1
0
mirror of https://github.com/moparisthebest/curl synced 2025-01-12 06:28:04 -05:00
curl/lib/vtls/axtls.c

743 lines
24 KiB
C
Raw Normal View History

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) 2010, DirecTV, Contact: Eric Hu, <ehu@directv.com>.
* Copyright (C) 2010 - 2017, Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.haxx.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
***************************************************************************/
/*
* Source file for all axTLS-specific code for the TLS/SSL layer. No code
* but vtls.c should ever call or use these functions.
*/
build: fix circular header inclusion with other packages This commit renames lib/setup.h to lib/curl_setup.h and renames lib/setup_once.h to lib/curl_setup_once.h. Removes the need and usage of a header inclusion guard foreign to libcurl. [1] Removes the need and presence of an alarming notice we carried in old setup_once.h [2] ---------------------------------------- 1 - lib/setup_once.h used __SETUP_ONCE_H macro as header inclusion guard up to commit ec691ca3 which changed this to HEADER_CURL_SETUP_ONCE_H, this single inclusion guard is enough to ensure that inclusion of lib/setup_once.h done from lib/setup.h is only done once. Additionally lib/setup.h has always used __SETUP_ONCE_H macro to protect inclusion of setup_once.h even after commit ec691ca3, this was to avoid a circular header inclusion triggered when building a c-ares enabled version with c-ares sources available which also has a setup_once.h header. Commit ec691ca3 exposes the real nature of __SETUP_ONCE_H usage in lib/setup.h, it is a header inclusion guard foreign to libcurl belonging to c-ares's setup_once.h The renaming this commit does, fixes the circular header inclusion, and as such removes the need and usage of a header inclusion guard foreign to libcurl. Macro __SETUP_ONCE_H no longer used in libcurl. 2 - Due to the circular interdependency of old lib/setup_once.h and the c-ares setup_once.h header, old file lib/setup_once.h has carried back from 2006 up to now days an alarming and prominent notice about the need of keeping libcurl's and c-ares's setup_once.h in sync. Given that this commit fixes the circular interdependency, the need and presence of mentioned notice is removed. All mentioned interdependencies come back from now old days when the c-ares project lived inside a curl subdirectory. This commit removes last traces of such fact.
2013-01-06 13:06:49 -05:00
#include "curl_setup.h"
#ifdef USE_AXTLS
#include <axTLS/config.h>
#include <axTLS/ssl.h>
#include "axtls.h"
#include "sendf.h"
#include "inet_pton.h"
2013-12-25 05:20:39 -05:00
#include "vtls.h"
#include "parsedate.h"
#include "connect.h" /* for the connect timeout */
#include "select.h"
#include "curl_printf.h"
#include "hostcheck.h"
2013-06-12 04:36:31 -04:00
#include <unistd.h>
/* The last #include files should be: */
#include "curl_memory.h"
#include "memdebug.h"
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
struct ssl_backend_data {
SSL_CTX* ssl_ctx;
SSL* ssl;
};
#define BACKEND connssl->backend
static CURLcode map_error_to_curl(int axtls_err)
{
switch(axtls_err) {
case SSL_ERROR_NOT_SUPPORTED:
case SSL_ERROR_INVALID_VERSION:
case -70: /* protocol version alert from server */
return CURLE_UNSUPPORTED_PROTOCOL;
break;
case SSL_ERROR_NO_CIPHER:
return CURLE_SSL_CIPHER;
break;
case SSL_ERROR_BAD_CERTIFICATE: /* this may be bad server cert too */
case SSL_ERROR_NO_CERT_DEFINED:
case -42: /* bad certificate alert from server */
case -43: /* unsupported cert alert from server */
case -44: /* cert revoked alert from server */
case -45: /* cert expired alert from server */
case -46: /* cert unknown alert from server */
return CURLE_SSL_CERTPROBLEM;
break;
case SSL_X509_ERROR(X509_NOT_OK):
case SSL_X509_ERROR(X509_VFY_ERROR_NO_TRUSTED_CERT):
case SSL_X509_ERROR(X509_VFY_ERROR_BAD_SIGNATURE):
case SSL_X509_ERROR(X509_VFY_ERROR_NOT_YET_VALID):
case SSL_X509_ERROR(X509_VFY_ERROR_EXPIRED):
case SSL_X509_ERROR(X509_VFY_ERROR_SELF_SIGNED):
case SSL_X509_ERROR(X509_VFY_ERROR_INVALID_CHAIN):
case SSL_X509_ERROR(X509_VFY_ERROR_UNSUPPORTED_DIGEST):
case SSL_X509_ERROR(X509_INVALID_PRIV_KEY):
return CURLE_PEER_FAILED_VERIFICATION;
break;
case -48: /* unknown ca alert from server */
return CURLE_SSL_CACERT;
break;
case -49: /* access denied alert from server */
return CURLE_REMOTE_ACCESS_DENIED;
break;
case SSL_ERROR_CONN_LOST:
case SSL_ERROR_SOCK_SETUP_FAILURE:
case SSL_ERROR_INVALID_HANDSHAKE:
case SSL_ERROR_INVALID_PROT_MSG:
case SSL_ERROR_INVALID_HMAC:
case SSL_ERROR_INVALID_SESSION:
case SSL_ERROR_INVALID_KEY: /* it's too bad this doesn't map better */
case SSL_ERROR_FINISHED_INVALID:
case SSL_ERROR_NO_CLIENT_RENOG:
default:
return CURLE_SSL_CONNECT_ERROR;
break;
}
}
static Curl_recv axtls_recv;
static Curl_send axtls_send;
2013-06-12 04:36:31 -04:00
static void free_ssl_structs(struct ssl_connect_data *connssl)
{
if(BACKEND->ssl) {
ssl_free(BACKEND->ssl);
BACKEND->ssl = NULL;
}
if(BACKEND->ssl_ctx) {
ssl_ctx_free(BACKEND->ssl_ctx);
BACKEND->ssl_ctx = NULL;
}
}
/*
2013-06-12 04:36:31 -04:00
* For both blocking and non-blocking connects, this function sets up the
* ssl context and state. This function is called after the TCP connect
* has completed.
*/
2013-06-12 04:36:31 -04:00
static CURLcode connect_prep(struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct Curl_easy *data = conn->data;
SSL_CTX *ssl_ctx;
SSL *ssl = NULL;
int cert_types[] = {SSL_OBJ_X509_CERT, SSL_OBJ_PKCS12, 0};
int key_types[] = {SSL_OBJ_RSA_KEY, SSL_OBJ_PKCS8, SSL_OBJ_PKCS12, 0};
int i, ssl_fcn_return;
2013-06-12 04:36:31 -04:00
/* Assuming users will not compile in custom key/cert to axTLS.
* Also, even for blocking connects, use axTLS non-blocking feature.
*/
uint32_t client_option = SSL_NO_DEFAULT_KEY |
SSL_SERVER_VERIFY_LATER |
SSL_CONNECT_IN_PARTS;
if(connssl->state == ssl_connection_complete)
/* to make us tolerant against being called more than once for the
same connection */
return CURLE_OK;
if(SSL_CONN_CONFIG(version_max) != CURL_SSLVERSION_MAX_NONE) {
failf(data, "axtls does not support CURL_SSLVERSION_MAX");
return CURLE_SSL_CONNECT_ERROR;
}
/* axTLS only supports TLSv1 */
/* check to see if we've been told to use an explicit SSL/TLS version */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
switch(SSL_CONN_CONFIG(version)) {
case CURL_SSLVERSION_DEFAULT:
case CURL_SSLVERSION_TLSv1:
break;
default:
failf(data, "axTLS only supports TLS 1.0 and 1.1, "
"and it cannot be specified which one to use");
return CURLE_SSL_CONNECT_ERROR;
}
#ifdef AXTLSDEBUG
client_option |= SSL_DISPLAY_STATES | SSL_DISPLAY_RSA | SSL_DISPLAY_CERTS;
#endif /* AXTLSDEBUG */
/* Allocate an SSL_CTX struct */
ssl_ctx = ssl_ctx_new(client_option, SSL_DEFAULT_CLNT_SESS);
if(ssl_ctx == NULL) {
failf(data, "unable to create client SSL context");
return CURLE_SSL_CONNECT_ERROR;
}
BACKEND->ssl_ctx = ssl_ctx;
BACKEND->ssl = NULL;
2013-06-12 04:36:31 -04:00
/* Load the trusted CA cert bundle file */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_CONN_CONFIG(CAfile)) {
if(ssl_obj_load(ssl_ctx, SSL_OBJ_X509_CACERT,
SSL_CONN_CONFIG(CAfile), NULL) != SSL_OK) {
infof(data, "error reading ca cert file %s \n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_CONN_CONFIG(CAfile));
if(SSL_CONN_CONFIG(verifypeer)) {
return CURLE_SSL_CACERT_BADFILE;
}
}
else
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
infof(data, "found certificates in %s\n", SSL_CONN_CONFIG(CAfile));
}
/* gtls.c tasks we're skipping for now:
* 1) certificate revocation list checking
* 2) dns name assignment to host
* 3) set protocol priority. axTLS is TLSv1 only, so can probably ignore
* 4) set certificate priority. axTLS ignores type and sends certs in
* order added. can probably ignore this.
*/
/* Load client certificate */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_SET_OPTION(cert)) {
i = 0;
/* Instead of trying to analyze cert type here, let axTLS try them all. */
while(cert_types[i] != 0) {
ssl_fcn_return = ssl_obj_load(ssl_ctx, cert_types[i],
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(cert), NULL);
if(ssl_fcn_return == SSL_OK) {
infof(data, "successfully read cert file %s \n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(cert));
break;
}
i++;
}
/* Tried all cert types, none worked. */
if(cert_types[i] == 0) {
failf(data, "%s is not x509 or pkcs12 format",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(cert));
return CURLE_SSL_CERTPROBLEM;
}
}
/* Load client key.
If a pkcs12 file successfully loaded a cert, then there's nothing to do
because the key has already been loaded. */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_SET_OPTION(key) && cert_types[i] != SSL_OBJ_PKCS12) {
i = 0;
/* Instead of trying to analyze key type here, let axTLS try them all. */
while(key_types[i] != 0) {
ssl_fcn_return = ssl_obj_load(ssl_ctx, key_types[i],
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(key), NULL);
if(ssl_fcn_return == SSL_OK) {
infof(data, "successfully read key file %s \n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(key));
break;
}
i++;
}
/* Tried all key types, none worked. */
if(key_types[i] == 0) {
failf(data, "Failure: %s is not a supported key file",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
SSL_SET_OPTION(key));
return CURLE_SSL_CONNECT_ERROR;
}
}
/* gtls.c does more here that is being left out for now
* 1) set session credentials. can probably ignore since axtls puts this
* info in the ssl_ctx struct
* 2) setting up callbacks. these seem gnutls specific
*/
if(SSL_SET_OPTION(primary.sessionid)) {
const uint8_t *ssl_sessionid;
size_t ssl_idsize;
/* In axTLS, handshaking happens inside ssl_client_new. */
Curl_ssl_sessionid_lock(conn);
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(!Curl_ssl_getsessionid(conn, (void **) &ssl_sessionid, &ssl_idsize,
sockindex)) {
/* we got a session id, use it! */
infof(data, "SSL re-using session ID\n");
ssl = ssl_client_new(ssl_ctx, conn->sock[sockindex],
ssl_sessionid, (uint8_t)ssl_idsize, NULL);
}
Curl_ssl_sessionid_unlock(conn);
}
if(!ssl)
ssl = ssl_client_new(ssl_ctx, conn->sock[sockindex], NULL, 0, NULL);
BACKEND->ssl = ssl;
2013-06-12 04:36:31 -04:00
return CURLE_OK;
}
static void Curl_axtls_close(struct connectdata *conn, int sockindex)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
infof(conn->data, " Curl_axtls_close\n");
/* line from openssl.c: (void)SSL_shutdown(BACKEND->ssl);
axTLS compat layer does nothing for SSL_shutdown */
/* The following line is from openssl.c. There seems to be no axTLS
equivalent. ssl_free and ssl_ctx_free close things.
SSL_set_connect_state(connssl->handle); */
free_ssl_structs(connssl);
}
2013-06-12 04:36:31 -04:00
/*
* For both blocking and non-blocking connects, this function finalizes the
* SSL connection.
*/
static CURLcode connect_finish(struct connectdata *conn, int sockindex)
{
struct Curl_easy *data = conn->data;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
SSL *ssl = BACKEND->ssl;
2013-06-12 04:36:31 -04:00
const char *peer_CN;
uint32_t dns_altname_index;
const char *dns_altname;
int8_t found_subject_alt_names = 0;
int8_t found_subject_alt_name_matching_conn = 0;
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
const char * const hostname = SSL_IS_PROXY() ? conn->http_proxy.host.name :
conn->host.name;
const char * const dispname = SSL_IS_PROXY() ?
conn->http_proxy.host.dispname : conn->host.dispname;
/* Here, gtls.c gets the peer certificates and fails out depending on
* settings in "data." axTLS api doesn't have get cert chain fcn, so omit?
*/
/* Verify server's certificate */
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_CONN_CONFIG(verifypeer)) {
if(ssl_verify_cert(ssl) != SSL_OK) {
Curl_axtls_close(conn, sockindex);
failf(data, "server cert verify failed");
2013-06-12 04:36:31 -04:00
return CURLE_PEER_FAILED_VERIFICATION;
}
}
else
infof(data, "\t server certificate verification SKIPPED\n");
/* Here, gtls.c does issuer verification. axTLS has no straightforward
* equivalent, so omitting for now.*/
/* Here, gtls.c does the following
* 1) x509 hostname checking per RFC2818. axTLS doesn't support this, but
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
* it seems useful. This is now implemented, by Oscar Koeroo
* 2) checks cert validity based on time. axTLS does this in ssl_verify_cert
* 3) displays a bunch of cert information. axTLS doesn't support most of
* this, but a couple fields are available.
*/
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
/* There is no (DNS) Altnames count in the version 1.4.8 API. There is a
risk of an inifite loop */
for(dns_altname_index = 0; ; dns_altname_index++) {
dns_altname = ssl_get_cert_subject_alt_dnsname(ssl, dns_altname_index);
if(dns_altname == NULL) {
break;
}
found_subject_alt_names = 1;
infof(data, "\tComparing subject alt name DNS with hostname: %s <-> %s\n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
dns_altname, hostname);
if(Curl_cert_hostcheck(dns_altname, hostname)) {
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
found_subject_alt_name_matching_conn = 1;
break;
}
}
/* RFC2818 checks */
if(found_subject_alt_names && !found_subject_alt_name_matching_conn) {
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_CONN_CONFIG(verifyhost)) {
/* Break connection ! */
Curl_axtls_close(conn, sockindex);
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
failf(data, "\tsubjectAltName(s) do not match %s\n", dispname);
return CURLE_PEER_FAILED_VERIFICATION;
}
else
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
infof(data, "\tsubjectAltName(s) do not match %s\n", dispname);
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
}
else if(found_subject_alt_names == 0) {
/* Per RFC2818, when no Subject Alt Names were available, examine the peer
CN as a legacy fallback */
peer_CN = ssl_get_cert_dn(ssl, SSL_X509_CERT_COMMON_NAME);
if(peer_CN == NULL) {
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(SSL_CONN_CONFIG(verifyhost)) {
Curl_axtls_close(conn, sockindex);
failf(data, "unable to obtain common name from peer certificate");
return CURLE_PEER_FAILED_VERIFICATION;
}
else
infof(data, "unable to obtain common name from peer certificate");
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
}
else {
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(!Curl_cert_hostcheck((const char *)peer_CN, hostname)) {
if(SSL_CONN_CONFIG(verifyhost)) {
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
/* Break connection ! */
Curl_axtls_close(conn, sockindex);
failf(data, "\tcommon name \"%s\" does not match \"%s\"\n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
peer_CN, dispname);
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
return CURLE_PEER_FAILED_VERIFICATION;
}
else
infof(data, "\tcommon name \"%s\" does not match \"%s\"\n",
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
peer_CN, dispname);
SSL: Several SSL-backend related fixes axTLS: This will make the axTLS backend perform the RFC2818 checks, honoring the VERIFYHOST setting similar to the OpenSSL backend. Generic for OpenSSL and axTLS: Move the hostcheck and cert_hostcheck functions from the lib/ssluse.c files to make them genericly available for both the OpenSSL, axTLS and other SSL backends. They are now in the new lib/hostcheck.c file. CyaSSL: CyaSSL now also has the RFC2818 checks enabled by default. There is a limitation that the verifyhost can not be enabled exclusively on the Subject CN field comparison. This SSL backend will thus behave like the NSS and the GnuTLS (meaning: RFC2818 ok, or bust). In other words: setting verifyhost to 0 or 1 will disable the Subject Alt Names checks too. Schannel: Updated the schannel information messages: Split the IP address usage message from the verifyhost setting and changed the message about disabling SNI (Server Name Indication, used in HTTP virtual hosting) into a message stating that the Subject Alternative Names checks are being disabled when verifyhost is set to 0 or 1. As a side effect of switching off the RFC2818 related servername checks with SCH_CRED_NO_SERVERNAME_CHECK (http://msdn.microsoft.com/en-us/library/aa923430.aspx) the SNI feature is being disabled. This effect is not documented in MSDN, but Wireshark output clearly shows the effect (details on the libcurl maillist). PolarSSL: Fix the prototype change in PolarSSL of ssl_set_session() and the move of the peer_cert from the ssl_context to the ssl_session. Found this change in the PolarSSL SVN between r1316 and r1317 where the POLARSSL_VERSION_NUMBER was at 0x01010100. But to accommodate the Ubuntu PolarSSL version 1.1.4 the check is to discriminate between lower then PolarSSL version 1.2.0 and 1.2.0 and higher. Note: The PolarSSL SVN trunk jumped from version 1.1.1 to 1.2.0. Generic: All the SSL backends are fixed and checked to work with the ssl.verifyhost as a boolean, which is an internal API change.
2012-11-02 21:06:51 -04:00
}
}
}
/* General housekeeping */
connssl->state = ssl_connection_complete;
conn->recv[sockindex] = axtls_recv;
conn->send[sockindex] = axtls_send;
/* Put our freshly minted SSL session in cache */
if(SSL_SET_OPTION(primary.sessionid)) {
const uint8_t *ssl_sessionid = ssl_get_session_id(ssl);
size_t ssl_idsize = ssl_get_session_id_size(ssl);
Curl_ssl_sessionid_lock(conn);
proxy: Support HTTPS proxy and SOCKS+HTTP(s) * HTTPS proxies: An HTTPS proxy receives all transactions over an SSL/TLS connection. Once a secure connection with the proxy is established, the user agent uses the proxy as usual, including sending CONNECT requests to instruct the proxy to establish a [usually secure] TCP tunnel with an origin server. HTTPS proxies protect nearly all aspects of user-proxy communications as opposed to HTTP proxies that receive all requests (including CONNECT requests) in vulnerable clear text. With HTTPS proxies, it is possible to have two concurrent _nested_ SSL/TLS sessions: the "outer" one between the user agent and the proxy and the "inner" one between the user agent and the origin server (through the proxy). This change adds supports for such nested sessions as well. A secure connection with a proxy requires its own set of the usual SSL options (their actual descriptions differ and need polishing, see TODO): --proxy-cacert FILE CA certificate to verify peer against --proxy-capath DIR CA directory to verify peer against --proxy-cert CERT[:PASSWD] Client certificate file and password --proxy-cert-type TYPE Certificate file type (DER/PEM/ENG) --proxy-ciphers LIST SSL ciphers to use --proxy-crlfile FILE Get a CRL list in PEM format from the file --proxy-insecure Allow connections to proxies with bad certs --proxy-key KEY Private key file name --proxy-key-type TYPE Private key file type (DER/PEM/ENG) --proxy-pass PASS Pass phrase for the private key --proxy-ssl-allow-beast Allow security flaw to improve interop --proxy-sslv2 Use SSLv2 --proxy-sslv3 Use SSLv3 --proxy-tlsv1 Use TLSv1 --proxy-tlsuser USER TLS username --proxy-tlspassword STRING TLS password --proxy-tlsauthtype STRING TLS authentication type (default SRP) All --proxy-foo options are independent from their --foo counterparts, except --proxy-crlfile which defaults to --crlfile and --proxy-capath which defaults to --capath. Curl now also supports %{proxy_ssl_verify_result} --write-out variable, similar to the existing %{ssl_verify_result} variable. Supported backends: OpenSSL, GnuTLS, and NSS. * A SOCKS proxy + HTTP/HTTPS proxy combination: If both --socks* and --proxy options are given, Curl first connects to the SOCKS proxy and then connects (through SOCKS) to the HTTP or HTTPS proxy. TODO: Update documentation for the new APIs and --proxy-* options. Look for "Added in 7.XXX" marks.
2016-11-16 12:49:15 -05:00
if(Curl_ssl_addsessionid(conn, (void *) ssl_sessionid, ssl_idsize,
sockindex) != CURLE_OK)
infof(data, "failed to add session to cache\n");
Curl_ssl_sessionid_unlock(conn);
}
return CURLE_OK;
}
2013-06-12 04:36:31 -04:00
/*
* Use axTLS's non-blocking connection feature to open an SSL connection.
* This is called after a TCP connection is already established.
*/
static CURLcode Curl_axtls_connect_nonblocking(struct connectdata *conn,
int sockindex, bool *done)
2013-06-12 04:36:31 -04:00
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
2013-06-12 04:36:31 -04:00
CURLcode conn_step;
int ssl_fcn_return;
int i;
2013-06-12 04:36:31 -04:00
*done = FALSE;
/* connectdata is calloc'd and connecting_state is only changed in this
function, so this is safe, as the state is effectively initialized. */
if(connssl->connecting_state == ssl_connect_1) {
2013-06-12 04:36:31 -04:00
conn_step = connect_prep(conn, sockindex);
if(conn_step != CURLE_OK) {
Curl_axtls_close(conn, sockindex);
return conn_step;
}
connssl->connecting_state = ssl_connect_2;
2013-06-12 04:36:31 -04:00
}
if(connssl->connecting_state == ssl_connect_2) {
2013-06-12 04:36:31 -04:00
/* Check to make sure handshake was ok. */
if(ssl_handshake_status(BACKEND->ssl) != SSL_OK) {
/* Loop to perform more work in between sleeps. This is work around the
fact that axtls does not expose any knowledge about when work needs
to be performed. This can save ~25% of time on SSL handshakes. */
for(i = 0; i<5; i++) {
ssl_fcn_return = ssl_read(BACKEND->ssl, NULL);
if(ssl_fcn_return < 0) {
Curl_axtls_close(conn, sockindex);
ssl_display_error(ssl_fcn_return); /* goes to stdout. */
return map_error_to_curl(ssl_fcn_return);
}
return CURLE_OK;
2013-06-12 04:36:31 -04:00
}
}
infof(conn->data, "handshake completed successfully\n");
connssl->connecting_state = ssl_connect_3;
2013-06-12 04:36:31 -04:00
}
if(connssl->connecting_state == ssl_connect_3) {
2013-06-12 04:36:31 -04:00
conn_step = connect_finish(conn, sockindex);
if(conn_step != CURLE_OK) {
Curl_axtls_close(conn, sockindex);
return conn_step;
}
/* Reset connect state */
connssl->connecting_state = ssl_connect_1;
2013-06-12 04:36:31 -04:00
*done = TRUE;
return CURLE_OK;
}
/* Unrecognized state. Things are very bad. */
connssl->state = ssl_connection_none;
connssl->connecting_state = ssl_connect_1;
2013-06-12 04:36:31 -04:00
/* Return value perhaps not strictly correct, but distinguishes the issue.*/
return CURLE_BAD_FUNCTION_ARGUMENT;
}
/*
* This function is called after the TCP connect has completed. Setup the TLS
* layer and do all necessary magic for a blocking connect.
*/
static CURLcode Curl_axtls_connect(struct connectdata *conn, int sockindex)
2013-06-12 04:36:31 -04:00
{
struct Curl_easy *data = conn->data;
2013-06-12 04:36:31 -04:00
CURLcode conn_step = connect_prep(conn, sockindex);
int ssl_fcn_return;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
SSL *ssl = BACKEND->ssl;
long timeout_ms;
2013-06-12 04:36:31 -04:00
if(conn_step != CURLE_OK) {
Curl_axtls_close(conn, sockindex);
return conn_step;
}
/* Check to make sure handshake was ok. */
while(ssl_handshake_status(ssl) != SSL_OK) {
/* check allowed time left */
timeout_ms = Curl_timeleft(data, NULL, TRUE);
if(timeout_ms < 0) {
/* no need to continue if time already is up */
failf(data, "SSL connection timeout");
return CURLE_OPERATION_TIMEDOUT;
}
2013-06-12 04:36:31 -04:00
ssl_fcn_return = ssl_read(ssl, NULL);
if(ssl_fcn_return < 0) {
Curl_axtls_close(conn, sockindex);
ssl_display_error(ssl_fcn_return); /* goes to stdout. */
return map_error_to_curl(ssl_fcn_return);
}
/* TODO: avoid polling */
Curl_wait_ms(10);
2013-06-12 04:36:31 -04:00
}
infof(conn->data, "handshake completed successfully\n");
2013-06-12 04:36:31 -04:00
conn_step = connect_finish(conn, sockindex);
if(conn_step != CURLE_OK) {
Curl_axtls_close(conn, sockindex);
return conn_step;
}
return CURLE_OK;
}
/* return number of sent (non-SSL) bytes */
static ssize_t axtls_send(struct connectdata *conn,
int sockindex,
const void *mem,
size_t len,
CURLcode *err)
{
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
/* ssl_write() returns 'int' while write() and send() returns 'size_t' */
int rc = ssl_write(BACKEND->ssl, mem, (int)len);
infof(conn->data, " axtls_send\n");
2016-04-03 14:28:34 -04:00
if(rc < 0) {
*err = map_error_to_curl(rc);
rc = -1; /* generic error code for send failure */
}
*err = CURLE_OK;
return rc;
}
/*
* This function is called to shut down the SSL layer but keep the
* socket open (CCC - Clear Command Channel)
*/
static int Curl_axtls_shutdown(struct connectdata *conn, int sockindex)
{
/* Outline taken from openssl.c since functions are in axTLS compat layer.
axTLS's error set is much smaller, so a lot of error-handling was removed.
*/
int retval = 0;
struct ssl_connect_data *connssl = &conn->ssl[sockindex];
struct Curl_easy *data = conn->data;
2013-06-12 04:36:31 -04:00
uint8_t *buf;
ssize_t nread;
infof(conn->data, " Curl_axtls_shutdown\n");
/* This has only been tested on the proftpd server, and the mod_tls code
sends a close notify alert without waiting for a close notify alert in
response. Thus we wait for a close notify alert from the server, but
we do not send one. Let's hope other servers do the same... */
/* axTLS compat layer does nothing for SSL_shutdown, so we do nothing too
if(data->set.ftp_ccc == CURLFTPSSL_CCC_ACTIVE)
(void)SSL_shutdown(BACKEND->ssl);
*/
if(BACKEND->ssl) {
int what = SOCKET_READABLE(conn->sock[sockindex], SSL_SHUTDOWN_TIMEOUT);
if(what > 0) {
/* Something to read, let's do it and hope that it is the close
2013-06-12 04:36:31 -04:00
notify alert from the server. buf is managed internally by
axTLS and will be released upon calling ssl_free via
free_ssl_structs. */
nread = (ssize_t)ssl_read(BACKEND->ssl, &buf);
if(nread < SSL_OK) {
failf(data, "close notify alert not received during shutdown");
retval = -1;
}
}
else if(0 == what) {
/* timeout */
failf(data, "SSL shutdown timeout");
}
else {
/* anything that gets here is fatally bad */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
retval = -1;
}
2013-06-12 04:36:31 -04:00
free_ssl_structs(connssl);
}
return retval;
}
static ssize_t axtls_recv(struct connectdata *conn, /* connection data */
int num, /* socketindex */
char *buf, /* store read data here */
size_t buffersize, /* max amount to read */
CURLcode *err)
{
struct ssl_connect_data *connssl = &conn->ssl[num];
ssize_t ret = 0;
2013-06-12 04:36:31 -04:00
uint8_t *read_buf;
infof(conn->data, " axtls_recv\n");
2013-06-12 04:36:31 -04:00
*err = CURLE_OK;
if(connssl) {
ret = ssl_read(BACKEND->ssl, &read_buf);
2013-06-12 04:36:31 -04:00
if(ret > SSL_OK) {
/* ssl_read returns SSL_OK if there is more data to read, so if it is
larger, then all data has been read already. */
memcpy(buf, read_buf,
(size_t)ret > buffersize ? buffersize : (size_t)ret);
}
else if(ret == SSL_OK) {
/* more data to be read, signal caller to call again */
*err = CURLE_AGAIN;
ret = -1;
}
else if(ret == -3) {
/* With patched axTLS, SSL_CLOSE_NOTIFY=-3. Hard-coding until axTLS
team approves proposed fix. */
Curl_axtls_close(conn, num);
}
2013-06-12 04:36:31 -04:00
else {
failf(conn->data, "axTLS recv error (%d)", ret);
*err = map_error_to_curl((int) ret);
2013-06-12 04:36:31 -04:00
ret = -1;
}
}
return ret;
}
/*
* Return codes:
* 1 means the connection is still in place
* 0 means the connection has been closed
* -1 means the connection status is unknown
*/
static int Curl_axtls_check_cxn(struct connectdata *conn)
{
/* openssl.c line:
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
rc = SSL_peek(conn->ssl[FIRSTSOCKET].backend->ssl, (void*)&buf, 1);
axTLS compat layer always returns the last argument, so connection is
always alive? */
infof(conn->data, " Curl_axtls_check_cxn\n");
return 1; /* connection still in place */
}
static void Curl_axtls_session_free(void *ptr)
{
(void)ptr;
/* free the ID */
/* both openssl.c and gtls.c do something here, but axTLS's OpenSSL
compatibility layer does nothing, so we do nothing too. */
}
static size_t Curl_axtls_version(char *buffer, size_t size)
{
return snprintf(buffer, size, "axTLS/%s", ssl_version());
}
static CURLcode Curl_axtls_random(struct Curl_easy *data,
unsigned char *entropy, size_t length)
{
static bool ssl_seeded = FALSE;
(void)data;
if(!ssl_seeded) {
ssl_seeded = TRUE;
/* Initialize the seed if not already done. This call is not exactly thread
* safe (and neither is the ssl_seeded check), but the worst effect of a
* race condition is that some global resources will leak. */
RNG_initialize();
}
get_random((int)length, entropy);
return CURLE_OK;
}
static void *Curl_axtls_get_internals(struct ssl_connect_data *connssl,
CURLINFO info UNUSED_PARAM)
{
(void)info;
return BACKEND->ssl;
}
const struct Curl_ssl Curl_ssl_axtls = {
{ CURLSSLBACKEND_AXTLS, "axtls" }, /* info */
0, /* have_ca_path */
0, /* have_certinfo */
0, /* have_pinnedpubkey */
0, /* have_ssl_ctx */
0, /* support_https_proxy */
vtls: encapsulate SSL backend-specific data So far, all of the SSL backends' private data has been declared as part of the ssl_connect_data struct, in one big #if .. #elif .. #endif block. This can only work as long as the SSL backend is a compile-time option, something we want to change in the next commits. Therefore, let's encapsulate the exact data needed by each SSL backend into a private struct, and let's avoid bleeding any SSL backend-specific information into urldata.h. This is also necessary to allow multiple SSL backends to be compiled in at the same time, as e.g. OpenSSL's and CyaSSL's headers cannot be included in the same .c file. To avoid too many malloc() calls, we simply append the private structs to the connectdata struct in allocate_conn(). This requires us to take extra care of alignment issues: struct fields often need to be aligned on certain boundaries e.g. 32-bit values need to be stored at addresses that divide evenly by 4 (= 32 bit / 8 bit-per-byte). We do that by assuming that no SSL backend's private data contains any fields that need to be aligned on boundaries larger than `long long` (typically 64-bit) would need. Under this assumption, we simply add a dummy field of type `long long` to the `struct connectdata` struct. This field will never be accessed but acts as a placeholder for the four instances of ssl_backend_data instead. the size of each ssl_backend_data struct is stored in the SSL backend-specific metadata, to allow allocate_conn() to know how much extra space to allocate, and how to initialize the ssl[sockindex]->backend and proxy_ssl[sockindex]->backend pointers. This would appear to be a little complicated at first, but is really necessary to encapsulate the private data of each SSL backend correctly. And we need to encapsulate thusly if we ever want to allow selecting CyaSSL and OpenSSL at runtime, as their headers cannot be included within the same .c file (there are just too many conflicting definitions and declarations for that). Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2017-07-28 16:09:35 -04:00
sizeof(struct ssl_backend_data),
/*
* axTLS has no global init. Everything is done through SSL and SSL_CTX
* structs stored in connectdata structure.
*/
Curl_none_init, /* init */
/* axTLS has no global cleanup. */
Curl_none_cleanup, /* cleanup */
Curl_axtls_version, /* version */
Curl_axtls_check_cxn, /* check_cxn */
Curl_axtls_shutdown, /* shutdown */
Curl_none_data_pending, /* data_pending */
Curl_axtls_random, /* random */
Curl_none_cert_status_request, /* cert_status_request */
Curl_axtls_connect, /* connect */
Curl_axtls_connect_nonblocking, /* connect_nonblocking */
Curl_axtls_get_internals, /* get_internals */
Curl_axtls_close, /* close_one */
Curl_none_close_all, /* close_all */
Curl_axtls_session_free, /* session_free */
Curl_none_set_engine, /* set_engine */
Curl_none_set_engine_default, /* set_engine_default */
Curl_none_engines_list, /* engines_list */
Curl_none_false_start, /* false_start */
Curl_none_md5sum, /* md5sum */
NULL /* sha256sum */
};
#endif /* USE_AXTLS */