */
|
|
easy->result = Curl_resolver_is_resolved(easy->easy_conn, &dns);
|
|
|
|
/* Update sockets here, because the socket(s) may have been
|
|
closed and the application thus needs to be told, even if it
|
|
is likely that the same socket(s) will again be used further
|
|
down. If the name has not yet been resolved, it is likely
|
|
that new sockets have been opened in an attempt to contact
|
|
another resolver. */
|
|
singlesocket(multi, easy);
|
|
|
|
if(dns) {
|
|
/* Perform the next step in the connection phase, and then move on
|
|
to the WAITCONNECT state */
|
|
easy->result = Curl_async_resolved(easy->easy_conn,
|
|
&protocol_connect);
|
|
|
|
if(CURLE_OK != easy->result)
|
|
/* if Curl_async_resolved() returns failure, the connection struct
|
|
is already freed and gone */
|
|
easy->easy_conn = NULL; /* no more connection */
|
|
else {
|
|
/* call again please so that we get the next socket setup */
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
if(protocol_connect)
|
|
multistate(easy, multi->pipelining_enabled?
|
|
CURLM_STATE_WAITDO:CURLM_STATE_DO);
|
|
else {
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(easy->easy_conn->tunnel_state[FIRSTSOCKET] == TUNNEL_CONNECT)
|
|
multistate(easy, CURLM_STATE_WAITPROXYCONNECT);
|
|
else
|
|
#endif
|
|
multistate(easy, CURLM_STATE_WAITCONNECT);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(CURLE_OK != easy->result) {
|
|
/* failure detected */
|
|
disconnect_conn = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
#ifndef CURL_DISABLE_HTTP
|
|
case CURLM_STATE_WAITPROXYCONNECT:
|
|
/* this is HTTP-specific, but sending CONNECT to a proxy is HTTP... */
|
|
easy->result = Curl_http_connect(easy->easy_conn, &protocol_connect);
|
|
|
|
if(easy->easy_conn->bits.proxy_connect_closed) {
|
|
/* reset the error buffer */
|
|
if(data->set.errorbuffer)
|
|
data->set.errorbuffer[0] = '\0';
|
|
data->state.errorbuf = FALSE;
|
|
|
|
easy->result = CURLE_OK;
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
multistate(easy, CURLM_STATE_CONNECT);
|
|
}
|
|
else if(CURLE_OK == easy->result) {
|
|
if(easy->easy_conn->tunnel_state[FIRSTSOCKET] == TUNNEL_COMPLETE)
|
|
multistate(easy, CURLM_STATE_WAITCONNECT);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
case CURLM_STATE_WAITCONNECT:
|
|
/* awaiting a completion of an asynch connect */
|
|
easy->result = Curl_is_connected(easy->easy_conn,
|
|
FIRSTSOCKET,
|
|
&connected);
|
|
if(connected) {
|
|
|
|
if(!easy->result)
|
|
/* if everything is still fine we do the protocol-specific connect
|
|
setup */
|
|
easy->result = Curl_protocol_connect(easy->easy_conn,
|
|
&protocol_connect);
|
|
}
|
|
|
|
if(CURLE_OK != easy->result) {
|
|
/* failure detected */
|
|
/* Just break, the cleaning up is handled all in one place */
|
|
disconnect_conn = TRUE;
|
|
break;
|
|
}
|
|
|
|
if(connected) {
|
|
if(!protocol_connect) {
|
|
/* We have a TCP connection, but 'protocol_connect' may be false
|
|
and then we continue to 'STATE_PROTOCONNECT'. If protocol
|
|
connect is TRUE, we move on to STATE_DO.
|
|
BUT if we are using a proxy we must change to WAITPROXYCONNECT
|
|
*/
|
|
#ifndef CURL_DISABLE_HTTP
|
|
if(easy->easy_conn->tunnel_state[FIRSTSOCKET] == TUNNEL_CONNECT)
|
|
multistate(easy, CURLM_STATE_WAITPROXYCONNECT);
|
|
else
|
|
#endif
|
|
multistate(easy, CURLM_STATE_PROTOCONNECT);
|
|
|
|
}
|
|
else
|
|
/* after the connect has completed, go WAITDO or DO */
|
|
multistate(easy, multi->pipelining_enabled?
|
|
CURLM_STATE_WAITDO:CURLM_STATE_DO);
|
|
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_PROTOCONNECT:
|
|
/* protocol-specific connect phase */
|
|
easy->result = Curl_protocol_connecting(easy->easy_conn,
|
|
&protocol_connect);
|
|
if((easy->result == CURLE_OK) && protocol_connect) {
|
|
/* after the connect has completed, go WAITDO or DO */
|
|
multistate(easy, multi->pipelining_enabled?
|
|
CURLM_STATE_WAITDO:CURLM_STATE_DO);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else if(easy->result) {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
Curl_done(&easy->easy_conn, easy->result, TRUE);
|
|
disconnect_conn = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_WAITDO:
|
|
/* Wait for our turn to DO when we're pipelining requests */
|
|
#ifdef DEBUGBUILD
|
|
infof(data, "WAITDO: Conn %ld send pipe %zu inuse %d athead %d\n",
|
|
easy->easy_conn->connection_id,
|
|
easy->easy_conn->send_pipe->size,
|
|
easy->easy_conn->writechannel_inuse?1:0,
|
|
isHandleAtHead(data,
|
|
easy->easy_conn->send_pipe)?1:0);
|
|
#endif
|
|
if(!easy->easy_conn->writechannel_inuse &&
|
|
isHandleAtHead(data,
|
|
easy->easy_conn->send_pipe)) {
|
|
/* Grab the channel */
|
|
easy->easy_conn->writechannel_inuse = TRUE;
|
|
multistate(easy, CURLM_STATE_DO);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO:
|
|
if(data->set.connect_only) {
|
|
/* keep connection open for application to use the socket */
|
|
easy->easy_conn->bits.close = FALSE;
|
|
multistate(easy, CURLM_STATE_DONE);
|
|
easy->result = CURLE_OK;
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else {
|
|
/* Perform the protocol's DO action */
|
|
easy->result = Curl_do(&easy->easy_conn,
|
|
&dophase_done);
|
|
|
|
if(CURLE_OK == easy->result) {
|
|
if(!dophase_done) {
|
|
/* some steps needed for wildcard matching */
|
|
if(data->set.wildcardmatch) {
|
|
struct WildcardData *wc = &data->wildcard;
|
|
if(wc->state == CURLWC_DONE || wc->state == CURLWC_SKIP) {
|
|
/* skip some states if it is important */
|
|
Curl_done(&easy->easy_conn, CURLE_OK, FALSE);
|
|
multistate(easy, CURLM_STATE_DONE);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
break;
|
|
}
|
|
}
|
|
/* DO was not completed in one function call, we must continue
|
|
DOING... */
|
|
multistate(easy, CURLM_STATE_DOING);
|
|
result = CURLM_OK;
|
|
}
|
|
|
|
/* after DO, go DO_DONE... or DO_MORE */
|
|
else if(easy->easy_conn->bits.do_more) {
|
|
/* we're supposed to do more, but we need to sit down, relax
|
|
and wait a little while first */
|
|
multistate(easy, CURLM_STATE_DO_MORE);
|
|
result = CURLM_OK;
|
|
}
|
|
else {
|
|
/* we're done with the DO, now DO_DONE */
|
|
multistate(easy, CURLM_STATE_DO_DONE);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
else if((CURLE_SEND_ERROR == easy->result) &&
|
|
easy->easy_conn->bits.reuse) {
|
|
/*
|
|
* In this situation, a connection that we were trying to use
|
|
* may have unexpectedly died. If possible, send the connection
|
|
* back to the CONNECT phase so we can try again.
|
|
*/
|
|
char *newurl = NULL;
|
|
followtype follow=FOLLOW_NONE;
|
|
CURLcode drc;
|
|
bool retry = FALSE;
|
|
|
|
drc = Curl_retry_request(easy->easy_conn, &newurl);
|
|
if(drc) {
|
|
/* a failure here pretty much implies an out of memory */
|
|
easy->result = drc;
|
|
disconnect_conn = TRUE;
|
|
}
|
|
else
|
|
retry = (newurl)?TRUE:FALSE;
|
|
|
|
Curl_posttransfer(data);
|
|
drc = Curl_done(&easy->easy_conn, easy->result, FALSE);
|
|
|
|
/* When set to retry the connection, we must to go back to
|
|
* the CONNECT state */
|
|
if(retry) {
|
|
if((drc == CURLE_OK) || (drc == CURLE_SEND_ERROR)) {
|
|
follow = FOLLOW_RETRY;
|
|
drc = Curl_follow(data, newurl, follow);
|
|
if(drc == CURLE_OK) {
|
|
multistate(easy, CURLM_STATE_CONNECT);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
easy->result = CURLE_OK;
|
|
}
|
|
else {
|
|
/* Follow failed */
|
|
easy->result = drc;
|
|
free(newurl);
|
|
}
|
|
}
|
|
else {
|
|
/* done didn't return OK or SEND_ERROR */
|
|
easy->result = drc;
|
|
free(newurl);
|
|
}
|
|
}
|
|
else {
|
|
/* Have error handler disconnect conn if we can't retry */
|
|
disconnect_conn = TRUE;
|
|
}
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
Curl_done(&easy->easy_conn, easy->result, FALSE);
|
|
disconnect_conn = TRUE;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DOING:
|
|
/* we continue DOING until the DO phase is complete */
|
|
easy->result = Curl_protocol_doing(easy->easy_conn,
|
|
&dophase_done);
|
|
if(CURLE_OK == easy->result) {
|
|
if(dophase_done) {
|
|
/* after DO, go DO_DONE or DO_MORE */
|
|
multistate(easy, easy->easy_conn->bits.do_more?
|
|
CURLM_STATE_DO_MORE:
|
|
CURLM_STATE_DO_DONE);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
} /* dophase_done */
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
Curl_done(&easy->easy_conn, easy->result, FALSE);
|
|
disconnect_conn = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO_MORE:
|
|
/*
|
|
* When we are connected, DO MORE and then go DO_DONE
|
|
*/
|
|
easy->result = Curl_do_more(easy->easy_conn, &dophase_done);
|
|
|
|
/* No need to remove this handle from the send pipeline here since that
|
|
is done in Curl_done() */
|
|
if(CURLE_OK == easy->result) {
|
|
if(dophase_done) {
|
|
multistate(easy, CURLM_STATE_DO_DONE);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
else
|
|
/* stay in DO_MORE */
|
|
result = CURLM_OK;
|
|
}
|
|
else {
|
|
/* failure detected */
|
|
Curl_posttransfer(data);
|
|
Curl_done(&easy->easy_conn, easy->result, FALSE);
|
|
disconnect_conn = TRUE;
|
|
}
|
|
break;
|
|
|
|
case CURLM_STATE_DO_DONE:
|
|
/* Move ourselves from the send to recv pipeline */
|
|
moveHandleFromSendToRecvPipeline(data, easy->easy_conn);
|
|
/* Check if we can move pending requests to send pipe */
|
|
checkPendPipeline(easy->easy_conn);
|
|
multistate(easy, CURLM_STATE_WAITPERFORM);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
break;
|
|
|
|
case CURLM_STATE_WAITPERFORM:
|
|
/* Wait for our turn to PERFORM */
|
|
if(!easy->easy_conn->readchannel_inuse &&
|
|
isHandleAtHead(data,
|
|
easy->easy_conn->recv_pipe)) {
|
|
/* Grab the channel */
|
|
easy->easy_conn->readchannel_inuse = TRUE;
|
|
multistate(easy, CURLM_STATE_PERFORM);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
#ifdef DEBUGBUILD
|
|
else {
|
|
infof(data, "WAITPERFORM: Conn %ld recv pipe %zu inuse %d athead %d\n",
|
|
easy->easy_conn->connection_id,
|
|
easy->easy_conn->recv_pipe->size,
|
|
easy->easy_conn->readchannel_inuse?1:0,
|
|
isHandleAtHead(data,
|
|
easy->easy_conn->recv_pipe)?1:0);
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case CURLM_STATE_TOOFAST: /* limit-rate exceeded in either direction */
|
|
/* if both rates are within spec, resume transfer */
|
|
if(Curl_pgrsUpdate(easy->easy_conn))
|
|
easy->result = CURLE_ABORTED_BY_CALLBACK;
|
|
else
|
|
easy->result = Curl_speedcheck(data, now);
|
|
|
|
if(( (data->set.max_send_speed == 0) ||
|
|
(data->progress.ulspeed < data->set.max_send_speed )) &&
|
|
( (data->set.max_recv_speed == 0) ||
|
|
(data->progress.dlspeed < data->set.max_recv_speed)))
|
|
multistate(easy, CURLM_STATE_PERFORM);
|
|
break;
|
|
|
|
case CURLM_STATE_PERFORM:
|
|
{
|
|
char *newurl = NULL;
|
|
bool retry = FALSE;
|
|
|
|
/* check if over send speed */
|
|
if((data->set.max_send_speed > 0) &&
|
|
(data->progress.ulspeed > data->set.max_send_speed)) {
|
|
int buffersize;
|
|
|
|
multistate(easy, CURLM_STATE_TOOFAST);
|
|
|
|
/* calculate upload rate-limitation timeout. */
|
|
buffersize = (int)(data->set.buffer_size ?
|
|
data->set.buffer_size : BUFSIZE);
|
|
timeout_ms = Curl_sleep_time(data->set.max_send_speed,
|
|
data->progress.ulspeed, buffersize);
|
|
Curl_expire(data, timeout_ms);
|
|
break;
|
|
}
|
|
|
|
/* check if over recv speed */
|
|
if((data->set.max_recv_speed > 0) &&
|
|
(data->progress.dlspeed > data->set.max_recv_speed)) {
|
|
int buffersize;
|
|
|
|
multistate(easy, CURLM_STATE_TOOFAST);
|
|
|
|
/* Calculate download rate-limitation timeout. */
|
|
buffersize = (int)(data->set.buffer_size ?
|
|
data->set.buffer_size : BUFSIZE);
|
|
timeout_ms = Curl_sleep_time(data->set.max_recv_speed,
|
|
data->progress.dlspeed, buffersize);
|
|
Curl_expire(data, timeout_ms);
|
|
break;
|
|
}
|
|
|
|
/* read/write data if it is ready to do so */
|
|
easy->result = Curl_readwrite(easy->easy_conn, &done);
|
|
|
|
k = &data->req;
|
|
|
|
if(!(k->keepon & KEEP_RECV)) {
|
|
/* We're done receiving */
|
|
easy->easy_conn->readchannel_inuse = FALSE;
|
|
}
|
|
|
|
if(!(k->keepon & KEEP_SEND)) {
|
|
/* We're done sending */
|
|
easy->easy_conn->writechannel_inuse = FALSE;
|
|
}
|
|
|
|
if(done || (easy->result == CURLE_RECV_ERROR)) {
|
|
/* If CURLE_RECV_ERROR happens early enough, we assume it was a race
|
|
* condition and the server closed the re-used connection exactly when
|
|
* we wanted to use it, so figure out if that is indeed the case.
|
|
*/
|
|
CURLcode ret = Curl_retry_request(easy->easy_conn, &newurl);
|
|
if(!ret)
|
|
retry = (newurl)?TRUE:FALSE;
|
|
|
|
if(retry) {
|
|
/* if we are to retry, set the result to OK and consider the
|
|
request as done */
|
|
easy->result = CURLE_OK;
|
|
done = TRUE;
|
|
}
|
|
}
|
|
|
|
if(easy->result) {
|
|
/*
|
|
* The transfer phase returned error, we mark the connection to get
|
|
* closed to prevent being re-used. This is because we can't possibly
|
|
* know if the connection is in a good shape or not now. Unless it is
|
|
* a protocol which uses two "channels" like FTP, as then the error
|
|
* happened in the data connection.
|
|
*/
|
|
|
|
if(!(easy->easy_conn->handler->flags & PROTOPT_DUAL))
|
|
easy->easy_conn->bits.close = TRUE;
|
|
|
|
Curl_posttransfer(data);
|
|
Curl_done(&easy->easy_conn, easy->result, FALSE);
|
|
}
|
|
else if(done) {
|
|
followtype follow=FOLLOW_NONE;
|
|
|
|
/* call this even if the readwrite function returned error */
|
|
Curl_posttransfer(data);
|
|
|
|
/* we're no longer receiving */
|
|
moveHandleFromRecvToDonePipeline(data,
|
|
easy->easy_conn);
|
|
|
|
/* expire the new receiving pipeline head */
|
|
if(easy->easy_conn->recv_pipe->head)
|
|
Curl_expire(easy->easy_conn->recv_pipe->head->ptr, 1);
|
|
|
|
/* Check if we can move pending requests to send pipe */
|
|
checkPendPipeline(easy->easy_conn);
|
|
|
|
/* When we follow redirects or is set to retry the connection, we must
|
|
to go back to the CONNECT state */
|
|
if(data->req.newurl || retry) {
|
|
if(!retry) {
|
|
/* if the URL is a follow-location and not just a retried request
|
|
then figure out the URL here */
|
|
newurl = data->req.newurl;
|
|
data->req.newurl = NULL;
|
|
follow = FOLLOW_REDIR;
|
|
}
|
|
else
|
|
follow = FOLLOW_RETRY;
|
|
easy->result = Curl_done(&easy->easy_conn, CURLE_OK, FALSE);
|
|
if(easy->result == CURLE_OK)
|
|
easy->result = Curl_follow(data, newurl, follow);
|
|
if(CURLE_OK == easy->result) {
|
|
multistate(easy, CURLM_STATE_CONNECT);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
newurl = NULL; /* handed over the memory ownership to
|
|
Curl_follow(), make sure we don't free() it
|
|
here */
|
|
}
|
|
}
|
|
else {
|
|
/* after the transfer is done, go DONE */
|
|
|
|
/* but first check to see if we got a location info even though we're
|
|
not following redirects */
|
|
if(data->req.location) {
|
|
if(newurl)
|
|
free(newurl);
|
|
newurl = data->req.location;
|
|
data->req.location = NULL;
|
|
easy->result = Curl_follow(data, newurl, FOLLOW_FAKE);
|
|
if(CURLE_OK == easy->result)
|
|
newurl = NULL; /* allocation was handed over Curl_follow() */
|
|
else
|
|
disconnect_conn = TRUE;
|
|
}
|
|
|
|
multistate(easy, CURLM_STATE_DONE);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
|
|
if(newurl)
|
|
free(newurl);
|
|
break;
|
|
}
|
|
|
|
case CURLM_STATE_DONE:
|
|
|
|
if(easy->easy_conn) {
|
|
/* Remove ourselves from the receive and done pipelines. Handle
|
|
should be on one of these lists, depending upon how we got here. */
|
|
Curl_removeHandleFromPipeline(data,
|
|
easy->easy_conn->recv_pipe);
|
|
Curl_removeHandleFromPipeline(data,
|
|
easy->easy_conn->done_pipe);
|
|
/* Check if we can move pending requests to send pipe */
|
|
checkPendPipeline(easy->easy_conn);
|
|
|
|
if(easy->easy_conn->bits.stream_was_rewound) {
|
|
/* This request read past its response boundary so we quickly let
|
|
the other requests consume those bytes since there is no
|
|
guarantee that the socket will become active again */
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
|
|
/* post-transfer command */
|
|
easy->result = Curl_done(&easy->easy_conn, CURLE_OK, FALSE);
|
|
/*
|
|
* If there are other handles on the pipeline, Curl_done won't set
|
|
* easy_conn to NULL. In such a case, curl_multi_remove_handle() can
|
|
* access free'd data, if the connection is free'd and the handle
|
|
* removed before we perform the processing in CURLM_STATE_COMPLETED
|
|
*/
|
|
if(easy->easy_conn)
|
|
easy->easy_conn = NULL;
|
|
}
|
|
|
|
if(data->set.wildcardmatch) {
|
|
if(data->wildcard.state != CURLWC_DONE) {
|
|
/* if a wildcard is set and we are not ending -> lets start again
|
|
with CURLM_STATE_INIT */
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
multistate(easy, CURLM_STATE_INIT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* after we have DONE what we're supposed to do, go COMPLETED, and
|
|
it doesn't matter what the Curl_done() returned! */
|
|
multistate(easy, CURLM_STATE_COMPLETED);
|
|
|
|
break;
|
|
|
|
case CURLM_STATE_COMPLETED:
|
|
/* this is a completed transfer, it is likely to still be connected */
|
|
|
|
/* This node should be delinked from the list now and we should post
|
|
an information message that we are complete. */
|
|
|
|
/* Important: reset the conn pointer so that we don't point to memory
|
|
that could be freed anytime */
|
|
easy->easy_conn = NULL;
|
|
|
|
Curl_expire(data, 0); /* stop all timers */
|
|
break;
|
|
|
|
case CURLM_STATE_MSGSENT:
|
|
return CURLM_OK; /* do nothing */
|
|
|
|
default:
|
|
return CURLM_INTERNAL_ERROR;
|
|
}
|
|
|
|
if(easy->state < CURLM_STATE_COMPLETED) {
|
|
if(CURLE_OK != easy->result) {
|
|
/*
|
|
* If an error was returned, and we aren't in completed state now,
|
|
* then we go to completed and consider this transfer aborted.
|
|
*/
|
|
|
|
/* NOTE: no attempt to disconnect connections must be made
|
|
in the case blocks above - cleanup happens only here */
|
|
|
|
data->state.pipe_broke = FALSE;
|
|
|
|
if(easy->easy_conn) {
|
|
/* if this has a connection, unsubscribe from the pipelines */
|
|
easy->easy_conn->writechannel_inuse = FALSE;
|
|
easy->easy_conn->readchannel_inuse = FALSE;
|
|
Curl_removeHandleFromPipeline(data,
|
|
easy->easy_conn->send_pipe);
|
|
Curl_removeHandleFromPipeline(data,
|
|
easy->easy_conn->recv_pipe);
|
|
Curl_removeHandleFromPipeline(data,
|
|
easy->easy_conn->done_pipe);
|
|
/* Check if we can move pending requests to send pipe */
|
|
checkPendPipeline(easy->easy_conn);
|
|
|
|
if(disconnect_conn) {
|
|
/* disconnect properly */
|
|
Curl_disconnect(easy->easy_conn, /* dead_connection */ FALSE);
|
|
|
|
/* This is where we make sure that the easy_conn pointer is reset.
|
|
We don't have to do this in every case block above where a
|
|
failure is detected */
|
|
easy->easy_conn = NULL;
|
|
}
|
|
}
|
|
else if(easy->state == CURLM_STATE_CONNECT) {
|
|
/* Curl_connect() failed */
|
|
(void)Curl_posttransfer(data);
|
|
}
|
|
|
|
multistate(easy, CURLM_STATE_COMPLETED);
|
|
}
|
|
/* if there's still a connection to use, call the progress function */
|
|
else if(easy->easy_conn && Curl_pgrsUpdate(easy->easy_conn)) {
|
|
/* aborted due to progress callback return code must close the
|
|
connection */
|
|
easy->easy_conn->bits.close = TRUE;
|
|
|
|
/* if not yet in DONE state, go there, otherwise COMPLETED */
|
|
multistate(easy, (easy->state < CURLM_STATE_DONE)?
|
|
CURLM_STATE_DONE: CURLM_STATE_COMPLETED);
|
|
result = CURLM_CALL_MULTI_PERFORM;
|
|
}
|
|
}
|
|
} WHILE_FALSE; /* just to break out from! */
|
|
|
|
if(CURLM_STATE_COMPLETED == easy->state) {
|
|
/* now fill in the Curl_message with this info */
|
|
msg = &easy->msg;
|
|
|
|
msg->extmsg.msg = CURLMSG_DONE;
|
|
msg->extmsg.easy_handle = data;
|
|
msg->extmsg.data.result = easy->result;
|
|
|
|
result = multi_addmsg(multi, msg);
|
|
|
|
multistate(easy, CURLM_STATE_MSGSENT);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
CURLMcode curl_multi_perform(CURLM *multi_handle, int *running_handles)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
CURLMcode returncode=CURLM_OK;
|
|
struct Curl_tree *t;
|
|
struct timeval now = Curl_tvnow();
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
easy=multi->easy.next;
|
|
while(easy != &multi->easy) {
|
|
CURLMcode result;
|
|
struct WildcardData *wc = &easy->easy_handle->wildcard;
|
|
|
|
if(easy->easy_handle->set.wildcardmatch) {
|
|
if(!wc->filelist) {
|
|
CURLcode ret = Curl_wildcard_init(wc); /* init wildcard structures */
|
|
if(ret)
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
}
|
|
|
|
do
|
|
result = multi_runsingle(multi, now, easy);
|
|
while(CURLM_CALL_MULTI_PERFORM == result);
|
|
|
|
if(easy->easy_handle->set.wildcardmatch) {
|
|
/* destruct wildcard structures if it is needed */
|
|
if(wc->state == CURLWC_DONE || result)
|
|
Curl_wildcard_dtor(wc);
|
|
}
|
|
|
|
if(result)
|
|
returncode = result;
|
|
|
|
easy = easy->next; /* operate on next handle */
|
|
}
|
|
|
|
/*
|
|
* Simply remove all expired timers from the splay since handles are dealt
|
|
* with unconditionally by this function and curl_multi_timeout() requires
|
|
* that already passed/handled expire times are removed from the splay.
|
|
*
|
|
* It is important that the 'now' value is set at the entry of this function
|
|
* and not for the current time as it may have ticked a little while since
|
|
* then and then we risk this loop to remove timers that actually have not
|
|
* been handled!
|
|
*/
|
|
do {
|
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
|
if(t)
|
|
/* the removed may have another timeout in queue */
|
|
(void)add_next_timeout(now, multi, t->payload);
|
|
|
|
} while(t);
|
|
|
|
*running_handles = multi->num_alive;
|
|
|
|
if(CURLM_OK >= returncode)
|
|
update_timer(multi);
|
|
|
|
return returncode;
|
|
}
|
|
|
|
static void close_all_connections(struct Curl_multi *multi)
|
|
{
|
|
struct connectdata *conn;
|
|
|
|
conn = Curl_conncache_find_first_connection(multi->conn_cache);
|
|
while(conn) {
|
|
conn->data = multi->closure_handle;
|
|
|
|
/* This will remove the connection from the cache */
|
|
(void)Curl_disconnect(conn, FALSE);
|
|
|
|
conn = Curl_conncache_find_first_connection(multi->conn_cache);
|
|
}
|
|
}
|
|
|
|
CURLMcode curl_multi_cleanup(CURLM *multi_handle)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
struct Curl_one_easy *nexteasy;
|
|
|
|
if(GOOD_MULTI_HANDLE(multi)) {
|
|
multi->type = 0; /* not good anymore */
|
|
|
|
/* Close all the connections in the connection cache */
|
|
close_all_connections(multi);
|
|
|
|
multi->closure_handle->dns.hostcache = multi->hostcache;
|
|
Curl_hostcache_clean(multi->closure_handle);
|
|
|
|
Curl_close(multi->closure_handle);
|
|
multi->closure_handle = NULL;
|
|
|
|
Curl_hash_destroy(multi->sockhash);
|
|
multi->sockhash = NULL;
|
|
|
|
Curl_conncache_destroy(multi->conn_cache);
|
|
multi->conn_cache = NULL;
|
|
|
|
/* remove the pending list of messages */
|
|
Curl_llist_destroy(multi->msglist, NULL);
|
|
multi->msglist = NULL;
|
|
|
|
/* remove all easy handles */
|
|
easy = multi->easy.next;
|
|
while(easy != &multi->easy) {
|
|
nexteasy=easy->next;
|
|
if(easy->easy_handle->dns.hostcachetype == HCACHE_MULTI) {
|
|
/* clear out the usage of the shared DNS cache */
|
|
Curl_hostcache_clean(easy->easy_handle);
|
|
easy->easy_handle->dns.hostcache = NULL;
|
|
easy->easy_handle->dns.hostcachetype = HCACHE_NONE;
|
|
}
|
|
|
|
/* Clear the pointer to the connection cache */
|
|
easy->easy_handle->state.conn_cache = NULL;
|
|
|
|
Curl_easy_addmulti(easy->easy_handle, NULL); /* clear the association */
|
|
|
|
free(easy);
|
|
easy = nexteasy;
|
|
}
|
|
|
|
Curl_hash_destroy(multi->hostcache);
|
|
multi->hostcache = NULL;
|
|
|
|
free(multi);
|
|
|
|
return CURLM_OK;
|
|
}
|
|
else
|
|
return CURLM_BAD_HANDLE;
|
|
}
|
|
|
|
/*
|
|
* curl_multi_info_read()
|
|
*
|
|
* This function is the primary way for a multi/multi_socket application to
|
|
* figure out if a transfer has ended. We MUST make this function as fast as
|
|
* possible as it will be polled frequently and we MUST NOT scan any lists in
|
|
* here to figure out things. We must scale fine to thousands of handles and
|
|
* beyond. The current design is fully O(1).
|
|
*/
|
|
|
|
CURLMsg *curl_multi_info_read(CURLM *multi_handle, int *msgs_in_queue)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_message *msg;
|
|
|
|
*msgs_in_queue = 0; /* default to none */
|
|
|
|
if(GOOD_MULTI_HANDLE(multi) && Curl_llist_count(multi->msglist)) {
|
|
/* there is one or more messages in the list */
|
|
struct curl_llist_element *e;
|
|
|
|
/* extract the head of the list to return */
|
|
e = multi->msglist->head;
|
|
|
|
msg = e->ptr;
|
|
|
|
/* remove the extracted entry */
|
|
Curl_llist_remove(multi->msglist, e, NULL);
|
|
|
|
*msgs_in_queue = curlx_uztosi(Curl_llist_count(multi->msglist));
|
|
|
|
return &msg->extmsg;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* singlesocket() checks what sockets we deal with and their "action state"
|
|
* and if we have a different state in any of those sockets from last time we
|
|
* call the callback accordingly.
|
|
*/
|
|
static void singlesocket(struct Curl_multi *multi,
|
|
struct Curl_one_easy *easy)
|
|
{
|
|
curl_socket_t socks[MAX_SOCKSPEREASYHANDLE];
|
|
int i;
|
|
struct Curl_sh_entry *entry;
|
|
curl_socket_t s;
|
|
int num;
|
|
unsigned int curraction;
|
|
struct Curl_one_easy *easy_by_hash;
|
|
bool remove_sock_from_hash;
|
|
|
|
for(i=0; i< MAX_SOCKSPEREASYHANDLE; i++)
|
|
socks[i] = CURL_SOCKET_BAD;
|
|
|
|
/* Fill in the 'current' struct with the state as it is now: what sockets to
|
|
supervise and for what actions */
|
|
curraction = multi_getsock(easy, socks, MAX_SOCKSPEREASYHANDLE);
|
|
|
|
/* We have 0 .. N sockets already and we get to know about the 0 .. M
|
|
sockets we should have from now on. Detect the differences, remove no
|
|
longer supervised ones and add new ones */
|
|
|
|
/* walk over the sockets we got right now */
|
|
for(i=0; (i< MAX_SOCKSPEREASYHANDLE) &&
|
|
(curraction & (GETSOCK_READSOCK(i) | GETSOCK_WRITESOCK(i)));
|
|
i++) {
|
|
int action = CURL_POLL_NONE;
|
|
|
|
s = socks[i];
|
|
|
|
/* get it from the hash */
|
|
entry = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s));
|
|
|
|
if(curraction & GETSOCK_READSOCK(i))
|
|
action |= CURL_POLL_IN;
|
|
if(curraction & GETSOCK_WRITESOCK(i))
|
|
action |= CURL_POLL_OUT;
|
|
|
|
if(entry) {
|
|
/* yeps, already present so check if it has the same action set */
|
|
if(entry->action == action)
|
|
/* same, continue */
|
|
continue;
|
|
}
|
|
else {
|
|
/* this is a socket we didn't have before, add it! */
|
|
entry = sh_addentry(multi->sockhash, s, easy->easy_handle);
|
|
if(!entry)
|
|
/* fatal */
|
|
return;
|
|
}
|
|
|
|
/* we know (entry != NULL) at this point, see the logic above */
|
|
if(multi->socket_cb)
|
|
multi->socket_cb(easy->easy_handle,
|
|
s,
|
|
action,
|
|
multi->socket_userp,
|
|
entry->socketp);
|
|
|
|
entry->action = action; /* store the current action state */
|
|
}
|
|
|
|
num = i; /* number of sockets */
|
|
|
|
/* when we've walked over all the sockets we should have right now, we must
|
|
make sure to detect sockets that are removed */
|
|
for(i=0; i< easy->numsocks; i++) {
|
|
int j;
|
|
s = easy->sockets[i];
|
|
for(j=0; j<num; j++) {
|
|
if(s == socks[j]) {
|
|
/* this is still supervised */
|
|
s = CURL_SOCKET_BAD;
|
|
break;
|
|
}
|
|
}
|
|
if(s != CURL_SOCKET_BAD) {
|
|
|
|
/* this socket has been removed. Tell the app to remove it */
|
|
remove_sock_from_hash = TRUE;
|
|
|
|
entry = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s));
|
|
if(entry) {
|
|
/* check if the socket to be removed serves a connection which has
|
|
other easy-s in a pipeline. In this case the socket should not be
|
|
removed. */
|
|
struct connectdata *easy_conn;
|
|
|
|
easy_by_hash = entry->easy->multi_pos;
|
|
easy_conn = easy_by_hash->easy_conn;
|
|
if(easy_conn) {
|
|
if(easy_conn->recv_pipe && easy_conn->recv_pipe->size > 1) {
|
|
/* the handle should not be removed from the pipe yet */
|
|
remove_sock_from_hash = FALSE;
|
|
|
|
/* Update the sockhash entry to instead point to the next in line
|
|
for the recv_pipe, or the first (in case this particular easy
|
|
isn't already) */
|
|
if(entry->easy == easy->easy_handle) {
|
|
if(isHandleAtHead(easy->easy_handle, easy_conn->recv_pipe))
|
|
entry->easy = easy_conn->recv_pipe->head->next->ptr;
|
|
else
|
|
entry->easy = easy_conn->recv_pipe->head->ptr;
|
|
}
|
|
}
|
|
if(easy_conn->send_pipe && easy_conn->send_pipe->size > 1) {
|
|
/* the handle should not be removed from the pipe yet */
|
|
remove_sock_from_hash = FALSE;
|
|
|
|
/* Update the sockhash entry to instead point to the next in line
|
|
for the send_pipe, or the first (in case this particular easy
|
|
isn't already) */
|
|
if(entry->easy == easy->easy_handle) {
|
|
if(isHandleAtHead(easy->easy_handle, easy_conn->send_pipe))
|
|
entry->easy = easy_conn->send_pipe->head->next->ptr;
|
|
else
|
|
entry->easy = easy_conn->send_pipe->head->ptr;
|
|
}
|
|
}
|
|
/* Don't worry about overwriting recv_pipe head with send_pipe_head,
|
|
when action will be asked on the socket (see multi_socket()), the
|
|
head of the correct pipe will be taken according to the
|
|
action. */
|
|
}
|
|
}
|
|
else
|
|
/* just a precaution, this socket really SHOULD be in the hash already
|
|
but in case it isn't, we don't have to tell the app to remove it
|
|
either since it never got to know about it */
|
|
remove_sock_from_hash = FALSE;
|
|
|
|
if(remove_sock_from_hash) {
|
|
/* in this case 'entry' is always non-NULL */
|
|
if(multi->socket_cb)
|
|
multi->socket_cb(easy->easy_handle,
|
|
s,
|
|
CURL_POLL_REMOVE,
|
|
multi->socket_userp,
|
|
entry->socketp);
|
|
sh_delentry(multi->sockhash, s);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
memcpy(easy->sockets, socks, num*sizeof(curl_socket_t));
|
|
easy->numsocks = num;
|
|
}
|
|
|
|
/*
|
|
* add_next_timeout()
|
|
*
|
|
* Each SessionHandle has a list of timeouts. The add_next_timeout() is called
|
|
* when it has just been removed from the splay tree because the timeout has
|
|
* expired. This function is then to advance in the list to pick the next
|
|
* timeout to use (skip the already expired ones) and add this node back to
|
|
* the splay tree again.
|
|
*
|
|
* The splay tree only has each sessionhandle as a single node and the nearest
|
|
* timeout is used to sort it on.
|
|
*/
|
|
static CURLMcode add_next_timeout(struct timeval now,
|
|
struct Curl_multi *multi,
|
|
struct SessionHandle *d)
|
|
{
|
|
struct timeval *tv = &d->state.expiretime;
|
|
struct curl_llist *list = d->state.timeoutlist;
|
|
struct curl_llist_element *e;
|
|
|
|
/* move over the timeout list for this specific handle and remove all
|
|
timeouts that are now passed tense and store the next pending
|
|
timeout in *tv */
|
|
for(e = list->head; e; ) {
|
|
struct curl_llist_element *n = e->next;
|
|
long diff = curlx_tvdiff(*(struct timeval *)e->ptr, now);
|
|
if(diff <= 0)
|
|
/* remove outdated entry */
|
|
Curl_llist_remove(list, e, NULL);
|
|
else
|
|
/* the list is sorted so get out on the first mismatch */
|
|
break;
|
|
e = n;
|
|
}
|
|
e = list->head;
|
|
if(!e) {
|
|
/* clear the expire times within the handles that we remove from the
|
|
splay tree */
|
|
tv->tv_sec = 0;
|
|
tv->tv_usec = 0;
|
|
}
|
|
else {
|
|
/* copy the first entry to 'tv' */
|
|
memcpy(tv, e->ptr, sizeof(*tv));
|
|
|
|
/* remove first entry from list */
|
|
Curl_llist_remove(list, e, NULL);
|
|
|
|
/* insert this node again into the splay */
|
|
multi->timetree = Curl_splayinsert(*tv, multi->timetree,
|
|
&d->state.timenode);
|
|
}
|
|
return CURLM_OK;
|
|
}
|
|
|
|
|
|
static CURLMcode multi_socket(struct Curl_multi *multi,
|
|
bool checkall,
|
|
curl_socket_t s,
|
|
int ev_bitmask,
|
|
int *running_handles)
|
|
{
|
|
CURLMcode result = CURLM_OK;
|
|
struct SessionHandle *data = NULL;
|
|
struct Curl_tree *t;
|
|
struct timeval now = Curl_tvnow();
|
|
|
|
if(checkall) {
|
|
struct Curl_one_easy *easyp;
|
|
/* *perform() deals with running_handles on its own */
|
|
result = curl_multi_perform(multi, running_handles);
|
|
|
|
/* walk through each easy handle and do the socket state change magic
|
|
and callbacks */
|
|
easyp=multi->easy.next;
|
|
while(easyp != &multi->easy) {
|
|
singlesocket(multi, easyp);
|
|
easyp = easyp->next;
|
|
}
|
|
|
|
/* or should we fall-through and do the timer-based stuff? */
|
|
return result;
|
|
}
|
|
else if(s != CURL_SOCKET_TIMEOUT) {
|
|
|
|
struct Curl_sh_entry *entry =
|
|
Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s));
|
|
|
|
if(!entry)
|
|
/* Unmatched socket, we can't act on it but we ignore this fact. In
|
|
real-world tests it has been proved that libevent can in fact give
|
|
the application actions even though the socket was just previously
|
|
asked to get removed, so thus we better survive stray socket actions
|
|
and just move on. */
|
|
;
|
|
else {
|
|
data = entry->easy;
|
|
|
|
if(data->magic != CURLEASY_MAGIC_NUMBER)
|
|
/* bad bad bad bad bad bad bad */
|
|
return CURLM_INTERNAL_ERROR;
|
|
|
|
/* If the pipeline is enabled, take the handle which is in the head of
|
|
the pipeline. If we should write into the socket, take the send_pipe
|
|
head. If we should read from the socket, take the recv_pipe head. */
|
|
if(data->set.one_easy->easy_conn) {
|
|
if((ev_bitmask & CURL_POLL_OUT) &&
|
|
data->set.one_easy->easy_conn->send_pipe &&
|
|
data->set.one_easy->easy_conn->send_pipe->head)
|
|
data = data->set.one_easy->easy_conn->send_pipe->head->ptr;
|
|
else if((ev_bitmask & CURL_POLL_IN) &&
|
|
data->set.one_easy->easy_conn->recv_pipe &&
|
|
data->set.one_easy->easy_conn->recv_pipe->head)
|
|
data = data->set.one_easy->easy_conn->recv_pipe->head->ptr;
|
|
}
|
|
|
|
if(data->set.one_easy->easy_conn &&
|
|
!(data->set.one_easy->easy_conn->handler->flags & PROTOPT_DIRLOCK))
|
|
/* set socket event bitmask if they're not locked */
|
|
data->set.one_easy->easy_conn->cselect_bits = ev_bitmask;
|
|
|
|
do
|
|
result = multi_runsingle(multi, now, data->set.one_easy);
|
|
while(CURLM_CALL_MULTI_PERFORM == result);
|
|
|
|
if(data->set.one_easy->easy_conn &&
|
|
!(data->set.one_easy->easy_conn->handler->flags & PROTOPT_DIRLOCK))
|
|
/* clear the bitmask only if not locked */
|
|
data->set.one_easy->easy_conn->cselect_bits = 0;
|
|
|
|
if(CURLM_OK >= result)
|
|
/* get the socket(s) and check if the state has been changed since
|
|
last */
|
|
singlesocket(multi, data->set.one_easy);
|
|
|
|
/* Now we fall-through and do the timer-based stuff, since we don't want
|
|
to force the user to have to deal with timeouts as long as at least
|
|
one connection in fact has traffic. */
|
|
|
|
data = NULL; /* set data to NULL again to avoid calling
|
|
multi_runsingle() in case there's no need to */
|
|
}
|
|
}
|
|
|
|
now.tv_usec += 40000; /* compensate for bad precision timers that might've
|
|
triggered too early */
|
|
if(now.tv_usec >= 1000000) {
|
|
now.tv_sec++;
|
|
now.tv_usec -= 1000000;
|
|
}
|
|
|
|
/*
|
|
* The loop following here will go on as long as there are expire-times left
|
|
* to process in the splay and 'data' will be re-assigned for every expired
|
|
* handle we deal with.
|
|
*/
|
|
do {
|
|
/* the first loop lap 'data' can be NULL */
|
|
if(data) {
|
|
do
|
|
result = multi_runsingle(multi, now, data->set.one_easy);
|
|
while(CURLM_CALL_MULTI_PERFORM == result);
|
|
|
|
if(CURLM_OK >= result)
|
|
/* get the socket(s) and check if the state has been changed since
|
|
last */
|
|
singlesocket(multi, data->set.one_easy);
|
|
}
|
|
|
|
/* Check if there's one (more) expired timer to deal with! This function
|
|
extracts a matching node if there is one */
|
|
|
|
multi->timetree = Curl_splaygetbest(now, multi->timetree, &t);
|
|
if(t) {
|
|
data = t->payload; /* assign this for next loop */
|
|
(void)add_next_timeout(now, multi, t->payload);
|
|
}
|
|
|
|
} while(t);
|
|
|
|
*running_handles = multi->num_alive;
|
|
return result;
|
|
}
|
|
|
|
#undef curl_multi_setopt
|
|
CURLMcode curl_multi_setopt(CURLM *multi_handle,
|
|
CURLMoption option, ...)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
CURLMcode res = CURLM_OK;
|
|
va_list param;
|
|
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
va_start(param, option);
|
|
|
|
switch(option) {
|
|
case CURLMOPT_SOCKETFUNCTION:
|
|
multi->socket_cb = va_arg(param, curl_socket_callback);
|
|
break;
|
|
case CURLMOPT_SOCKETDATA:
|
|
multi->socket_userp = va_arg(param, void *);
|
|
break;
|
|
case CURLMOPT_PIPELINING:
|
|
multi->pipelining_enabled = (0 != va_arg(param, long)) ? TRUE : FALSE;
|
|
break;
|
|
case CURLMOPT_TIMERFUNCTION:
|
|
multi->timer_cb = va_arg(param, curl_multi_timer_callback);
|
|
break;
|
|
case CURLMOPT_TIMERDATA:
|
|
multi->timer_userp = va_arg(param, void *);
|
|
break;
|
|
case CURLMOPT_MAXCONNECTS:
|
|
multi->maxconnects = va_arg(param, long);
|
|
break;
|
|
default:
|
|
res = CURLM_UNKNOWN_OPTION;
|
|
break;
|
|
}
|
|
va_end(param);
|
|
return res;
|
|
}
|
|
|
|
/* we define curl_multi_socket() in the public multi.h header */
|
|
#undef curl_multi_socket
|
|
|
|
CURLMcode curl_multi_socket(CURLM *multi_handle, curl_socket_t s,
|
|
int *running_handles)
|
|
{
|
|
CURLMcode result = multi_socket((struct Curl_multi *)multi_handle, FALSE, s,
|
|
0, running_handles);
|
|
if(CURLM_OK >= result)
|
|
update_timer((struct Curl_multi *)multi_handle);
|
|
return result;
|
|
}
|
|
|
|
CURLMcode curl_multi_socket_action(CURLM *multi_handle, curl_socket_t s,
|
|
int ev_bitmask, int *running_handles)
|
|
{
|
|
CURLMcode result = multi_socket((struct Curl_multi *)multi_handle, FALSE, s,
|
|
ev_bitmask, running_handles);
|
|
if(CURLM_OK >= result)
|
|
update_timer((struct Curl_multi *)multi_handle);
|
|
return result;
|
|
}
|
|
|
|
CURLMcode curl_multi_socket_all(CURLM *multi_handle, int *running_handles)
|
|
|
|
{
|
|
CURLMcode result = multi_socket((struct Curl_multi *)multi_handle,
|
|
TRUE, CURL_SOCKET_BAD, 0, running_handles);
|
|
if(CURLM_OK >= result)
|
|
update_timer((struct Curl_multi *)multi_handle);
|
|
return result;
|
|
}
|
|
|
|
static CURLMcode multi_timeout(struct Curl_multi *multi,
|
|
long *timeout_ms)
|
|
{
|
|
static struct timeval tv_zero = {0,0};
|
|
|
|
if(multi->timetree) {
|
|
/* we have a tree of expire times */
|
|
struct timeval now = Curl_tvnow();
|
|
|
|
/* splay the lowest to the bottom */
|
|
multi->timetree = Curl_splay(tv_zero, multi->timetree);
|
|
|
|
if(Curl_splaycomparekeys(multi->timetree->key, now) > 0) {
|
|
/* some time left before expiration */
|
|
*timeout_ms = curlx_tvdiff(multi->timetree->key, now);
|
|
if(!*timeout_ms)
|
|
/*
|
|
* Since we only provide millisecond resolution on the returned value
|
|
* and the diff might be less than one millisecond here, we don't
|
|
* return zero as that may cause short bursts of busyloops on fast
|
|
* processors while the diff is still present but less than one
|
|
* millisecond! instead we return 1 until the time is ripe.
|
|
*/
|
|
*timeout_ms=1;
|
|
}
|
|
else
|
|
/* 0 means immediately */
|
|
*timeout_ms = 0;
|
|
}
|
|
else
|
|
*timeout_ms = -1;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
CURLMcode curl_multi_timeout(CURLM *multi_handle,
|
|
long *timeout_ms)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
|
|
/* First, make some basic checks that the CURLM handle is a good handle */
|
|
if(!GOOD_MULTI_HANDLE(multi))
|
|
return CURLM_BAD_HANDLE;
|
|
|
|
return multi_timeout(multi, timeout_ms);
|
|
}
|
|
|
|
/*
|
|
* Tell the application it should update its timers, if it subscribes to the
|
|
* update timer callback.
|
|
*/
|
|
static int update_timer(struct Curl_multi *multi)
|
|
{
|
|
long timeout_ms;
|
|
|
|
if(!multi->timer_cb)
|
|
return 0;
|
|
if(multi_timeout(multi, &timeout_ms)) {
|
|
return -1;
|
|
}
|
|
if(timeout_ms < 0) {
|
|
static const struct timeval none={0,0};
|
|
if(Curl_splaycomparekeys(none, multi->timer_lastcall)) {
|
|
multi->timer_lastcall = none;
|
|
/* there's no timeout now but there was one previously, tell the app to
|
|
disable it */
|
|
return multi->timer_cb((CURLM*)multi, -1, multi->timer_userp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* When multi_timeout() is done, multi->timetree points to the node with the
|
|
* timeout we got the (relative) time-out time for. We can thus easily check
|
|
* if this is the same (fixed) time as we got in a previous call and then
|
|
* avoid calling the callback again. */
|
|
if(Curl_splaycomparekeys(multi->timetree->key, multi->timer_lastcall) == 0)
|
|
return 0;
|
|
|
|
multi->timer_lastcall = multi->timetree->key;
|
|
|
|
return multi->timer_cb((CURLM*)multi, timeout_ms, multi->timer_userp);
|
|
}
|
|
|
|
static CURLcode addHandleToSendOrPendPipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn)
|
|
{
|
|
size_t pipeLen = conn->send_pipe->size + conn->recv_pipe->size;
|
|
struct curl_llist_element *sendhead = conn->send_pipe->head;
|
|
struct curl_llist *pipeline;
|
|
CURLcode rc;
|
|
|
|
if(!Curl_isPipeliningEnabled(handle) ||
|
|
pipeLen == 0)
|
|
pipeline = conn->send_pipe;
|
|
else {
|
|
if(conn->server_supports_pipelining &&
|
|
pipeLen < MAX_PIPELINE_LENGTH)
|
|
pipeline = conn->send_pipe;
|
|
else
|
|
pipeline = conn->pend_pipe;
|
|
}
|
|
|
|
rc = Curl_addHandleToPipeline(handle, pipeline);
|
|
|
|
if(pipeline == conn->send_pipe && sendhead != conn->send_pipe->head) {
|
|
/* this is a new one as head, expire it */
|
|
conn->writechannel_inuse = FALSE; /* not in use yet */
|
|
#ifdef DEBUGBUILD
|
|
infof(conn->data, "%p is at send pipe head!\n",
|
|
conn->send_pipe->head->ptr);
|
|
#endif
|
|
Curl_expire(conn->send_pipe->head->ptr, 1);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int checkPendPipeline(struct connectdata *conn)
|
|
{
|
|
int result = 0;
|
|
struct curl_llist_element *sendhead = conn->send_pipe->head;
|
|
|
|
size_t pipeLen = conn->send_pipe->size + conn->recv_pipe->size;
|
|
if(conn->server_supports_pipelining || pipeLen == 0) {
|
|
struct curl_llist_element *curr = conn->pend_pipe->head;
|
|
const size_t maxPipeLen =
|
|
conn->server_supports_pipelining ? MAX_PIPELINE_LENGTH : 1;
|
|
|
|
while(pipeLen < maxPipeLen && curr) {
|
|
Curl_llist_move(conn->pend_pipe, curr,
|
|
conn->send_pipe, conn->send_pipe->tail);
|
|
Curl_pgrsTime(curr->ptr, TIMER_PRETRANSFER);
|
|
++result; /* count how many handles we moved */
|
|
curr = conn->pend_pipe->head;
|
|
++pipeLen;
|
|
}
|
|
}
|
|
|
|
if(result) {
|
|
conn->now = Curl_tvnow();
|
|
/* something moved, check for a new send pipeline leader */
|
|
if(sendhead != conn->send_pipe->head) {
|
|
/* this is a new one as head, expire it */
|
|
conn->writechannel_inuse = FALSE; /* not in use yet */
|
|
#ifdef DEBUGBUILD
|
|
infof(conn->data, "%p is at send pipe head!\n",
|
|
conn->send_pipe->head->ptr);
|
|
#endif
|
|
Curl_expire(conn->send_pipe->head->ptr, 1);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Move this transfer from the sending list to the receiving list.
|
|
|
|
Pay special attention to the new sending list "leader" as it needs to get
|
|
checked to update what sockets it acts on.
|
|
|
|
*/
|
|
static void moveHandleFromSendToRecvPipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn)
|
|
{
|
|
struct curl_llist_element *curr;
|
|
|
|
curr = conn->send_pipe->head;
|
|
while(curr) {
|
|
if(curr->ptr == handle) {
|
|
Curl_llist_move(conn->send_pipe, curr,
|
|
conn->recv_pipe, conn->recv_pipe->tail);
|
|
|
|
if(conn->send_pipe->head) {
|
|
/* Since there's a new easy handle at the start of the send pipeline,
|
|
set its timeout value to 1ms to make it trigger instantly */
|
|
conn->writechannel_inuse = FALSE; /* not used now */
|
|
#ifdef DEBUGBUILD
|
|
infof(conn->data, "%p is at send pipe head B!\n",
|
|
conn->send_pipe->head->ptr);
|
|
#endif
|
|
Curl_expire(conn->send_pipe->head->ptr, 1);
|
|
}
|
|
|
|
/* The receiver's list is not really interesting here since either this
|
|
handle is now first in the list and we'll deal with it soon, or
|
|
another handle is already first and thus is already taken care of */
|
|
|
|
break; /* we're done! */
|
|
}
|
|
curr = curr->next;
|
|
}
|
|
}
|
|
|
|
static void moveHandleFromRecvToDonePipeline(struct SessionHandle *handle,
|
|
struct connectdata *conn)
|
|
{
|
|
struct curl_llist_element *curr;
|
|
|
|
curr = conn->recv_pipe->head;
|
|
while(curr) {
|
|
if(curr->ptr == handle) {
|
|
Curl_llist_move(conn->recv_pipe, curr,
|
|
conn->done_pipe, conn->done_pipe->tail);
|
|
break;
|
|
}
|
|
curr = curr->next;
|
|
}
|
|
}
|
|
static bool isHandleAtHead(struct SessionHandle *handle,
|
|
struct curl_llist *pipeline)
|
|
{
|
|
struct curl_llist_element *curr = pipeline->head;
|
|
if(curr)
|
|
return (curr->ptr == handle) ? TRUE : FALSE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* multi_freetimeout()
|
|
*
|
|
* Callback used by the llist system when a single timeout list entry is
|
|
* destroyed.
|
|
*/
|
|
static void multi_freetimeout(void *user, void *entryptr)
|
|
{
|
|
(void)user;
|
|
|
|
/* the entry was plain malloc()'ed */
|
|
free(entryptr);
|
|
}
|
|
|
|
/*
|
|
* multi_addtimeout()
|
|
*
|
|
* Add a timestamp to the list of timeouts. Keep the list sorted so that head
|
|
* of list is always the timeout nearest in time.
|
|
*
|
|
*/
|
|
static CURLMcode
|
|
multi_addtimeout(struct curl_llist *timeoutlist,
|
|
struct timeval *stamp)
|
|
{
|
|
struct curl_llist_element *e;
|
|
struct timeval *timedup;
|
|
struct curl_llist_element *prev = NULL;
|
|
|
|
timedup = malloc(sizeof(*timedup));
|
|
if(!timedup)
|
|
return CURLM_OUT_OF_MEMORY;
|
|
|
|
/* copy the timestamp */
|
|
memcpy(timedup, stamp, sizeof(*timedup));
|
|
|
|
if(Curl_llist_count(timeoutlist)) {
|
|
/* find the correct spot in the list */
|
|
for(e = timeoutlist->head; e; e = e->next) {
|
|
struct timeval *checktime = e->ptr;
|
|
long diff = curlx_tvdiff(*checktime, *timedup);
|
|
if(diff > 0)
|
|
break;
|
|
prev = e;
|
|
}
|
|
|
|
}
|
|
/* else
|
|
this is the first timeout on the list */
|
|
|
|
if(!Curl_llist_insert_next(timeoutlist, prev, timedup)) {
|
|
free(timedup);
|
|
return CURLM_OUT_OF_MEMORY;
|
|
}
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
/*
|
|
* Curl_expire()
|
|
*
|
|
* given a number of milliseconds from now to use to set the 'act before
|
|
* this'-time for the transfer, to be extracted by curl_multi_timeout()
|
|
*
|
|
* Note that the timeout will be added to a queue of timeouts if it defines a
|
|
* moment in time that is later than the current head of queue.
|
|
*
|
|
* Pass zero to clear all timeout values for this handle.
|
|
*/
|
|
void Curl_expire(struct SessionHandle *data, long milli)
|
|
{
|
|
struct Curl_multi *multi = data->multi;
|
|
struct timeval *nowp = &data->state.expiretime;
|
|
int rc;
|
|
|
|
/* this is only interesting for multi-interface using libcurl, and only
|
|
while there is still a multi interface struct remaining! */
|
|
if(!multi)
|
|
return;
|
|
|
|
if(!milli) {
|
|
/* No timeout, clear the time data. */
|
|
if(nowp->tv_sec || nowp->tv_usec) {
|
|
/* Since this is an cleared time, we must remove the previous entry from
|
|
the splay tree */
|
|
struct curl_llist *list = data->state.timeoutlist;
|
|
|
|
rc = Curl_splayremovebyaddr(multi->timetree,
|
|
&data->state.timenode,
|
|
&multi->timetree);
|
|
if(rc)
|
|
infof(data, "Internal error clearing splay node = %d\n", rc);
|
|
|
|
/* flush the timeout list too */
|
|
while(list->size > 0)
|
|
Curl_llist_remove(list, list->tail, NULL);
|
|
|
|
#ifdef DEBUGBUILD
|
|
infof(data, "Expire cleared\n");
|
|
#endif
|
|
nowp->tv_sec = 0;
|
|
nowp->tv_usec = 0;
|
|
}
|
|
}
|
|
else {
|
|
struct timeval set;
|
|
|
|
set = Curl_tvnow();
|
|
set.tv_sec += milli/1000;
|
|
set.tv_usec += (milli%1000)*1000;
|
|
|
|
if(set.tv_usec >= 1000000) {
|
|
set.tv_sec++;
|
|
set.tv_usec -= 1000000;
|
|
}
|
|
|
|
if(nowp->tv_sec || nowp->tv_usec) {
|
|
/* This means that the struct is added as a node in the splay tree.
|
|
Compare if the new time is earlier, and only remove-old/add-new if it
|
|
is. */
|
|
long diff = curlx_tvdiff(set, *nowp);
|
|
if(diff > 0) {
|
|
/* the new expire time was later so just add it to the queue
|
|
and get out */
|
|
multi_addtimeout(data->state.timeoutlist, &set);
|
|
return;
|
|
}
|
|
|
|
/* the new time is newer than the presently set one, so add the current
|
|
to the queue and update the head */
|
|
multi_addtimeout(data->state.timeoutlist, nowp);
|
|
|
|
/* Since this is an updated time, we must remove the previous entry from
|
|
the splay tree first and then re-add the new value */
|
|
rc = Curl_splayremovebyaddr(multi->timetree,
|
|
&data->state.timenode,
|
|
&multi->timetree);
|
|
if(rc)
|
|
infof(data, "Internal error removing splay node = %d\n", rc);
|
|
}
|
|
|
|
*nowp = set;
|
|
data->state.timenode.payload = data;
|
|
multi->timetree = Curl_splayinsert(*nowp,
|
|
multi->timetree,
|
|
&data->state.timenode);
|
|
}
|
|
#if 0
|
|
Curl_splayprint(multi->timetree, 0, TRUE);
|
|
#endif
|
|
}
|
|
|
|
CURLMcode curl_multi_assign(CURLM *multi_handle,
|
|
curl_socket_t s, void *hashp)
|
|
{
|
|
struct Curl_sh_entry *there = NULL;
|
|
struct Curl_multi *multi = (struct Curl_multi *)multi_handle;
|
|
|
|
if(s != CURL_SOCKET_BAD)
|
|
there = Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(curl_socket_t));
|
|
|
|
if(!there)
|
|
return CURLM_BAD_SOCKET;
|
|
|
|
there->socketp = hashp;
|
|
|
|
return CURLM_OK;
|
|
}
|
|
|
|
#ifdef DEBUGBUILD
|
|
void Curl_multi_dump(const struct Curl_multi *multi_handle)
|
|
{
|
|
struct Curl_multi *multi=(struct Curl_multi *)multi_handle;
|
|
struct Curl_one_easy *easy;
|
|
int i;
|
|
fprintf(stderr, "* Multi status: %d handles, %d alive\n",
|
|
multi->num_easy, multi->num_alive);
|
|
for(easy=multi->easy.next; easy != &multi->easy; easy = easy->next) {
|
|
if(easy->state < CURLM_STATE_COMPLETED) {
|
|
/* only display handles that are not completed */
|
|
fprintf(stderr, "handle %p, state %s, %d sockets\n",
|
|
(void *)easy->easy_handle,
|
|
statename[easy->state], easy->numsocks);
|
|
for(i=0; i < easy->numsocks; i++) {
|
|
curl_socket_t s = easy->sockets[i];
|
|
struct Curl_sh_entry *entry =
|
|
Curl_hash_pick(multi->sockhash, (char *)&s, sizeof(s));
|
|
|
|
fprintf(stderr, "%d ", (int)s);
|
|
if(!entry) {
|
|
fprintf(stderr, "INTERNAL CONFUSION\n");
|
|
continue;
|
|
}
|
|
fprintf(stderr, "[%s %s] ",
|
|
entry->action&CURL_POLL_IN?"RECVING":"",
|
|
entry->action&CURL_POLL_OUT?"SENDING":"");
|
|
}
|
|
if(easy->numsocks)
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|