1
0
mirror of https://github.com/moparisthebest/curl synced 2024-12-25 01:28:51 -05:00

MD5: replace implementation

The previous one was "encumbered" by RSA Inc - to avoid the licensing
restrictions it has being replaced. This is the initial import,
inserting the md5.c and md5.h files from
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

Code-by: Alexander Peslyak
This commit is contained in:
Daniel Stenberg 2015-02-03 10:06:20 +01:00
parent 7f1d76f7ee
commit 57d6d253a1

534
lib/md5.c
View File

@ -5,7 +5,7 @@
* | (__| |_| | _ <| |___ * | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____| * \___|\___/|_| \_\_____|
* *
* Copyright (C) 1998 - 2012, Daniel Stenberg, <daniel@haxx.se>, et al. * Copyright (C) 1998 - 2015, Daniel Stenberg, <daniel@haxx.se>, et al.
* *
* This software is licensed as described in the file COPYING, which * This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms * you should have received as part of this distribution. The terms
@ -159,305 +159,309 @@ static void MD5_Final(unsigned char digest[16], MD5_CTX *ctx)
#else #else
/* When no other crypto library is available we use this code segment */ /* When no other crypto library is available we use this code segment */
/*
/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
rights reserved. * MD5 Message-Digest Algorithm (RFC 1321).
*
License to copy and use this software is granted provided that it * Homepage:
is identified as the "RSA Data Security, Inc. MD5 Message-Digest http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
Algorithm" in all material mentioning or referencing this software *
or this function. * Author:
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
License is also granted to make and use derivative works provided *
that such works are identified as "derived from the RSA Data * This software was written by Alexander Peslyak in 2001. No copyright is
Security, Inc. MD5 Message-Digest Algorithm" in all material * claimed, and the software is hereby placed in the public domain.
mentioning or referencing the derived work. * In case this attempt to disclaim copyright and place the software in the
* public domain is deemed null and void, then the software is
RSA Data Security, Inc. makes no representations concerning either * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
the merchantability of this software or the suitability of this * general public under the following terms:
software for any particular purpose. It is provided "as is" *
without express or implied warranty of any kind. * Redistribution and use in source and binary forms, with or without
* modification, are permitted.
These notices must be retained in any copies of any part of this *
documentation and/or software. * There's ABSOLUTELY NO WARRANTY, express or implied.
*
* (This is a heavily cut-down "BSD license".)
*
* This differs from Colin Plumb's older public domain implementation in that
* no exactly 32-bit integer data type is required (any 32-bit or wider
* unsigned integer data type will do), there's no compile-time endianness
* configuration, and the function prototypes match OpenSSL's. No code from
* Colin Plumb's implementation has been reused; this comment merely compares
* the properties of the two independent implementations.
*
* The primary goals of this implementation are portability and ease of use.
* It is meant to be fast, but not as fast as possible. Some known
* optimizations are not included to reduce source code size and avoid
* compile-time configuration.
*/ */
/* UINT4 defines a four byte word */ #include <string.h>
typedef unsigned int UINT4;
/* MD5 context. */ /* Any 32-bit or wider unsigned integer data type will do */
struct md5_ctx { typedef unsigned int MD5_u32plus;
UINT4 state[4]; /* state (ABCD) */
UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
unsigned char buffer[64]; /* input buffer */
};
typedef struct md5_ctx MD5_CTX; typedef struct {
MD5_u32plus lo, hi;
MD5_u32plus a, b, c, d;
unsigned char buffer[64];
MD5_u32plus block[16];
} MD5_CTX;
static void MD5_Init(struct md5_ctx *); extern void MD5_Init(MD5_CTX *ctx);
static void MD5_Update(struct md5_ctx *, const unsigned char *, unsigned int); extern void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size);
static void MD5_Final(unsigned char [16], struct md5_ctx *); extern void MD5_Final(unsigned char *result, MD5_CTX *ctx);
/* Constants for MD5Transform routine. /*
* The basic MD5 functions.
*
* F and G are optimized compared to their RFC 1321 definitions for
* architectures that lack an AND-NOT instruction, just like in Colin Plumb's
* implementation.
*/ */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
#define H(x, y, z) (((x) ^ (y)) ^ (z))
#define H2(x, y, z) ((x) ^ ((y) ^ (z)))
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
#define S11 7 /*
#define S12 12 * The MD5 transformation for all four rounds.
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
static void MD5Transform(UINT4 [4], const unsigned char [64]);
static void Encode(unsigned char *, UINT4 *, unsigned int);
static void Decode(UINT4 *, const unsigned char *, unsigned int);
static const unsigned char PADDING[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* F, G, H and I are basic MD5 functions.
*/ */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define STEP(f, a, b, c, d, x, t, s) \
#define G(x, y, z) (((x) & (z)) | ((y) & (~z))) (a) += f((b), (c), (d)) + (x) + (t); \
#define H(x, y, z) ((x) ^ (y) ^ (z)) (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
#define I(x, y, z) ((y) ^ ((x) | (~z))) (a) += (b);
/* ROTATE_LEFT rotates x left n bits. /*
* SET reads 4 input bytes in little-endian byte order and stores them
* in a properly aligned word in host byte order.
*
* The check for little-endian architectures that tolerate unaligned
* memory accesses is just an optimization. Nothing will break if it
* doesn't work.
*/ */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
#define SET(n) \
(*(MD5_u32plus *)&ptr[(n) * 4])
#define GET(n) \
SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = \
(MD5_u32plus)ptr[(n) * 4] | \
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
(ctx->block[(n)])
#endif
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. /*
Rotation is separate from addition to prevent recomputation. * This processes one or more 64-byte data blocks, but does NOT update
* the bit counters. There are no alignment requirements.
*/ */
#define FF(a, b, c, d, x, s, ac) { \ static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
/* MD5 initialization. Begins an MD5 operation, writing a new context.
*/
static void MD5_Init(struct md5_ctx *context)
{ {
context->count[0] = context->count[1] = 0; const unsigned char *ptr;
/* Load magic initialization constants. */ MD5_u32plus a, b, c, d;
context->state[0] = 0x67452301; MD5_u32plus saved_a, saved_b, saved_c, saved_d;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
/* MD5 block update operation. Continues an MD5 message-digest ptr = (const unsigned char *)data;
operation, processing another message block, and updating the
context.
*/
static void MD5_Update (struct md5_ctx *context, /* context */
const unsigned char *input, /* input block */
unsigned int inputLen) /* length of input block */
{
unsigned int i, bufindex, partLen;
/* Compute number of bytes mod 64 */ a = ctx->a;
bufindex = (unsigned int)((context->count[0] >> 3) & 0x3F); b = ctx->b;
c = ctx->c;
d = ctx->d;
/* Update number of bits */ do {
if((context->count[0] += ((UINT4)inputLen << 3)) saved_a = a;
< ((UINT4)inputLen << 3)) saved_b = b;
context->count[1]++; saved_c = c;
context->count[1] += ((UINT4)inputLen >> 29); saved_d = d;
partLen = 64 - bufindex;
/* Transform as many times as possible. */
if(inputLen >= partLen) {
memcpy(&context->buffer[bufindex], input, partLen);
MD5Transform(context->state, context->buffer);
for(i = partLen; i + 63 < inputLen; i += 64)
MD5Transform(context->state, &input[i]);
bufindex = 0;
}
else
i = 0;
/* Buffer remaining input */
memcpy(&context->buffer[bufindex], &input[i], inputLen-i);
}
/* MD5 finalization. Ends an MD5 message-digest operation, writing the
the message digest and zeroizing the context.
*/
static void MD5_Final(unsigned char digest[16], /* message digest */
struct md5_ctx *context) /* context */
{
unsigned char bits[8];
unsigned int count, padLen;
/* Save number of bits */
Encode (bits, context->count, 8);
/* Pad out to 56 mod 64. */
count = (unsigned int)((context->count[0] >> 3) & 0x3f);
padLen = (count < 56) ? (56 - count) : (120 - count);
MD5_Update (context, PADDING, padLen);
/* Append length (before padding) */
MD5_Update (context, bits, 8);
/* Store state in digest */
Encode (digest, context->state, 16);
/* Zeroize sensitive information. */
memset ((void *)context, 0, sizeof (*context));
}
/* MD5 basic transformation. Transforms state based on block. */
static void MD5Transform(UINT4 state[4],
const unsigned char block[64])
{
UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode (x, block, 64);
/* Round 1 */ /* Round 1 */
FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
/* Round 2 */ /* Round 2 */
GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
/* Round 3 */ /* Round 3 */
HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
/* Round 4 */ /* Round 4 */
II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
state[0] += a; a += saved_a;
state[1] += b; b += saved_b;
state[2] += c; c += saved_c;
state[3] += d; d += saved_d;
/* Zeroize sensitive information. */ ptr += 64;
memset((void *)x, 0, sizeof (x)); } while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
} }
/* Encodes input (UINT4) into output (unsigned char). Assumes len is void MD5_Init(MD5_CTX *ctx)
a multiple of 4.
*/
static void Encode (unsigned char *output,
UINT4 *input,
unsigned int len)
{ {
unsigned int i, j; ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
for(i = 0, j = 0; j < len; i++, j += 4) { ctx->lo = 0;
output[j] = (unsigned char)(input[i] & 0xff); ctx->hi = 0;
output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
}
} }
/* Decodes input (unsigned char) into output (UINT4). Assumes len is void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
a multiple of 4.
*/
static void Decode (UINT4 *output,
const unsigned char *input,
unsigned int len)
{ {
unsigned int i, j; MD5_u32plus saved_lo;
unsigned long used, available;
for(i = 0, j = 0; j < len; i++, j += 4) saved_lo = ctx->lo;
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); ctx->hi++;
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used) {
available = 64 - used;
if (size < available) {
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, available);
data = (const unsigned char *)data + available;
size -= available;
body(ctx, ctx->buffer, 64);
}
if (size >= 64) {
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
void MD5_Final(unsigned char *result, MD5_CTX *ctx)
{
unsigned long used, available;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
available = 64 - used;
if (available < 8) {
memset(&ctx->buffer[used], 0, available);
body(ctx, ctx->buffer, 64);
used = 0;
available = 64;
}
memset(&ctx->buffer[used], 0, available - 8);
ctx->lo <<= 3;
ctx->buffer[56] = ctx->lo;
ctx->buffer[57] = ctx->lo >> 8;
ctx->buffer[58] = ctx->lo >> 16;
ctx->buffer[59] = ctx->lo >> 24;
ctx->buffer[60] = ctx->hi;
ctx->buffer[61] = ctx->hi >> 8;
ctx->buffer[62] = ctx->hi >> 16;
ctx->buffer[63] = ctx->hi >> 24;
body(ctx, ctx->buffer, 64);
result[0] = ctx->a;
result[1] = ctx->a >> 8;
result[2] = ctx->a >> 16;
result[3] = ctx->a >> 24;
result[4] = ctx->b;
result[5] = ctx->b >> 8;
result[6] = ctx->b >> 16;
result[7] = ctx->b >> 24;
result[8] = ctx->c;
result[9] = ctx->c >> 8;
result[10] = ctx->c >> 16;
result[11] = ctx->c >> 24;
result[12] = ctx->d;
result[13] = ctx->d >> 8;
result[14] = ctx->d >> 16;
result[15] = ctx->d >> 24;
memset(ctx, 0, sizeof(*ctx));
} }
#endif /* CRYPTO LIBS */ #endif /* CRYPTO LIBS */