mirror of
https://github.com/moparisthebest/curl
synced 2025-01-11 05:58:01 -05:00
MD4: replace implementation
The previous one was "encumbered" by RSA Inc - to avoid the licensing restrictions it has being replaced. This is the initial import, inserting the md4.c and md4.h files from http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4 Code-by: Alexander Peslyak
This commit is contained in:
parent
cfc6d460cb
commit
211d5329f4
500
lib/md4.c
500
lib/md4.c
@ -1,23 +1,38 @@
|
||||
/*-
|
||||
Copyright (C) 1990-2, RSA Data Security, Inc. All rights reserved.
|
||||
|
||||
License to copy and use this software is granted provided that it
|
||||
is identified as the "RSA Data Security, Inc. MD4 Message-Digest
|
||||
Algorithm" in all material mentioning or referencing this software
|
||||
or this function.
|
||||
|
||||
License is also granted to make and use derivative works provided
|
||||
that such works are identified as "derived from the RSA Data
|
||||
Security, Inc. MD4 Message-Digest Algorithm" in all material
|
||||
mentioning or referencing the derived work.
|
||||
|
||||
RSA Data Security, Inc. makes no representations concerning either
|
||||
the merchantability of this software or the suitability of this
|
||||
software for any particular purpose. It is provided "as is"
|
||||
without express or implied warranty of any kind.
|
||||
|
||||
These notices must be retained in any copies of any part of this
|
||||
documentation and/or software.
|
||||
/*
|
||||
* This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
|
||||
* MD4 Message-Digest Algorithm (RFC 1320).
|
||||
*
|
||||
* Homepage:
|
||||
* http://openwall.info/wiki/people/solar/software/public-domain-source-code/md4
|
||||
*
|
||||
* Author:
|
||||
* Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
|
||||
*
|
||||
* This software was written by Alexander Peslyak in 2001. No copyright is
|
||||
* claimed, and the software is hereby placed in the public domain.
|
||||
* In case this attempt to disclaim copyright and place the software in the
|
||||
* public domain is deemed null and void, then the software is
|
||||
* Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
|
||||
* general public under the following terms:
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted.
|
||||
*
|
||||
* There's ABSOLUTELY NO WARRANTY, express or implied.
|
||||
*
|
||||
* (This is a heavily cut-down "BSD license".)
|
||||
*
|
||||
* This differs from Colin Plumb's older public domain implementation in that
|
||||
* no exactly 32-bit integer data type is required (any 32-bit or wider
|
||||
* unsigned integer data type will do), there's no compile-time endianness
|
||||
* configuration, and the function prototypes match OpenSSL's. No code from
|
||||
* Colin Plumb's implementation has been reused; this comment merely compares
|
||||
* the properties of the two independent implementations.
|
||||
*
|
||||
* The primary goals of this implementation are portability and ease of use.
|
||||
* It is meant to be fast, but not as fast as possible. Some known
|
||||
* optimizations are not included to reduce source code size and avoid
|
||||
* compile-time configuration.
|
||||
*/
|
||||
|
||||
#include "curl_setup.h"
|
||||
@ -29,248 +44,255 @@
|
||||
#include "curl_md4.h"
|
||||
#include "warnless.h"
|
||||
|
||||
typedef unsigned int UINT4;
|
||||
#ifndef HAVE_OPENSSL
|
||||
|
||||
typedef struct MD4Context {
|
||||
UINT4 state[4]; /* state (ABCD) */
|
||||
UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
|
||||
unsigned char buffer[64]; /* input buffer */
|
||||
#include <string.h>
|
||||
|
||||
/* Any 32-bit or wider unsigned integer data type will do */
|
||||
typedef unsigned int MD4_u32plus;
|
||||
|
||||
typedef struct {
|
||||
MD4_u32plus lo, hi;
|
||||
MD4_u32plus a, b, c, d;
|
||||
unsigned char buffer[64];
|
||||
MD4_u32plus block[16];
|
||||
} MD4_CTX;
|
||||
|
||||
/* Constants for MD4Transform routine.
|
||||
extern void MD4_Init(MD4_CTX *ctx);
|
||||
extern void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size);
|
||||
extern void MD4_Final(unsigned char *result, MD4_CTX *ctx);
|
||||
|
||||
/*
|
||||
* The basic MD4 functions.
|
||||
*
|
||||
* F and G are optimized compared to their RFC 1320 definitions, with the
|
||||
* optimization for F borrowed from Colin Plumb's MD5 implementation.
|
||||
*/
|
||||
#define S11 3
|
||||
#define S12 7
|
||||
#define S13 11
|
||||
#define S14 19
|
||||
#define S21 3
|
||||
#define S22 5
|
||||
#define S23 9
|
||||
#define S24 13
|
||||
#define S31 3
|
||||
#define S32 9
|
||||
#define S33 11
|
||||
#define S34 15
|
||||
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define G(x, y, z) (((x) & ((y) | (z))) | ((y) & (z)))
|
||||
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
||||
|
||||
static void MD4Transform(UINT4 [4], const unsigned char [64]);
|
||||
static void Encode(unsigned char *, UINT4 *, unsigned int);
|
||||
static void Decode(UINT4 *, const unsigned char *, unsigned int);
|
||||
|
||||
static unsigned char PADDING[64] = {
|
||||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
/* F, G and H are basic MD4 functions.
|
||||
/*
|
||||
* The MD4 transformation for all three rounds.
|
||||
*/
|
||||
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
|
||||
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
||||
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
||||
#define STEP(f, a, b, c, d, x, s) \
|
||||
(a) += f((b), (c), (d)) + (x); \
|
||||
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s))));
|
||||
|
||||
/* ROTATE_LEFT rotates x left n bits.
|
||||
/*
|
||||
* SET reads 4 input bytes in little-endian byte order and stores them
|
||||
* in a properly aligned word in host byte order.
|
||||
*
|
||||
* The check for little-endian architectures that tolerate unaligned
|
||||
* memory accesses is just an optimization. Nothing will break if it
|
||||
* doesn't work.
|
||||
*/
|
||||
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
|
||||
#if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
|
||||
#define SET(n) \
|
||||
(*(MD4_u32plus *)&ptr[(n) * 4])
|
||||
#define GET(n) \
|
||||
SET(n)
|
||||
#else
|
||||
#define SET(n) \
|
||||
(ctx->block[(n)] = \
|
||||
(MD4_u32plus)ptr[(n) * 4] | \
|
||||
((MD4_u32plus)ptr[(n) * 4 + 1] << 8) | \
|
||||
((MD4_u32plus)ptr[(n) * 4 + 2] << 16) | \
|
||||
((MD4_u32plus)ptr[(n) * 4 + 3] << 24))
|
||||
#define GET(n) \
|
||||
(ctx->block[(n)])
|
||||
#endif
|
||||
|
||||
/* FF, GG and HH are transformations for rounds 1, 2 and 3 */
|
||||
/* Rotation is separate from addition to prevent recomputation */
|
||||
#define FF(a, b, c, d, x, s) { \
|
||||
(a) += F ((b), (c), (d)) + (x); \
|
||||
(a) = ROTATE_LEFT ((a), (s)); \
|
||||
}
|
||||
#define GG(a, b, c, d, x, s) { \
|
||||
(a) += G ((b), (c), (d)) + (x) + (UINT4)0x5a827999; \
|
||||
(a) = ROTATE_LEFT ((a), (s)); \
|
||||
}
|
||||
#define HH(a, b, c, d, x, s) { \
|
||||
(a) += H ((b), (c), (d)) + (x) + (UINT4)0x6ed9eba1; \
|
||||
(a) = ROTATE_LEFT ((a), (s)); \
|
||||
/*
|
||||
* This processes one or more 64-byte data blocks, but does NOT update
|
||||
* the bit counters. There are no alignment requirements.
|
||||
*/
|
||||
static const void *body(MD4_CTX *ctx, const void *data, unsigned long size)
|
||||
{
|
||||
const unsigned char *ptr;
|
||||
MD4_u32plus a, b, c, d;
|
||||
MD4_u32plus saved_a, saved_b, saved_c, saved_d;
|
||||
|
||||
ptr = (const unsigned char *)data;
|
||||
|
||||
a = ctx->a;
|
||||
b = ctx->b;
|
||||
c = ctx->c;
|
||||
d = ctx->d;
|
||||
|
||||
do {
|
||||
saved_a = a;
|
||||
saved_b = b;
|
||||
saved_c = c;
|
||||
saved_d = d;
|
||||
|
||||
/* Round 1 */
|
||||
STEP(F, a, b, c, d, SET(0), 3)
|
||||
STEP(F, d, a, b, c, SET(1), 7)
|
||||
STEP(F, c, d, a, b, SET(2), 11)
|
||||
STEP(F, b, c, d, a, SET(3), 19)
|
||||
STEP(F, a, b, c, d, SET(4), 3)
|
||||
STEP(F, d, a, b, c, SET(5), 7)
|
||||
STEP(F, c, d, a, b, SET(6), 11)
|
||||
STEP(F, b, c, d, a, SET(7), 19)
|
||||
STEP(F, a, b, c, d, SET(8), 3)
|
||||
STEP(F, d, a, b, c, SET(9), 7)
|
||||
STEP(F, c, d, a, b, SET(10), 11)
|
||||
STEP(F, b, c, d, a, SET(11), 19)
|
||||
STEP(F, a, b, c, d, SET(12), 3)
|
||||
STEP(F, d, a, b, c, SET(13), 7)
|
||||
STEP(F, c, d, a, b, SET(14), 11)
|
||||
STEP(F, b, c, d, a, SET(15), 19)
|
||||
|
||||
/* Round 2 */
|
||||
STEP(G, a, b, c, d, GET(0) + 0x5a827999, 3)
|
||||
STEP(G, d, a, b, c, GET(4) + 0x5a827999, 5)
|
||||
STEP(G, c, d, a, b, GET(8) + 0x5a827999, 9)
|
||||
STEP(G, b, c, d, a, GET(12) + 0x5a827999, 13)
|
||||
STEP(G, a, b, c, d, GET(1) + 0x5a827999, 3)
|
||||
STEP(G, d, a, b, c, GET(5) + 0x5a827999, 5)
|
||||
STEP(G, c, d, a, b, GET(9) + 0x5a827999, 9)
|
||||
STEP(G, b, c, d, a, GET(13) + 0x5a827999, 13)
|
||||
STEP(G, a, b, c, d, GET(2) + 0x5a827999, 3)
|
||||
STEP(G, d, a, b, c, GET(6) + 0x5a827999, 5)
|
||||
STEP(G, c, d, a, b, GET(10) + 0x5a827999, 9)
|
||||
STEP(G, b, c, d, a, GET(14) + 0x5a827999, 13)
|
||||
STEP(G, a, b, c, d, GET(3) + 0x5a827999, 3)
|
||||
STEP(G, d, a, b, c, GET(7) + 0x5a827999, 5)
|
||||
STEP(G, c, d, a, b, GET(11) + 0x5a827999, 9)
|
||||
STEP(G, b, c, d, a, GET(15) + 0x5a827999, 13)
|
||||
|
||||
/* Round 3 */
|
||||
STEP(H, a, b, c, d, GET(0) + 0x6ed9eba1, 3)
|
||||
STEP(H, d, a, b, c, GET(8) + 0x6ed9eba1, 9)
|
||||
STEP(H, c, d, a, b, GET(4) + 0x6ed9eba1, 11)
|
||||
STEP(H, b, c, d, a, GET(12) + 0x6ed9eba1, 15)
|
||||
STEP(H, a, b, c, d, GET(2) + 0x6ed9eba1, 3)
|
||||
STEP(H, d, a, b, c, GET(10) + 0x6ed9eba1, 9)
|
||||
STEP(H, c, d, a, b, GET(6) + 0x6ed9eba1, 11)
|
||||
STEP(H, b, c, d, a, GET(14) + 0x6ed9eba1, 15)
|
||||
STEP(H, a, b, c, d, GET(1) + 0x6ed9eba1, 3)
|
||||
STEP(H, d, a, b, c, GET(9) + 0x6ed9eba1, 9)
|
||||
STEP(H, c, d, a, b, GET(5) + 0x6ed9eba1, 11)
|
||||
STEP(H, b, c, d, a, GET(13) + 0x6ed9eba1, 15)
|
||||
STEP(H, a, b, c, d, GET(3) + 0x6ed9eba1, 3)
|
||||
STEP(H, d, a, b, c, GET(11) + 0x6ed9eba1, 9)
|
||||
STEP(H, c, d, a, b, GET(7) + 0x6ed9eba1, 11)
|
||||
STEP(H, b, c, d, a, GET(15) + 0x6ed9eba1, 15)
|
||||
|
||||
a += saved_a;
|
||||
b += saved_b;
|
||||
c += saved_c;
|
||||
d += saved_d;
|
||||
|
||||
ptr += 64;
|
||||
} while (size -= 64);
|
||||
|
||||
ctx->a = a;
|
||||
ctx->b = b;
|
||||
ctx->c = c;
|
||||
ctx->d = d;
|
||||
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void MD4_Init(MD4_CTX *ctx)
|
||||
{
|
||||
ctx->a = 0x67452301;
|
||||
ctx->b = 0xefcdab89;
|
||||
ctx->c = 0x98badcfe;
|
||||
ctx->d = 0x10325476;
|
||||
|
||||
ctx->lo = 0;
|
||||
ctx->hi = 0;
|
||||
}
|
||||
|
||||
void MD4_Update(MD4_CTX *ctx, const void *data, unsigned long size)
|
||||
{
|
||||
MD4_u32plus saved_lo;
|
||||
unsigned long used, available;
|
||||
|
||||
saved_lo = ctx->lo;
|
||||
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
|
||||
ctx->hi++;
|
||||
ctx->hi += size >> 29;
|
||||
|
||||
used = saved_lo & 0x3f;
|
||||
|
||||
if (used) {
|
||||
available = 64 - used;
|
||||
|
||||
if (size < available) {
|
||||
memcpy(&ctx->buffer[used], data, size);
|
||||
return;
|
||||
}
|
||||
|
||||
memcpy(&ctx->buffer[used], data, available);
|
||||
data = (const unsigned char *)data + available;
|
||||
size -= available;
|
||||
body(ctx, ctx->buffer, 64);
|
||||
}
|
||||
|
||||
/* MD4 initialization. Begins an MD4 operation, writing a new context.
|
||||
*/
|
||||
static void MD4Init(MD4_CTX *context)
|
||||
{
|
||||
context->count[0] = context->count[1] = 0;
|
||||
|
||||
/* Load magic initialization constants.
|
||||
*/
|
||||
context->state[0] = 0x67452301;
|
||||
context->state[1] = 0xefcdab89;
|
||||
context->state[2] = 0x98badcfe;
|
||||
context->state[3] = 0x10325476;
|
||||
}
|
||||
|
||||
/* MD4 block update operation. Continues an MD4 message-digest
|
||||
operation, processing another message block, and updating the
|
||||
context.
|
||||
*/
|
||||
static void MD4Update(MD4_CTX *context, const unsigned char *input,
|
||||
unsigned int inputLen)
|
||||
{
|
||||
unsigned int i, bufindex, partLen;
|
||||
|
||||
/* Compute number of bytes mod 64 */
|
||||
bufindex = (unsigned int)((context->count[0] >> 3) & 0x3F);
|
||||
/* Update number of bits */
|
||||
if((context->count[0] += ((UINT4)inputLen << 3))
|
||||
< ((UINT4)inputLen << 3))
|
||||
context->count[1]++;
|
||||
context->count[1] += ((UINT4)inputLen >> 29);
|
||||
|
||||
partLen = 64 - bufindex;
|
||||
/* Transform as many times as possible.
|
||||
*/
|
||||
if(inputLen >= partLen) {
|
||||
memcpy(&context->buffer[bufindex], input, partLen);
|
||||
MD4Transform (context->state, context->buffer);
|
||||
|
||||
for(i = partLen; i + 63 < inputLen; i += 64)
|
||||
MD4Transform (context->state, &input[i]);
|
||||
|
||||
bufindex = 0;
|
||||
if (size >= 64) {
|
||||
data = body(ctx, data, size & ~(unsigned long)0x3f);
|
||||
size &= 0x3f;
|
||||
}
|
||||
else
|
||||
i = 0;
|
||||
|
||||
/* Buffer remaining input */
|
||||
memcpy(&context->buffer[bufindex], &input[i], inputLen-i);
|
||||
memcpy(ctx->buffer, data, size);
|
||||
}
|
||||
|
||||
/* MD4 padding. */
|
||||
static void MD4Pad(MD4_CTX *context)
|
||||
void MD4_Final(unsigned char *result, MD4_CTX *ctx)
|
||||
{
|
||||
unsigned char bits[8];
|
||||
unsigned int bufindex, padLen;
|
||||
unsigned long used, available;
|
||||
|
||||
/* Save number of bits */
|
||||
Encode (bits, context->count, 8);
|
||||
used = ctx->lo & 0x3f;
|
||||
|
||||
/* Pad out to 56 mod 64.
|
||||
*/
|
||||
bufindex = (unsigned int)((context->count[0] >> 3) & 0x3f);
|
||||
padLen = (bufindex < 56) ? (56 - bufindex) : (120 - bufindex);
|
||||
MD4Update (context, PADDING, padLen);
|
||||
ctx->buffer[used++] = 0x80;
|
||||
|
||||
/* Append length (before padding) */
|
||||
MD4Update (context, bits, 8);
|
||||
}
|
||||
available = 64 - used;
|
||||
|
||||
/* MD4 finalization. Ends an MD4 message-digest operation, writing the
|
||||
the message digest and zeroizing the context.
|
||||
*/
|
||||
static void MD4Final (unsigned char digest[16], MD4_CTX *context)
|
||||
{
|
||||
/* Do padding */
|
||||
MD4Pad (context);
|
||||
|
||||
/* Store state in digest */
|
||||
Encode (digest, context->state, 16);
|
||||
|
||||
/* Zeroize sensitive information.
|
||||
*/
|
||||
memset(context, 0, sizeof(*context));
|
||||
}
|
||||
|
||||
/* MD4 basic transformation. Transforms state based on block.
|
||||
*/
|
||||
static void MD4Transform (UINT4 state[4], const unsigned char block[64])
|
||||
{
|
||||
UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
|
||||
|
||||
Decode (x, block, 64);
|
||||
|
||||
/* Round 1 */
|
||||
FF (a, b, c, d, x[ 0], S11); /* 1 */
|
||||
FF (d, a, b, c, x[ 1], S12); /* 2 */
|
||||
FF (c, d, a, b, x[ 2], S13); /* 3 */
|
||||
FF (b, c, d, a, x[ 3], S14); /* 4 */
|
||||
FF (a, b, c, d, x[ 4], S11); /* 5 */
|
||||
FF (d, a, b, c, x[ 5], S12); /* 6 */
|
||||
FF (c, d, a, b, x[ 6], S13); /* 7 */
|
||||
FF (b, c, d, a, x[ 7], S14); /* 8 */
|
||||
FF (a, b, c, d, x[ 8], S11); /* 9 */
|
||||
FF (d, a, b, c, x[ 9], S12); /* 10 */
|
||||
FF (c, d, a, b, x[10], S13); /* 11 */
|
||||
FF (b, c, d, a, x[11], S14); /* 12 */
|
||||
FF (a, b, c, d, x[12], S11); /* 13 */
|
||||
FF (d, a, b, c, x[13], S12); /* 14 */
|
||||
FF (c, d, a, b, x[14], S13); /* 15 */
|
||||
FF (b, c, d, a, x[15], S14); /* 16 */
|
||||
|
||||
/* Round 2 */
|
||||
GG (a, b, c, d, x[ 0], S21); /* 17 */
|
||||
GG (d, a, b, c, x[ 4], S22); /* 18 */
|
||||
GG (c, d, a, b, x[ 8], S23); /* 19 */
|
||||
GG (b, c, d, a, x[12], S24); /* 20 */
|
||||
GG (a, b, c, d, x[ 1], S21); /* 21 */
|
||||
GG (d, a, b, c, x[ 5], S22); /* 22 */
|
||||
GG (c, d, a, b, x[ 9], S23); /* 23 */
|
||||
GG (b, c, d, a, x[13], S24); /* 24 */
|
||||
GG (a, b, c, d, x[ 2], S21); /* 25 */
|
||||
GG (d, a, b, c, x[ 6], S22); /* 26 */
|
||||
GG (c, d, a, b, x[10], S23); /* 27 */
|
||||
GG (b, c, d, a, x[14], S24); /* 28 */
|
||||
GG (a, b, c, d, x[ 3], S21); /* 29 */
|
||||
GG (d, a, b, c, x[ 7], S22); /* 30 */
|
||||
GG (c, d, a, b, x[11], S23); /* 31 */
|
||||
GG (b, c, d, a, x[15], S24); /* 32 */
|
||||
|
||||
/* Round 3 */
|
||||
HH (a, b, c, d, x[ 0], S31); /* 33 */
|
||||
HH (d, a, b, c, x[ 8], S32); /* 34 */
|
||||
HH (c, d, a, b, x[ 4], S33); /* 35 */
|
||||
HH (b, c, d, a, x[12], S34); /* 36 */
|
||||
HH (a, b, c, d, x[ 2], S31); /* 37 */
|
||||
HH (d, a, b, c, x[10], S32); /* 38 */
|
||||
HH (c, d, a, b, x[ 6], S33); /* 39 */
|
||||
HH (b, c, d, a, x[14], S34); /* 40 */
|
||||
HH (a, b, c, d, x[ 1], S31); /* 41 */
|
||||
HH (d, a, b, c, x[ 9], S32); /* 42 */
|
||||
HH (c, d, a, b, x[ 5], S33); /* 43 */
|
||||
HH (b, c, d, a, x[13], S34); /* 44 */
|
||||
HH (a, b, c, d, x[ 3], S31); /* 45 */
|
||||
HH (d, a, b, c, x[11], S32); /* 46 */
|
||||
HH (c, d, a, b, x[ 7], S33); /* 47 */
|
||||
HH (b, c, d, a, x[15], S34); /* 48 */
|
||||
|
||||
state[0] += a;
|
||||
state[1] += b;
|
||||
state[2] += c;
|
||||
state[3] += d;
|
||||
|
||||
/* Zeroize sensitive information.
|
||||
*/
|
||||
memset(x, 0, sizeof(x));
|
||||
}
|
||||
|
||||
/* Encodes input (UINT4) into output (unsigned char). Assumes len is
|
||||
a multiple of 4.
|
||||
*/
|
||||
static void Encode(unsigned char *output, UINT4 *input, unsigned int len)
|
||||
{
|
||||
unsigned int i, j;
|
||||
|
||||
for(i = 0, j = 0; j < len; i++, j += 4) {
|
||||
output[j] = (unsigned char)(input[i] & 0xff);
|
||||
output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
|
||||
output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
|
||||
output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
|
||||
if (available < 8) {
|
||||
memset(&ctx->buffer[used], 0, available);
|
||||
body(ctx, ctx->buffer, 64);
|
||||
used = 0;
|
||||
available = 64;
|
||||
}
|
||||
|
||||
memset(&ctx->buffer[used], 0, available - 8);
|
||||
|
||||
ctx->lo <<= 3;
|
||||
ctx->buffer[56] = ctx->lo;
|
||||
ctx->buffer[57] = ctx->lo >> 8;
|
||||
ctx->buffer[58] = ctx->lo >> 16;
|
||||
ctx->buffer[59] = ctx->lo >> 24;
|
||||
ctx->buffer[60] = ctx->hi;
|
||||
ctx->buffer[61] = ctx->hi >> 8;
|
||||
ctx->buffer[62] = ctx->hi >> 16;
|
||||
ctx->buffer[63] = ctx->hi >> 24;
|
||||
|
||||
body(ctx, ctx->buffer, 64);
|
||||
|
||||
result[0] = ctx->a;
|
||||
result[1] = ctx->a >> 8;
|
||||
result[2] = ctx->a >> 16;
|
||||
result[3] = ctx->a >> 24;
|
||||
result[4] = ctx->b;
|
||||
result[5] = ctx->b >> 8;
|
||||
result[6] = ctx->b >> 16;
|
||||
result[7] = ctx->b >> 24;
|
||||
result[8] = ctx->c;
|
||||
result[9] = ctx->c >> 8;
|
||||
result[10] = ctx->c >> 16;
|
||||
result[11] = ctx->c >> 24;
|
||||
result[12] = ctx->d;
|
||||
result[13] = ctx->d >> 8;
|
||||
result[14] = ctx->d >> 16;
|
||||
result[15] = ctx->d >> 24;
|
||||
|
||||
memset(ctx, 0, sizeof(*ctx));
|
||||
}
|
||||
|
||||
/* Decodes input (unsigned char) into output (UINT4). Assumes len is
|
||||
a multiple of 4.
|
||||
*/
|
||||
static void Decode (UINT4 *output, const unsigned char *input,
|
||||
unsigned int len)
|
||||
{
|
||||
unsigned int i, j;
|
||||
|
||||
for(i = 0, j = 0; j < len; i++, j += 4)
|
||||
output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
|
||||
(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
|
||||
}
|
||||
#endif
|
||||
|
||||
void Curl_md4it(unsigned char *output, const unsigned char *input, size_t len)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user