1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-24 01:52:23 -05:00
USBHost_t36/memory.cpp
Kurt Eckhardt 4e2ea2d96e String buffers - Devices contribute buffers
instead of having each HUB have 7 buffers, which can eat up space.  We have each main object contribute currently one string buffer, which than when we initialize a Device_t we try to allocate one for it, likewise we release it when the Device is released.

Hopefully less memory needed.

Also updated such that the HIDInput classes can not retrieve these strings.

Changed test program to now also have list of HIDInput objects and when I detect a new one, I again print out info on it...
2017-10-19 14:57:52 -07:00

163 lines
5.4 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
// Memory allocation for Device_t, Pipe_t and Transfer_t structures.
//
// To provide an Arduino-friendly experience, the memory allocation of
// these item is primarily done by the instances of device driver objects,
// which are typically created as static objects near the beginning of
// the Arduino sketch. Static allocation allows Arduino's memory usage
// summary to accurately show the amount of RAM this library is using.
// Users can choose which devices they wish to support and how many of
// each by creating more object instances.
//
// Device driver objects "contribute" their copies of these structures.
// When ehci.cpp allocates Pipe_t and Transfer_t, or enumeration.cpp
// allocates Device_t, the memory actually comes from these structures
// physically located within the device driver instances. The usage
// model looks like traditional malloc/free dynamic memory on the heap,
// but in fact it's a simple memory pool from the drivers.
//
// Timing is deterministic and fast, because each pool allocates only
// a single fixed size object. In theory, each driver should contribute
// the number of items it will use, so we should not ever end up with
// a situation where an item can't be allocated when it's needed. Well,
// unless there's a bug or oversight...
// Lists of "free" memory
static Device_t * free_Device_list = NULL;
static Pipe_t * free_Pipe_list = NULL;
static Transfer_t * free_Transfer_list = NULL;
static strbuf_t * free_strbuf_list = NULL;
// A small amount of non-driver memory, just to get things started
// TODO: is this really necessary? Can these be eliminated, so we
// use only memory from the drivers?
static Device_t memory_Device[1];
static Pipe_t memory_Pipe[1] __attribute__ ((aligned(32)));
static Transfer_t memory_Transfer[4] __attribute__ ((aligned(32)));
void USBHost::init_Device_Pipe_Transfer_memory(void)
{
contribute_Devices(memory_Device, sizeof(memory_Device)/sizeof(Device_t));
contribute_Pipes(memory_Pipe, sizeof(memory_Pipe)/sizeof(Pipe_t));
contribute_Transfers(memory_Transfer, sizeof(memory_Transfer)/sizeof(Transfer_t));
}
Device_t * USBHost::allocate_Device(void)
{
Device_t *device = free_Device_list;
if (device) free_Device_list = *(Device_t **)device;
return device;
}
void USBHost::free_Device(Device_t *device)
{
*(Device_t **)device = free_Device_list;
free_Device_list = device;
}
Pipe_t * USBHost::allocate_Pipe(void)
{
Pipe_t *pipe = free_Pipe_list;
if (pipe) free_Pipe_list = *(Pipe_t **)pipe;
return pipe;
}
void USBHost::free_Pipe(Pipe_t *pipe)
{
*(Pipe_t **)pipe = free_Pipe_list;
free_Pipe_list = pipe;
}
Transfer_t * USBHost::allocate_Transfer(void)
{
Transfer_t *transfer = free_Transfer_list;
if (transfer) free_Transfer_list = *(Transfer_t **)transfer;
return transfer;
}
void USBHost::free_Transfer(Transfer_t *transfer)
{
*(Transfer_t **)transfer = free_Transfer_list;
free_Transfer_list = transfer;
}
strbuf_t * USBHost::allocate_string_buffer(void)
{
strbuf_t *strbuf = free_strbuf_list;
if (strbuf) {
free_strbuf_list = *(strbuf_t **)strbuf;
strbuf->iStrings[strbuf_t::STR_ID_MAN] = 0; // Set indexes into string buffer to say not there...
strbuf->iStrings[strbuf_t::STR_ID_PROD] = 0;
strbuf->iStrings[strbuf_t::STR_ID_SERIAL] = 0;
strbuf->buffer[0] = 0; // have trailing NULL..
}
return strbuf;
}
void USBHost::free_string_buffer(strbuf_t *strbuf)
{
*(strbuf_t **)strbuf = free_strbuf_list;
free_strbuf_list = strbuf;
}
void USBHost::contribute_Devices(Device_t *devices, uint32_t num)
{
Device_t *end = devices + num;
for (Device_t *device = devices ; device < end; device++) {
free_Device(device);
}
}
void USBHost::contribute_Pipes(Pipe_t *pipes, uint32_t num)
{
Pipe_t *end = pipes + num;
for (Pipe_t *pipe = pipes; pipe < end; pipe++) {
free_Pipe(pipe);
}
}
void USBHost::contribute_Transfers(Transfer_t *transfers, uint32_t num)
{
Transfer_t *end = transfers + num;
for (Transfer_t *transfer = transfers ; transfer < end; transfer++) {
free_Transfer(transfer);
}
}
void USBHost::contribute_String_Buffers(strbuf_t *strbufs, uint32_t num)
{
strbuf_t *end = strbufs + num;
for (strbuf_t *str = strbufs ; str < end; str++) {
free_string_buffer(str);
}
}