1
0
mirror of https://github.com/moparisthebest/curl synced 2025-01-05 19:08:06 -05:00
curl/lib/http_proxy.c

644 lines
22 KiB
C
Raw Normal View History

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) 1998 - 2017, Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.haxx.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
***************************************************************************/
build: fix circular header inclusion with other packages This commit renames lib/setup.h to lib/curl_setup.h and renames lib/setup_once.h to lib/curl_setup_once.h. Removes the need and usage of a header inclusion guard foreign to libcurl. [1] Removes the need and presence of an alarming notice we carried in old setup_once.h [2] ---------------------------------------- 1 - lib/setup_once.h used __SETUP_ONCE_H macro as header inclusion guard up to commit ec691ca3 which changed this to HEADER_CURL_SETUP_ONCE_H, this single inclusion guard is enough to ensure that inclusion of lib/setup_once.h done from lib/setup.h is only done once. Additionally lib/setup.h has always used __SETUP_ONCE_H macro to protect inclusion of setup_once.h even after commit ec691ca3, this was to avoid a circular header inclusion triggered when building a c-ares enabled version with c-ares sources available which also has a setup_once.h header. Commit ec691ca3 exposes the real nature of __SETUP_ONCE_H usage in lib/setup.h, it is a header inclusion guard foreign to libcurl belonging to c-ares's setup_once.h The renaming this commit does, fixes the circular header inclusion, and as such removes the need and usage of a header inclusion guard foreign to libcurl. Macro __SETUP_ONCE_H no longer used in libcurl. 2 - Due to the circular interdependency of old lib/setup_once.h and the c-ares setup_once.h header, old file lib/setup_once.h has carried back from 2006 up to now days an alarming and prominent notice about the need of keeping libcurl's and c-ares's setup_once.h in sync. Given that this commit fixes the circular interdependency, the need and presence of mentioned notice is removed. All mentioned interdependencies come back from now old days when the c-ares project lived inside a curl subdirectory. This commit removes last traces of such fact.
2013-01-06 13:06:49 -05:00
#include "curl_setup.h"
#if !defined(CURL_DISABLE_PROXY) && !defined(CURL_DISABLE_HTTP)
#include "urldata.h"
#include <curl/curl.h>
#include "http_proxy.h"
#include "sendf.h"
#include "http.h"
#include "url.h"
#include "select.h"
#include "progress.h"
#include "non-ascii.h"
#include "connect.h"
#include "curlx.h"
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
#include "vtls/vtls.h"
/* The last 3 #include files should be in this order */
#include "curl_printf.h"
#include "curl_memory.h"
#include "memdebug.h"
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
/*
* Perform SSL initialization for HTTPS proxy. Sets
* proxy_ssl_connected connection bit when complete. Can be
* called multiple times.
*/
static CURLcode https_proxy_connect(struct connectdata *conn, int sockindex)
{
#ifdef USE_SSL
CURLcode result = CURLE_OK;
DEBUGASSERT(conn->http_proxy.proxytype == CURLPROXY_HTTPS);
if(!conn->bits.proxy_ssl_connected[sockindex]) {
/* perform SSL initialization for this socket */
result =
Curl_ssl_connect_nonblocking(conn, sockindex,
&conn->bits.proxy_ssl_connected[sockindex]);
if(result)
conn->bits.close = TRUE; /* a failed connection is marked for closure to
prevent (bad) re-use or similar */
}
return result;
#else
(void) conn;
(void) sockindex;
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
return CURLE_NOT_BUILT_IN;
#endif
}
CURLcode Curl_proxy_connect(struct connectdata *conn, int sockindex)
{
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(conn->http_proxy.proxytype == CURLPROXY_HTTPS) {
const CURLcode result = https_proxy_connect(conn, sockindex);
if(result)
return result;
if(!conn->bits.proxy_ssl_connected[sockindex])
return result; /* wait for HTTPS proxy SSL initialization to complete */
}
if(conn->bits.tunnel_proxy && conn->bits.httpproxy) {
#ifndef CURL_DISABLE_PROXY
/* for [protocol] tunneled through HTTP proxy */
struct HTTP http_proxy;
void *prot_save;
const char *hostname;
int remote_port;
CURLcode result;
/* BLOCKING */
/* We want "seamless" operations through HTTP proxy tunnel */
/* Curl_proxyCONNECT is based on a pointer to a struct HTTP at the
* member conn->proto.http; we want [protocol] through HTTP and we have
* to change the member temporarily for connecting to the HTTP
* proxy. After Curl_proxyCONNECT we have to set back the member to the
* original pointer
*
* This function might be called several times in the multi interface case
* if the proxy's CONNECT response is not instant.
*/
prot_save = conn->data->req.protop;
memset(&http_proxy, 0, sizeof(http_proxy));
conn->data->req.protop = &http_proxy;
connkeep(conn, "HTTP proxy CONNECT");
/* for the secondary socket (FTP), use the "connect to host"
* but ignore the "connect to port" (use the secondary port)
*/
if(conn->bits.conn_to_host)
hostname = conn->conn_to_host.name;
else if(sockindex == SECONDARYSOCKET)
hostname = conn->secondaryhostname;
else
hostname = conn->host.name;
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(sockindex == SECONDARYSOCKET)
remote_port = conn->secondary_port;
else if(conn->bits.conn_to_port)
remote_port = conn->conn_to_port;
else
remote_port = conn->remote_port;
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
result = Curl_proxyCONNECT(conn, sockindex, hostname,
remote_port, FALSE);
conn->data->req.protop = prot_save;
if(CURLE_OK != result)
return result;
Curl_safefree(conn->allocptr.proxyuserpwd);
#else
return CURLE_NOT_BUILT_IN;
#endif
}
/* no HTTP tunnel proxy, just return */
return CURLE_OK;
}
/*
* Curl_proxyCONNECT() requires that we're connected to a HTTP proxy. This
* function will issue the necessary commands to get a seamless tunnel through
* this proxy. After that, the socket can be used just as a normal socket.
*
* 'blocking' set to TRUE means that this function will do the entire CONNECT
* + response in a blocking fashion. Should be avoided!
*/
CURLcode Curl_proxyCONNECT(struct connectdata *conn,
int sockindex,
const char *hostname,
int remote_port,
bool blocking)
{
int subversion=0;
struct Curl_easy *data=conn->data;
struct SingleRequest *k = &data->req;
CURLcode result;
curl_socket_t tunnelsocket = conn->sock[sockindex];
curl_off_t cl=0;
bool closeConnection = FALSE;
bool chunked_encoding = FALSE;
time_t check;
#define SELECT_OK 0
#define SELECT_ERROR 1
#define SELECT_TIMEOUT 2
int error = SELECT_OK;
if(conn->tunnel_state[sockindex] == TUNNEL_COMPLETE)
return CURLE_OK; /* CONNECT is already completed */
conn->bits.proxy_connect_closed = FALSE;
do {
if(TUNNEL_INIT == conn->tunnel_state[sockindex]) {
/* BEGIN CONNECT PHASE */
char *host_port;
Curl_send_buffer *req_buffer;
infof(data, "Establish HTTP proxy tunnel to %s:%hu\n",
hostname, remote_port);
/* This only happens if we've looped here due to authentication
reasons, and we don't really use the newly cloned URL here
then. Just free() it. */
free(data->req.newurl);
data->req.newurl = NULL;
/* initialize a dynamic send-buffer */
req_buffer = Curl_add_buffer_init();
if(!req_buffer)
return CURLE_OUT_OF_MEMORY;
host_port = aprintf("%s:%hu", hostname, remote_port);
if(!host_port) {
Curl_add_buffer_free(req_buffer);
return CURLE_OUT_OF_MEMORY;
}
/* Setup the proxy-authorization header, if any */
result = Curl_http_output_auth(conn, "CONNECT", host_port, TRUE);
free(host_port);
if(!result) {
char *host = NULL;
const char *proxyconn="";
const char *useragent="";
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
const char *http = (conn->http_proxy.proxytype == CURLPROXY_HTTP_1_0) ?
"1.0" : "1.1";
bool ipv6_ip = conn->bits.ipv6_ip;
char *hostheader;
/* the hostname may be different */
if(hostname != conn->host.name)
ipv6_ip = (strchr(hostname, ':') != NULL);
hostheader= /* host:port with IPv6 support */
aprintf("%s%s%s:%hu", ipv6_ip?"[":"", hostname, ipv6_ip?"]":"",
remote_port);
2012-03-16 15:11:22 -04:00
if(!hostheader) {
Curl_add_buffer_free(req_buffer);
return CURLE_OUT_OF_MEMORY;
2012-03-16 15:11:22 -04:00
}
if(!Curl_checkProxyheaders(conn, "Host:")) {
host = aprintf("Host: %s\r\n", hostheader);
if(!host) {
2012-03-16 15:11:22 -04:00
free(hostheader);
Curl_add_buffer_free(req_buffer);
return CURLE_OUT_OF_MEMORY;
}
}
if(!Curl_checkProxyheaders(conn, "Proxy-Connection:"))
proxyconn = "Proxy-Connection: Keep-Alive\r\n";
if(!Curl_checkProxyheaders(conn, "User-Agent:") &&
data->set.str[STRING_USERAGENT])
useragent = conn->allocptr.uagent;
result =
Curl_add_bufferf(req_buffer,
"CONNECT %s HTTP/%s\r\n"
"%s" /* Host: */
"%s" /* Proxy-Authorization */
"%s" /* User-Agent */
"%s", /* Proxy-Connection */
hostheader,
http,
host?host:"",
conn->allocptr.proxyuserpwd?
conn->allocptr.proxyuserpwd:"",
useragent,
proxyconn);
if(host)
free(host);
free(hostheader);
if(!result)
result = Curl_add_custom_headers(conn, TRUE, req_buffer);
if(!result)
/* CRLF terminate the request */
result = Curl_add_bufferf(req_buffer, "\r\n");
if(!result) {
/* Send the connect request to the proxy */
/* BLOCKING */
result =
Curl_add_buffer_send(req_buffer, conn,
&data->info.request_size, 0, sockindex);
}
req_buffer = NULL;
if(result)
failf(data, "Failed sending CONNECT to proxy");
}
Curl_add_buffer_free(req_buffer);
if(result)
return result;
conn->tunnel_state[sockindex] = TUNNEL_CONNECT;
} /* END CONNECT PHASE */
check = Curl_timeleft(data, NULL, TRUE);
if(check <= 0) {
failf(data, "Proxy CONNECT aborted due to timeout");
return CURLE_RECV_ERROR;
}
if(!blocking) {
if(!Curl_conn_data_pending(conn, sockindex))
/* return so we'll be called again polling-style */
return CURLE_OK;
else {
DEBUGF(infof(data,
"Read response immediately from proxy CONNECT\n"));
}
}
/* at this point, the tunnel_connecting phase is over. */
{ /* READING RESPONSE PHASE */
size_t nread; /* total size read */
int perline; /* count bytes per line */
int keepon=TRUE;
ssize_t gotbytes;
char *ptr;
char *line_start;
ptr = data->state.buffer;
line_start = ptr;
nread = 0;
perline = 0;
while(nread < BUFSIZE && keepon && !error) {
int writetype;
if(Curl_pgrsUpdate(conn))
return CURLE_ABORTED_BY_CALLBACK;
if(ptr >= &data->state.buffer[BUFSIZE]) {
failf(data, "CONNECT response too large!");
return CURLE_RECV_ERROR;
}
check = Curl_timeleft(data, NULL, TRUE);
if(check <= 0) {
failf(data, "Proxy CONNECT aborted due to timeout");
error = SELECT_TIMEOUT; /* already too little time */
break;
}
/* Read one byte at a time to avoid a race condition. Wait at most one
second before looping to ensure continuous pgrsUpdates. */
result = Curl_read(conn, tunnelsocket, ptr, 1, &gotbytes);
if(result == CURLE_AGAIN) {
if(SOCKET_READABLE(tunnelsocket, check<1000L?check:1000) == -1) {
error = SELECT_ERROR;
failf(data, "Proxy CONNECT aborted due to select/poll error");
break;
}
continue;
}
else if(result) {
keepon = FALSE;
break;
}
else if(gotbytes <= 0) {
if(data->set.proxyauth && data->state.authproxy.avail) {
/* proxy auth was requested and there was proxy auth available,
then deem this as "mere" proxy disconnect */
conn->bits.proxy_connect_closed = TRUE;
infof(data, "Proxy CONNECT connection closed\n");
}
else {
error = SELECT_ERROR;
failf(data, "Proxy CONNECT aborted");
}
keepon = FALSE;
break;
}
/* We got a byte of data */
nread++;
if(keepon > TRUE) {
/* This means we are currently ignoring a response-body */
nread = 0; /* make next read start over in the read buffer */
ptr = data->state.buffer;
if(cl) {
/* A Content-Length based body: simply count down the counter
and make sure to break out of the loop when we're done! */
cl--;
if(cl <= 0) {
keepon = FALSE;
break;
}
}
else {
/* chunked-encoded body, so we need to do the chunked dance
properly to know when the end of the body is reached */
CHUNKcode r;
ssize_t tookcareof = 0;
/* now parse the chunked piece of data so that we can
properly tell when the stream ends */
r = Curl_httpchunk_read(conn, ptr, 1, &tookcareof);
if(r == CHUNKE_STOP) {
/* we're done reading chunks! */
infof(data, "chunk reading DONE\n");
keepon = FALSE;
/* we did the full CONNECT treatment, go COMPLETE */
conn->tunnel_state[sockindex] = TUNNEL_COMPLETE;
}
}
continue;
}
perline++; /* amount of bytes in this line so far */
/* if this is not the end of a header line then continue */
if(*ptr != 0x0a) {
ptr++;
continue;
}
/* convert from the network encoding */
result = Curl_convert_from_network(data, line_start, perline);
/* Curl_convert_from_network calls failf if unsuccessful */
if(result)
return result;
/* output debug if that is requested */
if(data->set.verbose)
Curl_debug(data, CURLINFO_HEADER_IN,
line_start, (size_t)perline, conn);
/* send the header to the callback */
writetype = CLIENTWRITE_HEADER;
if(data->set.include_header)
writetype |= CLIENTWRITE_BODY;
result = Curl_client_write(conn, writetype, line_start, perline);
data->info.header_size += (long)perline;
data->req.headerbytecount += (long)perline;
if(result)
return result;
/* Newlines are CRLF, so the CR is ignored as the line isn't
really terminated until the LF comes. Treat a following CR
as end-of-headers as well.*/
if(('\r' == line_start[0]) ||
('\n' == line_start[0])) {
/* end of response-headers from the proxy */
nread = 0; /* make next read start over in the read
buffer */
ptr = data->state.buffer;
if((407 == k->httpcode) && !data->state.authproblem) {
/* If we get a 407 response code with content length
when we have no auth problem, we must ignore the
whole response-body */
keepon = 2;
if(cl) {
infof(data, "Ignore %" CURL_FORMAT_CURL_OFF_T
" bytes of response-body\n", cl);
}
else if(chunked_encoding) {
CHUNKcode r;
infof(data, "Ignore chunked response-body\n");
/* We set ignorebody true here since the chunked
decoder function will acknowledge that. Pay
attention so that this is cleared again when this
function returns! */
k->ignorebody = TRUE;
if(line_start[1] == '\n') {
/* this can only be a LF if the letter at index 0
was a CR */
line_start++;
}
/* now parse the chunked piece of data so that we can
properly tell when the stream ends */
r = Curl_httpchunk_read(conn, line_start + 1, 1, &gotbytes);
if(r == CHUNKE_STOP) {
/* we're done reading chunks! */
infof(data, "chunk reading DONE\n");
keepon = FALSE;
/* we did the full CONNECT treatment, go to
COMPLETE */
conn->tunnel_state[sockindex] = TUNNEL_COMPLETE;
}
}
else {
/* without content-length or chunked encoding, we
can't keep the connection alive since the close is
the end signal so we bail out at once instead */
keepon = FALSE;
}
}
else
keepon = FALSE;
/* we did the full CONNECT treatment, go to COMPLETE */
conn->tunnel_state[sockindex] = TUNNEL_COMPLETE;
continue;
}
line_start[perline] = 0; /* zero terminate the buffer */
if((checkprefix("WWW-Authenticate:", line_start) &&
(401 == k->httpcode)) ||
(checkprefix("Proxy-authenticate:", line_start) &&
(407 == k->httpcode))) {
bool proxy = (k->httpcode == 407) ? TRUE : FALSE;
char *auth = Curl_copy_header_value(line_start);
if(!auth)
return CURLE_OUT_OF_MEMORY;
result = Curl_http_input_auth(conn, proxy, auth);
free(auth);
if(result)
return result;
}
else if(checkprefix("Content-Length:", line_start)) {
if(k->httpcode/100 == 2) {
/* A server MUST NOT send any Transfer-Encoding or
Content-Length header fields in a 2xx (Successful)
response to CONNECT. (RFC 7231 section 4.3.6) */
failf(data, "Content-Length: in %03d response",
k->httpcode);
return CURLE_RECV_ERROR;
}
cl = curlx_strtoofft(line_start +
strlen("Content-Length:"), NULL, 10);
}
else if(Curl_compareheader(line_start, "Connection:", "close"))
closeConnection = TRUE;
else if(Curl_compareheader(line_start,
"Transfer-Encoding:",
"chunked")) {
if(k->httpcode/100 == 2) {
/* A server MUST NOT send any Transfer-Encoding or
Content-Length header fields in a 2xx (Successful)
response to CONNECT. (RFC 7231 section 4.3.6) */
failf(data, "Transfer-Encoding: in %03d response", k->httpcode);
return CURLE_RECV_ERROR;
}
infof(data, "CONNECT responded chunked\n");
chunked_encoding = TRUE;
/* init our chunky engine */
Curl_httpchunk_init(conn);
}
else if(Curl_compareheader(line_start, "Proxy-Connection:", "close"))
closeConnection = TRUE;
else if(2 == sscanf(line_start, "HTTP/1.%d %d",
&subversion,
&k->httpcode)) {
/* store the HTTP code from the proxy */
data->info.httpproxycode = k->httpcode;
}
perline = 0; /* line starts over here */
ptr = data->state.buffer;
line_start = ptr;
} /* while there's buffer left and loop is requested */
if(Curl_pgrsUpdate(conn))
return CURLE_ABORTED_BY_CALLBACK;
if(error)
return CURLE_RECV_ERROR;
if(data->info.httpproxycode != 200) {
/* Deal with the possibly already received authenticate
headers. 'newurl' is set to a new URL if we must loop. */
result = Curl_http_auth_act(conn);
if(result)
return result;
if(conn->bits.close)
/* the connection has been marked for closure, most likely in the
Curl_http_auth_act() function and thus we can kill it at once
below */
closeConnection = TRUE;
}
if(closeConnection && data->req.newurl) {
/* Connection closed by server. Don't use it anymore */
Curl_closesocket(conn, conn->sock[sockindex]);
conn->sock[sockindex] = CURL_SOCKET_BAD;
break;
}
} /* END READING RESPONSE PHASE */
/* If we are supposed to continue and request a new URL, which basically
* means the HTTP authentication is still going on so if the tunnel
* is complete we start over in INIT state */
if(data->req.newurl &&
(TUNNEL_COMPLETE == conn->tunnel_state[sockindex])) {
conn->tunnel_state[sockindex] = TUNNEL_INIT;
infof(data, "TUNNEL_STATE switched to: %d\n",
conn->tunnel_state[sockindex]);
}
} while(data->req.newurl);
if(200 != data->req.httpcode) {
if(closeConnection && data->req.newurl) {
conn->bits.proxy_connect_closed = TRUE;
infof(data, "Connect me again please\n");
}
else {
free(data->req.newurl);
data->req.newurl = NULL;
/* failure, close this connection to avoid re-use */
streamclose(conn, "proxy CONNECT failure");
Curl_closesocket(conn, conn->sock[sockindex]);
conn->sock[sockindex] = CURL_SOCKET_BAD;
}
/* to back to init state */
conn->tunnel_state[sockindex] = TUNNEL_INIT;
if(conn->bits.proxy_connect_closed)
/* this is not an error, just part of the connection negotiation */
return CURLE_OK;
else {
failf(data, "Received HTTP code %d from proxy after CONNECT",
data->req.httpcode);
return CURLE_RECV_ERROR;
}
}
conn->tunnel_state[sockindex] = TUNNEL_COMPLETE;
/* If a proxy-authorization header was used for the proxy, then we should
make sure that it isn't accidentally used for the document request
after we've connected. So let's free and clear it here. */
Curl_safefree(conn->allocptr.proxyuserpwd);
conn->allocptr.proxyuserpwd = NULL;
data->state.authproxy.done = TRUE;
infof(data, "Proxy replied OK to CONNECT request\n");
data->req.ignorebody = FALSE; /* put it (back) to non-ignore state */
conn->bits.rewindaftersend = FALSE; /* make sure this isn't set for the
document request */
return CURLE_OK;
}
#endif /* CURL_DISABLE_PROXY */