mirror of
https://github.com/gdsports/USBHost_t36
synced 2024-11-14 21:25:01 -05:00
1274 lines
42 KiB
C++
1274 lines
42 KiB
C++
/* USB EHCI Host for Teensy 3.6
|
|
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "USBHost_t36.h" // Read this header first for key info
|
|
|
|
// All USB EHCI controller hardware access is done from this file's code.
|
|
// Hardware services are made available to the rest of this library by
|
|
// three structures:
|
|
//
|
|
// Pipe_t: Every USB endpoint is accessed by a pipe. new_Pipe()
|
|
// sets up the EHCI to support the pipe/endpoint, and delete_Pipe()
|
|
// removes this configuration.
|
|
//
|
|
// Transfer_t: These are used for all communication. Data transfers
|
|
// are placed into work queues, to be executed by the EHCI in
|
|
// the future. Transfer_t only manages data. The actual data
|
|
// is stored in a separate buffer (usually from a device driver)
|
|
// which is referenced from Transfer_t. All data transfer is queued,
|
|
// never done with blocking functions that wait. When transfers
|
|
// complete, a driver-supplied callback function is called to notify
|
|
// the driver.
|
|
//
|
|
// USBDriverTimer: Some drivers require timers. These allow drivers
|
|
// to share the hardware timer, with each USBDriverTimer object
|
|
// able to schedule a callback function a configurable number of
|
|
// microseconds in the future.
|
|
//
|
|
// In addition to these 3 services, the EHCI interrupt also responds
|
|
// to changes on the main port, creating and deleting the root device.
|
|
// See enumeration.cpp for all device-level code.
|
|
|
|
// Size of the periodic list, in milliseconds. This determines the
|
|
// slowest rate we can poll interrupt endpoints. Each entry uses
|
|
// 12 bytes (4 for a pointer, 8 for bandwidth management).
|
|
// Supported values: 8, 16, 32, 64, 128, 256, 512, 1024
|
|
#define PERIODIC_LIST_SIZE 32
|
|
|
|
// The EHCI periodic schedule, used for interrupt pipes/endpoints
|
|
static uint32_t periodictable[PERIODIC_LIST_SIZE] __attribute__ ((aligned(4096), used));
|
|
static uint8_t uframe_bandwidth[PERIODIC_LIST_SIZE*8];
|
|
|
|
// State of the 1 and only physical USB host port on Teensy 3.6
|
|
static uint8_t port_state;
|
|
#define PORT_STATE_DISCONNECTED 0
|
|
#define PORT_STATE_DEBOUNCE 1
|
|
#define PORT_STATE_RESET 2
|
|
#define PORT_STATE_RECOVERY 3
|
|
#define PORT_STATE_ACTIVE 4
|
|
|
|
// The device currently connected, or NULL when no device
|
|
static Device_t *rootdev=NULL;
|
|
|
|
// List of all queued transfers in the asychronous schedule (control & bulk).
|
|
// When the EHCI completes these transfers, this list is how we locate them
|
|
// in memory.
|
|
static Transfer_t *async_followup_first=NULL;
|
|
static Transfer_t *async_followup_last=NULL;
|
|
|
|
// List of all queued transfers in the asychronous schedule (interrupt endpoints)
|
|
// When the EHCI completes these transfers, this list is how we locate them
|
|
// in memory.
|
|
static Transfer_t *periodic_followup_first=NULL;
|
|
static Transfer_t *periodic_followup_last=NULL;
|
|
|
|
// List of all pending timers. This double linked list is stored in
|
|
// chronological order. Each timer is stored with the number of
|
|
// microseconds which need to elapsed from the prior timer on this
|
|
// list, to allow efficient servicing from the timer interrupt.
|
|
static USBDriverTimer *active_timers=NULL;
|
|
|
|
|
|
static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
|
|
uint32_t pid, uint32_t data01, bool irq);
|
|
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last);
|
|
static void remove_from_async_followup_list(Transfer_t *transfer);
|
|
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last);
|
|
static void remove_from_periodic_followup_list(Transfer_t *transfer);
|
|
|
|
void USBHost::begin()
|
|
{
|
|
// Teensy 3.6 has USB host power controlled by PTE6
|
|
PORTE_PCR6 = PORT_PCR_MUX(1);
|
|
GPIOE_PDDR |= (1<<6);
|
|
GPIOE_PSOR = (1<<6); // turn on USB host power
|
|
delay(10);
|
|
println("sizeof Device = ", sizeof(Device_t));
|
|
println("sizeof Pipe = ", sizeof(Pipe_t));
|
|
println("sizeof Transfer = ", sizeof(Transfer_t));
|
|
if ((sizeof(Pipe_t) & 0x1F) || (sizeof(Transfer_t) & 0x1F)) {
|
|
println("ERROR: Pipe_t & Transfer_t must be multiples of 32 bytes!");
|
|
while (1) ; // die here
|
|
}
|
|
|
|
// configure the MPU to allow USBHS DMA to access memory
|
|
MPU_RGDAAC0 |= 0x30000000;
|
|
//println("MPU_RGDAAC0 = ", MPU_RGDAAC0, HEX);
|
|
|
|
// turn on clocks
|
|
MCG_C1 |= MCG_C1_IRCLKEN; // enable MCGIRCLK 32kHz
|
|
OSC0_CR |= OSC_ERCLKEN;
|
|
SIM_SOPT2 |= SIM_SOPT2_USBREGEN; // turn on USB regulator
|
|
SIM_SOPT2 &= ~SIM_SOPT2_USBSLSRC; // use IRC for slow clock
|
|
println("power up USBHS PHY");
|
|
SIM_USBPHYCTL |= SIM_USBPHYCTL_USBDISILIM; // disable USB current limit
|
|
//SIM_USBPHYCTL = SIM_USBPHYCTL_USBDISILIM | SIM_USBPHYCTL_USB3VOUTTRG(6); // pg 237
|
|
SIM_SCGC3 |= SIM_SCGC3_USBHSDCD | SIM_SCGC3_USBHSPHY | SIM_SCGC3_USBHS;
|
|
USBHSDCD_CLOCK = 33 << 2;
|
|
//print("init USBHS PHY & PLL");
|
|
// init process: page 1681-1682
|
|
USBPHY_CTRL_CLR = (USBPHY_CTRL_SFTRST | USBPHY_CTRL_CLKGATE); // // CTRL pg 1698
|
|
USBPHY_CTRL_SET = USBPHY_CTRL_ENUTMILEVEL2 | USBPHY_CTRL_ENUTMILEVEL3;
|
|
//USBPHY_CTRL_SET = USBPHY_CTRL_FSDLL_RST_EN; // TODO: what does this do??
|
|
USBPHY_TRIM_OVERRIDE_EN_SET = 1;
|
|
USBPHY_PLL_SIC = USBPHY_PLL_SIC_PLL_POWER | USBPHY_PLL_SIC_PLL_ENABLE |
|
|
USBPHY_PLL_SIC_PLL_DIV_SEL(1) | USBPHY_PLL_SIC_PLL_EN_USB_CLKS;
|
|
// wait for the PLL to lock
|
|
int count=0;
|
|
while ((USBPHY_PLL_SIC & USBPHY_PLL_SIC_PLL_LOCK) == 0) {
|
|
count++;
|
|
}
|
|
//println("PLL locked, waited ", count);
|
|
|
|
// turn on power to PHY
|
|
USBPHY_PWD = 0;
|
|
delay(10);
|
|
|
|
// sanity check, connect 470K pullup & 100K pulldown and watch D+ voltage change
|
|
//USBPHY_ANACTRL_CLR = (1<<10); // turn off both 15K pulldowns... works! :)
|
|
|
|
// sanity check, output clocks on pin 9 for testing
|
|
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(3); // LPO 1kHz
|
|
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(2); // Flash
|
|
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(6); // XTAL
|
|
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(7); // IRC 48MHz
|
|
//SIM_SOPT2 = SIM_SOPT2 & (~SIM_SOPT2_CLKOUTSEL(7)) | SIM_SOPT2_CLKOUTSEL(4); // MCGIRCLK
|
|
//CORE_PIN9_CONFIG = PORT_PCR_MUX(5); // CLKOUT on PTC3 Alt5 (Arduino pin 9)
|
|
|
|
// now with the PHY up and running, start up USBHS
|
|
//print("begin ehci reset");
|
|
USBHS_USBCMD |= USBHS_USBCMD_RST;
|
|
//count = 0;
|
|
while (USBHS_USBCMD & USBHS_USBCMD_RST) {
|
|
//count++;
|
|
}
|
|
//println(" reset waited ", count);
|
|
|
|
init_Device_Pipe_Transfer_memory();
|
|
for (int i=0; i < PERIODIC_LIST_SIZE; i++) {
|
|
periodictable[i] = 1;
|
|
}
|
|
memset(uframe_bandwidth, 0, sizeof(uframe_bandwidth));
|
|
port_state = PORT_STATE_DISCONNECTED;
|
|
|
|
USBHS_USB_SBUSCFG = 1; // System Bus Interface Configuration
|
|
|
|
// turn on the USBHS controller
|
|
//USBHS_USBMODE = USBHS_USBMODE_TXHSD(5) | USBHS_USBMODE_CM(3); // host mode
|
|
USBHS_USBMODE = USBHS_USBMODE_CM(3); // host mode
|
|
USBHS_USBINTR = 0;
|
|
USBHS_PERIODICLISTBASE = (uint32_t)periodictable;
|
|
USBHS_FRINDEX = 0;
|
|
USBHS_ASYNCLISTADDR = 0;
|
|
USBHS_USBCMD = USBHS_USBCMD_ITC(8) | USBHS_USBCMD_RS |
|
|
USBHS_USBCMD_ASP(3) | USBHS_USBCMD_ASPE | USBHS_USBCMD_PSE |
|
|
#if PERIODIC_LIST_SIZE == 8
|
|
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(3);
|
|
#elif PERIODIC_LIST_SIZE == 16
|
|
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(2);
|
|
#elif PERIODIC_LIST_SIZE == 32
|
|
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(1);
|
|
#elif PERIODIC_LIST_SIZE == 64
|
|
USBHS_USBCMD_FS2 | USBHS_USBCMD_FS(0);
|
|
#elif PERIODIC_LIST_SIZE == 128
|
|
USBHS_USBCMD_FS(3);
|
|
#elif PERIODIC_LIST_SIZE == 256
|
|
USBHS_USBCMD_FS(2);
|
|
#elif PERIODIC_LIST_SIZE == 512
|
|
USBHS_USBCMD_FS(1);
|
|
#elif PERIODIC_LIST_SIZE == 1024
|
|
USBHS_USBCMD_FS(0);
|
|
#else
|
|
#error "Unsupported PERIODIC_LIST_SIZE"
|
|
#endif
|
|
|
|
// turn on the USB port
|
|
//USBHS_PORTSC1 = USBHS_PORTSC_PP;
|
|
USBHS_PORTSC1 |= USBHS_PORTSC_PP;
|
|
//USBHS_PORTSC1 |= USBHS_PORTSC_PFSC; // force 12 Mbit/sec
|
|
//USBHS_PORTSC1 |= USBHS_PORTSC_PHCD; // phy off
|
|
|
|
//println("USBHS_ASYNCLISTADDR = ", USBHS_ASYNCLISTADDR, HEX);
|
|
//println("USBHS_PERIODICLISTBASE = ", USBHS_PERIODICLISTBASE, HEX);
|
|
//println("periodictable = ", (uint32_t)periodictable, HEX);
|
|
|
|
// enable interrupts, after this point interruts to all the work
|
|
attachInterruptVector(IRQ_USBHS, isr);
|
|
NVIC_ENABLE_IRQ(IRQ_USBHS);
|
|
USBHS_USBINTR = USBHS_USBINTR_PCE | USBHS_USBINTR_TIE0 | USBHS_USBINTR_TIE1;
|
|
USBHS_USBINTR |= USBHS_USBINTR_UEE | USBHS_USBINTR_SEE;
|
|
USBHS_USBINTR |= USBHS_USBINTR_UPIE | USBHS_USBINTR_UAIE;
|
|
|
|
}
|
|
|
|
|
|
// EHCI registers page default
|
|
// -------------- ---- -------
|
|
// USBHS_USBCMD 1599 00080000 USB Command
|
|
// USBHS_USBSTS 1602 00000000 USB Status
|
|
// USBHS_USBINTR 1606 00000000 USB Interrupt Enable
|
|
// USBHS_FRINDEX 1609 00000000 Frame Index Register
|
|
// USBHS_PERIODICLISTBASE 1610 undefine Periodic Frame List Base Address
|
|
// USBHS_ASYNCLISTADDR 1612 undefine Asynchronous List Address
|
|
// USBHS_PORTSC1 1619 00002000 Port Status and Control
|
|
// USBHS_USBMODE 1629 00005000 USB Mode
|
|
// USBHS_GPTIMERnCTL 1591 00000000 General Purpose Timer n Control
|
|
|
|
// PORT_STATE_DISCONNECTED 0
|
|
// PORT_STATE_DEBOUNCE 1
|
|
// PORT_STATE_RESET 2
|
|
// PORT_STATE_RECOVERY 3
|
|
// PORT_STATE_ACTIVE 4
|
|
|
|
|
|
void USBHost::isr()
|
|
{
|
|
uint32_t stat = USBHS_USBSTS;
|
|
USBHS_USBSTS = stat; // clear pending interrupts
|
|
//stat &= USBHS_USBINTR; // mask away unwanted interrupts
|
|
#if 0
|
|
println();
|
|
println("ISR: ", stat, HEX);
|
|
//if (stat & USBHS_USBSTS_UI) println(" USB Interrupt");
|
|
if (stat & USBHS_USBSTS_UEI) println(" USB Error");
|
|
if (stat & USBHS_USBSTS_PCI) println(" Port Change");
|
|
//if (stat & USBHS_USBSTS_FRI) println(" Frame List Rollover");
|
|
if (stat & USBHS_USBSTS_SEI) println(" System Error");
|
|
//if (stat & USBHS_USBSTS_AAI) println(" Async Advance (doorbell)");
|
|
if (stat & USBHS_USBSTS_URI) println(" Reset Recv");
|
|
//if (stat & USBHS_USBSTS_SRI) println(" SOF");
|
|
if (stat & USBHS_USBSTS_SLI) println(" Suspend");
|
|
if (stat & USBHS_USBSTS_HCH) println(" Host Halted");
|
|
//if (stat & USBHS_USBSTS_RCL) println(" Reclamation");
|
|
//if (stat & USBHS_USBSTS_PS) println(" Periodic Sched En");
|
|
//if (stat & USBHS_USBSTS_AS) println(" Async Sched En");
|
|
if (stat & USBHS_USBSTS_NAKI) println(" NAK");
|
|
if (stat & USBHS_USBSTS_UAI) println(" USB Async");
|
|
if (stat & USBHS_USBSTS_UPI) println(" USB Periodic");
|
|
if (stat & USBHS_USBSTS_TI0) println(" Timer0");
|
|
if (stat & USBHS_USBSTS_TI1) println(" Timer1");
|
|
#endif
|
|
|
|
if (stat & USBHS_USBSTS_UAI) { // completed qTD(s) from the async schedule
|
|
//println("Async Followup");
|
|
//print(async_followup_first, async_followup_last);
|
|
Transfer_t *p = async_followup_first;
|
|
while (p) {
|
|
if (followup_Transfer(p)) {
|
|
// transfer completed
|
|
Transfer_t *next = p->next_followup;
|
|
remove_from_async_followup_list(p);
|
|
free_Transfer(p);
|
|
p = next;
|
|
} else {
|
|
// transfer still pending
|
|
p = p->next_followup;
|
|
}
|
|
}
|
|
//print(async_followup_first, async_followup_last);
|
|
}
|
|
if (stat & USBHS_USBSTS_UPI) { // completed qTD(s) from the periodic schedule
|
|
//println("Periodic Followup");
|
|
Transfer_t *p = periodic_followup_first;
|
|
while (p) {
|
|
if (followup_Transfer(p)) {
|
|
// transfer completed
|
|
Transfer_t *next = p->next_followup;
|
|
remove_from_periodic_followup_list(p);
|
|
free_Transfer(p);
|
|
p = next;
|
|
} else {
|
|
// transfer still pending
|
|
p = p->next_followup;
|
|
}
|
|
}
|
|
}
|
|
if (stat & USBHS_USBSTS_UEI) {
|
|
followup_Error();
|
|
}
|
|
|
|
if (stat & USBHS_USBSTS_PCI) { // port change detected
|
|
const uint32_t portstat = USBHS_PORTSC1;
|
|
println("port change: ", portstat, HEX);
|
|
USBHS_PORTSC1 = portstat | (USBHS_PORTSC_OCC|USBHS_PORTSC_PEC|USBHS_PORTSC_CSC);
|
|
if (portstat & USBHS_PORTSC_OCC) {
|
|
println(" overcurrent change");
|
|
}
|
|
if (portstat & USBHS_PORTSC_CSC) {
|
|
if (portstat & USBHS_PORTSC_CCS) {
|
|
println(" connect");
|
|
if (port_state == PORT_STATE_DISCONNECTED
|
|
|| port_state == PORT_STATE_DEBOUNCE) {
|
|
// 100 ms debounce (USB 2.0: TATTDB, page 150 & 188)
|
|
port_state = PORT_STATE_DEBOUNCE;
|
|
USBHS_GPTIMER0LD = 100000; // microseconds
|
|
USBHS_GPTIMER0CTL =
|
|
USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
|
|
stat &= ~USBHS_USBSTS_TI0;
|
|
}
|
|
} else {
|
|
println(" disconnect");
|
|
port_state = PORT_STATE_DISCONNECTED;
|
|
USBPHY_CTRL_CLR = USBPHY_CTRL_ENHOSTDISCONDETECT;
|
|
disconnect_Device(rootdev);
|
|
rootdev = NULL;
|
|
}
|
|
}
|
|
if (portstat & USBHS_PORTSC_PEC) {
|
|
// PEC bit only detects disable
|
|
println(" disable");
|
|
} else if (port_state == PORT_STATE_RESET && portstat & USBHS_PORTSC_PE) {
|
|
println(" port enabled");
|
|
port_state = PORT_STATE_RECOVERY;
|
|
// 10 ms reset recover (USB 2.0: TRSTRCY, page 151 & 188)
|
|
USBHS_GPTIMER0LD = 10000; // microseconds
|
|
USBHS_GPTIMER0CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
|
|
if (USBHS_PORTSC1 & USBHS_PORTSC_HSP) {
|
|
// turn on high-speed disconnect detector
|
|
USBPHY_CTRL_SET = USBPHY_CTRL_ENHOSTDISCONDETECT;
|
|
}
|
|
}
|
|
if (portstat & USBHS_PORTSC_FPR) {
|
|
println(" force resume");
|
|
|
|
}
|
|
}
|
|
if (stat & USBHS_USBSTS_TI0) { // timer 0 - used for built-in port events
|
|
//println("timer0");
|
|
if (port_state == PORT_STATE_DEBOUNCE) {
|
|
port_state = PORT_STATE_RESET;
|
|
// Since we have only 1 port, no other device can
|
|
// be in reset or enumeration. If multiple ports
|
|
// are ever supported, we would need to remain in
|
|
// debounce if any other port was resetting or
|
|
// enumerating a device.
|
|
USBHS_PORTSC1 |= USBHS_PORTSC_PR; // begin reset sequence
|
|
println(" begin reset");
|
|
} else if (port_state == PORT_STATE_RECOVERY) {
|
|
port_state = PORT_STATE_ACTIVE;
|
|
println(" end recovery");
|
|
// HCSPARAMS TTCTRL page 1671
|
|
uint32_t speed = (USBHS_PORTSC1 >> 26) & 3;
|
|
rootdev = new_Device(speed, 0, 0);
|
|
}
|
|
}
|
|
if (stat & USBHS_USBSTS_TI1) { // timer 1 - used for USBDriverTimer
|
|
//println("timer1");
|
|
USBDriverTimer *timer = active_timers;
|
|
if (timer) {
|
|
USBDriverTimer *next = timer->next;
|
|
active_timers = next;
|
|
if (next) {
|
|
// more timers scheduled
|
|
next->prev = NULL;
|
|
USBHS_GPTIMER1LD = next->usec - 1;
|
|
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
|
|
}
|
|
// TODO: call multiple timers if 0 elapsed between them?
|
|
timer->driver->timer_event(timer); // call driver's timer()
|
|
}
|
|
}
|
|
}
|
|
|
|
void USBDriverTimer::start(uint32_t microseconds)
|
|
{
|
|
#ifdef USBHOST_PRINT_DEBUG
|
|
Serial.print("start_timer, us = ");
|
|
Serial.print(microseconds);
|
|
Serial.print(", driver = ");
|
|
Serial.print((uint32_t)driver, HEX);
|
|
Serial.print(", this = ");
|
|
Serial.println((uint32_t)this, HEX);
|
|
#endif
|
|
if (!driver) return;
|
|
if (microseconds < 100) return; // minimum timer duration
|
|
started_micros = micros();
|
|
if (active_timers == NULL) {
|
|
// schedule is empty, just add this timer
|
|
usec = microseconds;
|
|
next = NULL;
|
|
prev = NULL;
|
|
active_timers = this;
|
|
USBHS_GPTIMER1LD = microseconds - 1;
|
|
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
|
|
return;
|
|
}
|
|
uint32_t remain = USBHS_GPTIMER1CTL & 0xFFFFFF;
|
|
//Serial.print("remain = ");
|
|
//Serial.println(remain);
|
|
if (microseconds < remain) {
|
|
// this timer event is before any on the schedule
|
|
__disable_irq();
|
|
USBHS_GPTIMER1CTL = 0;
|
|
USBHS_USBSTS = USBHS_USBSTS_TI1; // TODO: UPI & UAI safety?!
|
|
usec = microseconds;
|
|
next = active_timers;
|
|
prev = NULL;
|
|
active_timers->usec = remain - microseconds;
|
|
active_timers->prev = this;
|
|
active_timers = this;
|
|
USBHS_GPTIMER1LD = microseconds - 1;
|
|
USBHS_GPTIMER1CTL = USBHS_GPTIMERCTL_RST | USBHS_GPTIMERCTL_RUN;
|
|
__enable_irq();
|
|
return;
|
|
}
|
|
// add this timer to the schedule, somewhere after the first timer
|
|
microseconds -= remain;
|
|
USBDriverTimer *list = active_timers;
|
|
while (list->next) {
|
|
list = list->next;
|
|
if (microseconds < list->usec) {
|
|
// add timer into middle of list
|
|
list->usec -= microseconds;
|
|
usec = microseconds;
|
|
next = list;
|
|
prev = list->prev;
|
|
list->prev = this;
|
|
prev->next = this;
|
|
return;
|
|
}
|
|
microseconds -= list->usec;
|
|
}
|
|
// add timer to the end of the schedule
|
|
usec = microseconds;
|
|
next = NULL;
|
|
prev = list;
|
|
list->next = this;
|
|
}
|
|
|
|
|
|
static uint32_t QH_capabilities1(uint32_t nak_count_reload, uint32_t control_endpoint_flag,
|
|
uint32_t max_packet_length, uint32_t head_of_list, uint32_t data_toggle_control,
|
|
uint32_t speed, uint32_t endpoint_number, uint32_t inactivate, uint32_t address)
|
|
{
|
|
return ( (nak_count_reload << 28) | (control_endpoint_flag << 27) |
|
|
(max_packet_length << 16) | (head_of_list << 15) |
|
|
(data_toggle_control << 14) | (speed << 12) | (endpoint_number << 8) |
|
|
(inactivate << 7) | (address << 0) );
|
|
}
|
|
|
|
static uint32_t QH_capabilities2(uint32_t high_bw_mult, uint32_t hub_port_number,
|
|
uint32_t hub_address, uint32_t split_completion_mask, uint32_t interrupt_schedule_mask)
|
|
{
|
|
return ( (high_bw_mult << 30) | (hub_port_number << 23) | (hub_address << 16) |
|
|
(split_completion_mask << 8) | (interrupt_schedule_mask << 0) );
|
|
}
|
|
|
|
|
|
|
|
// Create a new pipe. It's QH is added to the async or periodic schedule,
|
|
// and a halt qTD is added to the QH, so we can grow the qTD list later.
|
|
// dev: device owning this pipe/endpoint
|
|
// type: 0=control, 2=bulk, 3=interrupt
|
|
// endpoint: 0 for control, 1-15 for bulk or interrupt
|
|
// direction: 0=OUT, 1=IN (unused for control)
|
|
// maxlen: maximum packet size
|
|
// interval: polling interval for interrupt, power of 2, unused if control or bulk
|
|
//
|
|
Pipe_t * USBHost::new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
|
|
uint32_t direction, uint32_t maxlen, uint32_t interval)
|
|
{
|
|
Pipe_t *pipe;
|
|
Transfer_t *halt;
|
|
uint32_t c=0, dtc=0;
|
|
|
|
println("new_Pipe");
|
|
pipe = allocate_Pipe();
|
|
if (!pipe) return NULL;
|
|
halt = allocate_Transfer();
|
|
if (!halt) {
|
|
free_Pipe(pipe);
|
|
return NULL;
|
|
}
|
|
memset(pipe, 0, sizeof(Pipe_t));
|
|
memset(halt, 0, sizeof(Transfer_t));
|
|
halt->qtd.next = 1;
|
|
halt->qtd.token = 0x40;
|
|
pipe->device = dev;
|
|
pipe->qh.next = (uint32_t)halt;
|
|
pipe->qh.alt_next = 1;
|
|
pipe->direction = direction;
|
|
pipe->type = type;
|
|
if (type == 3) {
|
|
// interrupt transfers require bandwidth & microframe scheduling
|
|
if (!allocate_interrupt_pipe_bandwidth(pipe, maxlen, interval)) {
|
|
free_Transfer(halt);
|
|
free_Pipe(pipe);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (endpoint > 0) {
|
|
// if non-control pipe, update dev->data_pipes list
|
|
Pipe_t *p = dev->data_pipes;
|
|
if (p == NULL) {
|
|
dev->data_pipes = pipe;
|
|
} else {
|
|
while (p->next) p = p->next;
|
|
p->next = pipe;
|
|
}
|
|
}
|
|
if (type == 0) {
|
|
// control
|
|
if (dev->speed < 2) c = 1;
|
|
dtc = 1;
|
|
} else if (type == 2) {
|
|
// bulk
|
|
} else if (type == 3) {
|
|
// interrupt
|
|
//pipe->qh.token = 0x80000000; // TODO: OUT starts with DATA0 or DATA1?
|
|
}
|
|
pipe->qh.capabilities[0] = QH_capabilities1(15, c, maxlen, 0,
|
|
dtc, dev->speed, endpoint, 0, dev->address);
|
|
pipe->qh.capabilities[1] = QH_capabilities2(1, dev->hub_port,
|
|
dev->hub_address, pipe->complete_mask, pipe->start_mask);
|
|
|
|
if (type == 0 || type == 2) {
|
|
// control or bulk: add to async queue
|
|
Pipe_t *list = (Pipe_t *)USBHS_ASYNCLISTADDR;
|
|
if (list == NULL) {
|
|
pipe->qh.capabilities[0] |= 0x8000; // H bit
|
|
pipe->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2; // 2=QH
|
|
USBHS_ASYNCLISTADDR = (uint32_t)&(pipe->qh);
|
|
USBHS_USBCMD |= USBHS_USBCMD_ASE; // enable async schedule
|
|
//println(" first in async list");
|
|
} else {
|
|
// EHCI 1.0: section 4.8.1, page 72
|
|
pipe->qh.horizontal_link = list->qh.horizontal_link;
|
|
list->qh.horizontal_link = (uint32_t)&(pipe->qh) | 2;
|
|
//println(" added to async list");
|
|
}
|
|
} else if (type == 3) {
|
|
// interrupt: add to periodic schedule
|
|
add_qh_to_periodic_schedule(pipe);
|
|
}
|
|
return pipe;
|
|
}
|
|
|
|
|
|
|
|
// Fill in the qTD fields (token & data)
|
|
// t the Transfer qTD to initialize
|
|
// buf data to transfer
|
|
// len length of data
|
|
// pid type of packet: 0=OUT, 1=IN, 2=SETUP
|
|
// data01 value of DATA0/DATA1 toggle on 1st packet
|
|
// irq whether to generate an interrupt when transfer complete
|
|
//
|
|
static void init_qTD(volatile Transfer_t *t, void *buf, uint32_t len,
|
|
uint32_t pid, uint32_t data01, bool irq)
|
|
{
|
|
t->qtd.alt_next = 1; // 1=terminate
|
|
if (data01) data01 = 0x80000000;
|
|
t->qtd.token = data01 | (len << 16) | (irq ? 0x8000 : 0) | (pid << 8) | 0x80;
|
|
uint32_t addr = (uint32_t)buf;
|
|
t->qtd.buffer[0] = addr;
|
|
addr &= 0xFFFFF000;
|
|
t->qtd.buffer[1] = addr + 0x1000;
|
|
t->qtd.buffer[2] = addr + 0x2000;
|
|
t->qtd.buffer[3] = addr + 0x3000;
|
|
t->qtd.buffer[4] = addr + 0x4000;
|
|
}
|
|
|
|
|
|
|
|
// Create a Control Transfer and queue it
|
|
//
|
|
bool USBHost::queue_Control_Transfer(Device_t *dev, setup_t *setup, void *buf, USBDriver *driver)
|
|
{
|
|
Transfer_t *transfer, *data, *status;
|
|
uint32_t status_direction;
|
|
|
|
//println("new_Control_Transfer");
|
|
if (setup->wLength > 16384) return false; // max 16K data for control
|
|
transfer = allocate_Transfer();
|
|
if (!transfer) {
|
|
println(" error allocating setup transfer");
|
|
return false;
|
|
}
|
|
status = allocate_Transfer();
|
|
if (!status) {
|
|
println(" error allocating status transfer");
|
|
free_Transfer(transfer);
|
|
return false;
|
|
}
|
|
if (setup->wLength > 0) {
|
|
data = allocate_Transfer();
|
|
if (!data) {
|
|
println(" error allocating data transfer");
|
|
free_Transfer(transfer);
|
|
free_Transfer(status);
|
|
return false;
|
|
}
|
|
uint32_t pid = (setup->bmRequestType & 0x80) ? 1 : 0;
|
|
init_qTD(data, buf, setup->wLength, pid, 1, false);
|
|
transfer->qtd.next = (uint32_t)data;
|
|
data->qtd.next = (uint32_t)status;
|
|
status_direction = pid ^ 1;
|
|
} else {
|
|
transfer->qtd.next = (uint32_t)status;
|
|
status_direction = 1; // always IN, USB 2.0 page 226
|
|
}
|
|
//println("setup address ", (uint32_t)setup, HEX);
|
|
init_qTD(transfer, setup, 8, 2, 0, false);
|
|
init_qTD(status, NULL, 0, status_direction, 1, true);
|
|
status->pipe = dev->control_pipe;
|
|
status->buffer = buf;
|
|
status->length = setup->wLength;
|
|
status->setup.word1 = setup->word1;
|
|
status->setup.word2 = setup->word2;
|
|
status->driver = driver;
|
|
status->qtd.next = 1;
|
|
return queue_Transfer(dev->control_pipe, transfer);
|
|
}
|
|
|
|
|
|
// Create a Bulk or Interrupt Transfer and queue it
|
|
//
|
|
bool USBHost::queue_Data_Transfer(Pipe_t *pipe, void *buffer, uint32_t len, USBDriver *driver)
|
|
{
|
|
Transfer_t *transfer, *data, *next;
|
|
uint8_t *p = (uint8_t *)buffer;
|
|
uint32_t count;
|
|
bool last = false;
|
|
|
|
// TODO: option for zero length packet? Maybe in Pipe_t fields?
|
|
|
|
//println("new_Data_Transfer");
|
|
// allocate qTDs
|
|
transfer = allocate_Transfer();
|
|
if (!transfer) return false;
|
|
data = transfer;
|
|
for (count=(len >> 14); count; count--) {
|
|
next = allocate_Transfer();
|
|
if (!next) {
|
|
// free already-allocated qTDs
|
|
while (1) {
|
|
next = (Transfer_t *)transfer->qtd.next;
|
|
free_Transfer(transfer);
|
|
if (transfer == data) break;
|
|
transfer = next;
|
|
}
|
|
return false;
|
|
}
|
|
data->qtd.next = (uint32_t)next;
|
|
data = next;
|
|
}
|
|
// last qTD needs info for followup
|
|
data->qtd.next = 1;
|
|
data->pipe = pipe;
|
|
data->buffer = buffer;
|
|
data->length = len;
|
|
data->setup.word1 = 0;
|
|
data->setup.word2 = 0;
|
|
data->driver = driver;
|
|
// initialize all qTDs
|
|
data = transfer;
|
|
while (1) {
|
|
uint32_t count = len;
|
|
if (count > 16384) {
|
|
count = 16384;
|
|
} else {
|
|
last = true;
|
|
}
|
|
init_qTD(data, p, count, pipe->direction, 0, last);
|
|
if (last) break;
|
|
p += count;
|
|
len -= count;
|
|
data = (Transfer_t *)(data->qtd.next);
|
|
}
|
|
return queue_Transfer(pipe, transfer);
|
|
}
|
|
|
|
|
|
bool USBHost::queue_Transfer(Pipe_t *pipe, Transfer_t *transfer)
|
|
{
|
|
// find halt qTD
|
|
Transfer_t *halt = (Transfer_t *)(pipe->qh.next);
|
|
while (!(halt->qtd.token & 0x40)) halt = (Transfer_t *)(halt->qtd.next);
|
|
// transfer's token
|
|
uint32_t token = transfer->qtd.token;
|
|
// transfer becomes new halt qTD
|
|
transfer->qtd.token = 0x40;
|
|
// copy transfer non-token fields to halt
|
|
halt->qtd.next = transfer->qtd.next;
|
|
halt->qtd.alt_next = transfer->qtd.alt_next;
|
|
halt->qtd.buffer[0] = transfer->qtd.buffer[0]; // TODO: optimize memcpy, all
|
|
halt->qtd.buffer[1] = transfer->qtd.buffer[1]; // fields except token
|
|
halt->qtd.buffer[2] = transfer->qtd.buffer[2];
|
|
halt->qtd.buffer[3] = transfer->qtd.buffer[3];
|
|
halt->qtd.buffer[4] = transfer->qtd.buffer[4];
|
|
halt->pipe = pipe;
|
|
halt->buffer = transfer->buffer;
|
|
halt->length = transfer->length;
|
|
halt->setup = transfer->setup;
|
|
halt->driver = transfer->driver;
|
|
// find the last qTD we're adding
|
|
Transfer_t *last = halt;
|
|
while ((uint32_t)(last->qtd.next) != 1) last = (Transfer_t *)(last->qtd.next);
|
|
// last points to transfer (which becomes new halt)
|
|
last->qtd.next = (uint32_t)transfer;
|
|
transfer->qtd.next = 1;
|
|
// link all the new qTD by next_followup & prev_followup
|
|
Transfer_t *prev = NULL;
|
|
Transfer_t *p = halt;
|
|
while (p->qtd.next != (uint32_t)transfer) {
|
|
Transfer_t *next = (Transfer_t *)p->qtd.next;
|
|
p->prev_followup = prev;
|
|
p->next_followup = next;
|
|
prev = p;
|
|
p = next;
|
|
}
|
|
p->prev_followup = prev;
|
|
p->next_followup = NULL;
|
|
//print(halt, p);
|
|
// add them to a followup list
|
|
if (pipe->type == 0 || pipe->type == 2) {
|
|
// control or bulk
|
|
add_to_async_followup_list(halt, p);
|
|
} else {
|
|
// interrupt
|
|
add_to_periodic_followup_list(halt, p);
|
|
}
|
|
// old halt becomes new transfer, this commits all new qTDs to QH
|
|
halt->qtd.token = token;
|
|
return true;
|
|
}
|
|
|
|
bool USBHost::followup_Transfer(Transfer_t *transfer)
|
|
{
|
|
//print(" Followup ", (uint32_t)transfer, HEX);
|
|
//println(" token=", transfer->qtd.token, HEX);
|
|
|
|
if (!(transfer->qtd.token & 0x80)) {
|
|
// TODO: check error status
|
|
if (transfer->qtd.token & 0x8000) {
|
|
// this transfer caused an interrupt
|
|
if (transfer->pipe->callback_function) {
|
|
// do the callback
|
|
(*(transfer->pipe->callback_function))(transfer);
|
|
}
|
|
}
|
|
// do callback function...
|
|
//println(" completed");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void USBHost::followup_Error(void)
|
|
{
|
|
println("ERROR Followup");
|
|
Transfer_t *p = async_followup_first;
|
|
while (p) {
|
|
if (followup_Transfer(p)) {
|
|
// transfer completed
|
|
Transfer_t *next = p->next_followup;
|
|
remove_from_async_followup_list(p);
|
|
println(" remove from followup list");
|
|
if (p->qtd.token & 0x40) {
|
|
Pipe_t *haltedpipe = p->pipe;
|
|
free_Transfer(p);
|
|
// traverse the rest of the list for unfinished work
|
|
// from this halted pipe. Remove from the followup
|
|
// list and put onto our own temporary list
|
|
Transfer_t *first = NULL;
|
|
Transfer_t *last = NULL;
|
|
p = next;
|
|
while (p) {
|
|
Transfer_t *next2 = p->next_followup;
|
|
if (p->pipe == haltedpipe) {
|
|
println(" stray halted ", (uint32_t)p, HEX);
|
|
remove_from_async_followup_list(p);
|
|
if (first == NULL) {
|
|
first = p;
|
|
last = p;
|
|
} else {
|
|
last->next_followup = p;
|
|
}
|
|
p->next_followup = NULL;
|
|
if (next == p) next = next2;
|
|
}
|
|
p = next2;
|
|
}
|
|
// halted pipe (probably) still has unfinished transfers
|
|
// find the halted pipe's dummy halt transfer
|
|
p = (Transfer_t *)(haltedpipe->qh.next & ~0x1F);
|
|
while (p && ((p->qtd.token & 0x40) == 0)) {
|
|
print(" qtd: ", (uint32_t)p, HEX);
|
|
print(", token=", (uint32_t)p->qtd.token, HEX);
|
|
println(", next=", (uint32_t)p->qtd.next, HEX);
|
|
p = (Transfer_t *)(p->qtd.next & ~0x1F);
|
|
}
|
|
if (p) {
|
|
// unhalt the pipe, "forget" unfinished transfers
|
|
// hopefully they're all on the list we made!
|
|
println(" dummy halt: ", (uint32_t)p, HEX);
|
|
haltedpipe->qh.next = (uint32_t)p;
|
|
haltedpipe->qh.current = 0;
|
|
haltedpipe->qh.token = 0;
|
|
} else {
|
|
println(" no dummy halt found, yikes!");
|
|
// TODO: this should never happen, but what if it does?
|
|
}
|
|
|
|
// Do any driver callbacks belonging to the unfinished
|
|
// transfers. This is done last, after retoring the
|
|
// pipe to a working state (if possible) so the driver
|
|
// callback can use the pipe.
|
|
p = first;
|
|
while (p) {
|
|
uint32_t token = p->qtd.token;
|
|
if (token & 0x8000 && haltedpipe->callback_function) {
|
|
// driver expects a callback
|
|
p->qtd.token = token | 0x40;
|
|
(*(p->pipe->callback_function))(p);
|
|
}
|
|
Transfer_t *next2 = p->next_followup;
|
|
free_Transfer(p);
|
|
p = next2;
|
|
}
|
|
} else {
|
|
free_Transfer(p);
|
|
}
|
|
p = next;
|
|
} else {
|
|
// transfer still pending
|
|
println(" remain on followup list");
|
|
p = p->next_followup;
|
|
}
|
|
}
|
|
// TODO: handle errors from periodic schedule!
|
|
}
|
|
|
|
static void add_to_async_followup_list(Transfer_t *first, Transfer_t *last)
|
|
{
|
|
last->next_followup = NULL; // always add to end of list
|
|
if (async_followup_last == NULL) {
|
|
first->prev_followup = NULL;
|
|
async_followup_first = first;
|
|
} else {
|
|
first->prev_followup = async_followup_last;
|
|
async_followup_last->next_followup = first;
|
|
}
|
|
async_followup_last = last;
|
|
}
|
|
|
|
static void remove_from_async_followup_list(Transfer_t *transfer)
|
|
{
|
|
Transfer_t *next = transfer->next_followup;
|
|
Transfer_t *prev = transfer->prev_followup;
|
|
if (prev) {
|
|
prev->next_followup = next;
|
|
} else {
|
|
async_followup_first = next;
|
|
}
|
|
if (next) {
|
|
next->prev_followup = prev;
|
|
} else {
|
|
async_followup_last = prev;
|
|
}
|
|
}
|
|
|
|
static void add_to_periodic_followup_list(Transfer_t *first, Transfer_t *last)
|
|
{
|
|
last->next_followup = NULL; // always add to end of list
|
|
if (periodic_followup_last == NULL) {
|
|
first->prev_followup = NULL;
|
|
periodic_followup_first = first;
|
|
} else {
|
|
first->prev_followup = periodic_followup_last;
|
|
periodic_followup_last->next_followup = first;
|
|
}
|
|
periodic_followup_last = last;
|
|
}
|
|
|
|
static void remove_from_periodic_followup_list(Transfer_t *transfer)
|
|
{
|
|
Transfer_t *next = transfer->next_followup;
|
|
Transfer_t *prev = transfer->prev_followup;
|
|
if (prev) {
|
|
prev->next_followup = next;
|
|
} else {
|
|
periodic_followup_first = next;
|
|
}
|
|
if (next) {
|
|
next->prev_followup = prev;
|
|
} else {
|
|
periodic_followup_last = prev;
|
|
}
|
|
}
|
|
|
|
|
|
static uint32_t max4(uint32_t n1, uint32_t n2, uint32_t n3, uint32_t n4)
|
|
{
|
|
if (n1 > n2) {
|
|
// can't be n2
|
|
if (n1 > n3) {
|
|
// can't be n3
|
|
if (n1 > n4) return n1;
|
|
} else {
|
|
// can't be n1
|
|
if (n3 > n4) return n3;
|
|
}
|
|
} else {
|
|
// can't be n1
|
|
if (n2 > n3) {
|
|
// can't be n3
|
|
if (n2 > n4) return n2;
|
|
} else {
|
|
// can't be n2
|
|
if (n3 > n4) return n3;
|
|
}
|
|
}
|
|
return n4;
|
|
}
|
|
|
|
static uint32_t round_to_power_of_two(uint32_t n, uint32_t maxnum)
|
|
{
|
|
for (uint32_t pow2num=1; pow2num < maxnum; pow2num <<= 1) {
|
|
if (n <= (pow2num | (pow2num >> 1))) return pow2num;
|
|
}
|
|
return maxnum;
|
|
}
|
|
|
|
// Allocate bandwidth for an interrupt pipe. Given the packet size
|
|
// and other parameters, find the best place to schedule this pipe.
|
|
// Returns true if enough bandwidth is available, and the best
|
|
// frame offset, smask and cmask. Or returns false if no group
|
|
// of microframes has enough bandwidth available.
|
|
//
|
|
// pipe:
|
|
// device->speed [in] 0=full speed, 1=low speed, 2=high speed
|
|
// direction [in] 0=OUT, 1=IN
|
|
// start_mask [out] uframes to start transfer
|
|
// complete_mask [out] uframes to complete transfer (FS & LS only)
|
|
// periodic_interval [out] fream repeat level: 1, 2, 4, 8... PERIODIC_LIST_SIZE
|
|
// periodic_offset [out] frame repeat offset: 0 to periodic_interval-1
|
|
// maxlen: [in] maximum packet length
|
|
// interval: [in] polling interval: LS+FS: frames, HS: 2^(n-1) uframes
|
|
//
|
|
bool USBHost::allocate_interrupt_pipe_bandwidth(Pipe_t *pipe, uint32_t maxlen, uint32_t interval)
|
|
{
|
|
println("allocate_interrupt_pipe_bandwidth");
|
|
if (interval == 0) interval = 1;
|
|
maxlen = (maxlen * 76459) >> 16; // worst case bit stuffing
|
|
if (pipe->device->speed == 2) {
|
|
// high speed 480 Mbit/sec
|
|
println(" ep interval = ", interval);
|
|
if (interval > 15) interval = 15;
|
|
interval = 1 << (interval - 1);
|
|
if (interval > PERIODIC_LIST_SIZE*8) interval = PERIODIC_LIST_SIZE*8;
|
|
println(" interval = ", interval);
|
|
uint32_t pinterval = interval >> 3;
|
|
pipe->periodic_interval = (pinterval > 0) ? pinterval : 1;
|
|
uint32_t stime = (55 + 32 + maxlen) >> 5; // time units: 32 bytes or 533 ns
|
|
uint32_t best_offset = 0xFFFFFFFF;
|
|
uint32_t best_bandwidth = 0xFFFFFFFF;
|
|
for (uint32_t offset=0; offset < interval; offset++) {
|
|
// for each possible uframe offset, find the worst uframe bandwidth
|
|
uint32_t max_bandwidth = 0;
|
|
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
|
|
uint32_t bandwidth = uframe_bandwidth[i] + stime;
|
|
if (bandwidth > max_bandwidth) max_bandwidth = bandwidth;
|
|
}
|
|
// remember which uframe offset is the best
|
|
if (max_bandwidth < best_bandwidth) {
|
|
best_bandwidth = max_bandwidth;
|
|
best_offset = offset;
|
|
}
|
|
}
|
|
print(" best_bandwidth = ", best_bandwidth);
|
|
//print(best_bandwidth);
|
|
println(", at offset = ", best_offset);
|
|
//println(best_offset);
|
|
// a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
|
|
// fail if the best found needs more than 80% (234 * 0.8) in any uframe
|
|
if (best_bandwidth > 187) return false;
|
|
for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE*8; i += interval) {
|
|
uframe_bandwidth[i] += stime;
|
|
}
|
|
if (interval == 1) {
|
|
pipe->start_mask = 0xFF;
|
|
} else if (interval == 2) {
|
|
pipe->start_mask = 0x55 << (best_offset & 1);
|
|
} else if (interval <= 4) {
|
|
pipe->start_mask = 0x11 << (best_offset & 3);
|
|
} else {
|
|
pipe->start_mask = 0x01 << (best_offset & 7);
|
|
}
|
|
pipe->periodic_offset = best_offset >> 3;
|
|
pipe->complete_mask = 0;
|
|
} else {
|
|
// full speed 12 Mbit/sec or low speed 1.5 Mbit/sec
|
|
interval = round_to_power_of_two(interval, PERIODIC_LIST_SIZE);
|
|
pipe->periodic_interval = interval;
|
|
uint32_t stime, ctime;
|
|
if (pipe->direction == 0) {
|
|
// for OUT direction, SSPLIT will carry the data payload
|
|
// TODO: how much time to SSPLIT & CSPLIT actually take?
|
|
// they're not documented in 5.7 or 5.11.3.
|
|
stime = (100 + 32 + maxlen) >> 5;
|
|
ctime = (55 + 32) >> 5;
|
|
} else {
|
|
// for IN direction, data payload in CSPLIT
|
|
stime = (40 + 32) >> 5;
|
|
ctime = (70 + 32 + maxlen) >> 5;
|
|
}
|
|
// TODO: should we take Single-TT hubs into account, avoid
|
|
// scheduling overlapping SSPLIT & CSPLIT to the same hub?
|
|
// TODO: even if Multi-TT, do we need to worry about packing
|
|
// too many into the same uframe?
|
|
uint32_t best_shift = 0;
|
|
uint32_t best_offset = 0xFFFFFFFF;
|
|
uint32_t best_bandwidth = 0xFFFFFFFF;
|
|
for (uint32_t offset=0; offset < interval; offset++) {
|
|
// for each 1ms frame offset, compute the worst uframe usage
|
|
uint32_t max_bandwidth = 0;
|
|
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
|
|
for (uint32_t j=0; j <= 3; j++) { // max 3 without FSTN
|
|
// at each location, find worst uframe usage
|
|
// for SSPLIT+CSPLITs
|
|
uint32_t n = (i << 3) + j;
|
|
uint32_t bw1 = uframe_bandwidth[n+0] + stime;
|
|
uint32_t bw2 = uframe_bandwidth[n+2] + ctime;
|
|
uint32_t bw3 = uframe_bandwidth[n+3] + ctime;
|
|
uint32_t bw4 = uframe_bandwidth[n+4] + ctime;
|
|
max_bandwidth = max4(bw1, bw2, bw3, bw4);
|
|
// remember the best usage found
|
|
if (max_bandwidth < best_bandwidth) {
|
|
best_bandwidth = max_bandwidth;
|
|
best_offset = i;
|
|
best_shift = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
print(" best_bandwidth = ", best_bandwidth);
|
|
//println(best_bandwidth);
|
|
print(", at offset = ", best_offset);
|
|
//print(best_offset);
|
|
println(", shift= ", best_shift);
|
|
//println(best_shift);
|
|
// a 125 us micro frame can fit 7500 bytes, or 234 of our 32-byte units
|
|
// fail if the best found needs more than 80% (234 * 0.8) in any uframe
|
|
if (best_bandwidth > 187) return false;
|
|
for (uint32_t i=best_offset; i < PERIODIC_LIST_SIZE; i += interval) {
|
|
uint32_t n = (i << 3) + best_shift;
|
|
uframe_bandwidth[n+0] += stime;
|
|
uframe_bandwidth[n+2] += ctime;
|
|
uframe_bandwidth[n+3] += ctime;
|
|
uframe_bandwidth[n+4] += ctime;
|
|
}
|
|
pipe->start_mask = 0x01 << best_shift;
|
|
pipe->complete_mask = 0x1C << best_shift;
|
|
pipe->periodic_offset = best_offset;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// put a new pipe into the periodic schedule tree
|
|
// according to periodic_interval and periodic_offset
|
|
//
|
|
void USBHost::add_qh_to_periodic_schedule(Pipe_t *pipe)
|
|
{
|
|
// quick hack for testing, just put it into the first table entry
|
|
//println("add_qh_to_periodic_schedule: ", (uint32_t)pipe, HEX);
|
|
#if 0
|
|
pipe->qh.horizontal_link = periodictable[0];
|
|
periodictable[0] = (uint32_t)&(pipe->qh) | 2; // 2=QH
|
|
println("init periodictable with ", periodictable[0], HEX);
|
|
#else
|
|
uint32_t interval = pipe->periodic_interval;
|
|
uint32_t offset = pipe->periodic_offset;
|
|
//println(" interval = ", interval);
|
|
//println(" offset = ", offset);
|
|
|
|
// By an interative miracle, hopefully make an inverted tree of EHCI figure 4-18, page 93
|
|
for (uint32_t i=offset; i < PERIODIC_LIST_SIZE; i += interval) {
|
|
//print(" old slot ", i);
|
|
//print(": ");
|
|
//print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
|
|
uint32_t num = periodictable[i];
|
|
Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
|
|
if ((num & 1) || ((num & 6) == 2 && node->periodic_interval < interval)) {
|
|
//println(" add to slot ", i);
|
|
pipe->qh.horizontal_link = num;
|
|
periodictable[i] = (uint32_t)&(pipe->qh) | 2; // 2=QH
|
|
} else {
|
|
//println(" traverse list ", i);
|
|
// TODO: skip past iTD, siTD when/if we support isochronous
|
|
while (node->periodic_interval >= interval) {
|
|
if (node == pipe) goto nextslot;
|
|
//print(" num ", num, HEX);
|
|
//print(" node ", (uint32_t)node, HEX);
|
|
//println("->", node->qh.horizontal_link, HEX);
|
|
if (node->qh.horizontal_link & 1) break;
|
|
num = node->qh.horizontal_link;
|
|
node = (Pipe_t *)(num & 0xFFFFFFE0);
|
|
}
|
|
Pipe_t *n = node;
|
|
do {
|
|
if (n == pipe) goto nextslot;
|
|
n = (Pipe_t *)(n->qh.horizontal_link & 0xFFFFFFE0);
|
|
} while (n != NULL);
|
|
//print(" adding at node ", (uint32_t)node, HEX);
|
|
//print(", num=", num, HEX);
|
|
//println(", node->qh.horizontal_link=", node->qh.horizontal_link, HEX);
|
|
pipe->qh.horizontal_link = node->qh.horizontal_link;
|
|
node->qh.horizontal_link = (uint32_t)pipe | 2; // 2=QH
|
|
// TODO: is it really necessary to keep doing the outer
|
|
// loop? Does adding it here satisfy all cases? If so
|
|
// we could avoid extra work by just returning here.
|
|
}
|
|
nextslot:
|
|
//print(" new slot ", i);
|
|
//print(": ");
|
|
//print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
|
|
{}
|
|
}
|
|
#endif
|
|
#if 0
|
|
println("Periodic Schedule:");
|
|
for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
|
|
if (i < 10) print(" ");
|
|
print(i);
|
|
print(": ");
|
|
print_qh_list((Pipe_t *)(periodictable[i] & 0xFFFFFFE0));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void USBHost::delete_Pipe(Pipe_t *pipe)
|
|
{
|
|
println("delete_Pipe ", (uint32_t)pipe, HEX);
|
|
|
|
// halt pipe, find and free all Transfer_t
|
|
|
|
// EHCI 1.0, 4.8.2 page 72: "Software should first deactivate
|
|
// all active qTDs, wait for the queue head to go inactive"
|
|
//
|
|
// http://www.spinics.net/lists/linux-usb/msg131607.html
|
|
// http://www.spinics.net/lists/linux-usb/msg131936.html
|
|
//
|
|
// In practice it's not feasible to wait for an active QH to become
|
|
// inactive before removing it, for several reasons. For one, the QH may
|
|
// _never_ become inactive (if the endpoint NAKs indefinitely). For
|
|
// another, the procedure given in the spec (deactivate the qTDs on the
|
|
// queue) is racy, since the controller can perform a new overlay or
|
|
// writeback at any time.
|
|
|
|
bool isasync = (pipe->type == 0 || pipe->type == 2);
|
|
if (isasync) {
|
|
// find the next QH in the async schedule loop
|
|
Pipe_t *next = (Pipe_t *)(pipe->qh.horizontal_link & 0xFFFFFFE0);
|
|
if (next == pipe) {
|
|
// removing the only QH, so just shut down the async schedule
|
|
println(" shut down async schedule");
|
|
USBHS_USBCMD &= ~USBHS_USBCMD_ASE; // disable async schedule
|
|
while (USBHS_USBSTS & USBHS_USBSTS_AS) ; // busy loop wait
|
|
USBHS_ASYNCLISTADDR = 0;
|
|
} else {
|
|
// find the previous QH in the async schedule loop
|
|
println(" remove QH from async schedule");
|
|
Pipe_t *prev = next;
|
|
while (1) {
|
|
Pipe_t *n = (Pipe_t *)(prev->qh.horizontal_link & 0xFFFFFFE0);
|
|
if (n == pipe) break;
|
|
prev = n;
|
|
}
|
|
// if removing the one with H bit, set another
|
|
if (pipe->qh.capabilities[0] & 0x8000) {
|
|
prev->qh.capabilities[0] |= 0x8000; // set H bit
|
|
}
|
|
// link the previous QH, we're no longer in the loop
|
|
prev->qh.horizontal_link = pipe->qh.horizontal_link;
|
|
// do the Async Advance Doorbell handshake to wait to be
|
|
// sure the EHCI no longer references the removed QH
|
|
USBHS_USBCMD |= USBHS_USBCMD_IAA;
|
|
while (!(USBHS_USBSTS & USBHS_USBSTS_AAI)) ; // busy loop wait
|
|
USBHS_USBSTS = USBHS_USBSTS_AAI;
|
|
// TODO: does this write interfere UPI & UAI (bits 18 & 19) ??
|
|
}
|
|
// find & free all the transfers which completed
|
|
Transfer_t *t = async_followup_first;
|
|
while (t) {
|
|
Transfer_t *next = t->next_followup;
|
|
if (t->pipe == pipe) {
|
|
remove_from_async_followup_list(t);
|
|
free_Transfer(t);
|
|
}
|
|
t = next;
|
|
}
|
|
} else {
|
|
// remove from the periodic schedule
|
|
for (uint32_t i=0; i < PERIODIC_LIST_SIZE; i++) {
|
|
uint32_t num = periodictable[i];
|
|
if (num & 1) continue;
|
|
Pipe_t *node = (Pipe_t *)(num & 0xFFFFFFE0);
|
|
if (node == pipe) {
|
|
periodictable[i] = pipe->qh.horizontal_link;
|
|
continue;
|
|
}
|
|
Pipe_t *prev = node;
|
|
while (1) {
|
|
num = node->qh.horizontal_link;
|
|
if (num & 1) break;
|
|
node = (Pipe_t *)(num & 0xFFFFFFE0);
|
|
if (node == pipe) {
|
|
prev->qh.horizontal_link = node->qh.horizontal_link;
|
|
break;
|
|
}
|
|
prev = node;
|
|
}
|
|
}
|
|
// TODO: subtract bandwidth from uframe_bandwidth array
|
|
|
|
// find & free all the transfers which completed
|
|
Transfer_t *t = periodic_followup_first;
|
|
while (t) {
|
|
Transfer_t *next = t->next_followup;
|
|
if (t->pipe == pipe) {
|
|
remove_from_periodic_followup_list(t);
|
|
free_Transfer(t);
|
|
}
|
|
t = next;
|
|
}
|
|
}
|
|
//
|
|
// TODO: do we need to look at pipe->qh.current ??
|
|
//
|
|
// free all the transfers still attached to the QH
|
|
Transfer_t *tr = (Transfer_t *)(pipe->qh.next);
|
|
while ((uint32_t)tr & 0xFFFFFFE0) {
|
|
Transfer_t *next = (Transfer_t *)(tr->qtd.next);
|
|
free_Transfer(tr);
|
|
tr = next;
|
|
}
|
|
// hopefully we found everything...
|
|
free_Pipe(pipe);
|
|
}
|
|
|
|
|