1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-11 19:55:04 -05:00
USBHost_t36/hid.cpp
2017-09-09 11:17:50 -07:00

516 lines
15 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
void USBHIDParser::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
driver_ready_for_device(this);
}
bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
println("HIDParser claim this=", (uint32_t)this, HEX);
// only claim at interface level
if (type != 1) return false;
if (len < 9+9+7) return false;
// interface descriptor
uint32_t numendpoint = descriptors[4];
if (numendpoint < 1 || numendpoint > 2) return false;
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
println(" bInterfaceClass = ", descriptors[5]);
println(" bInterfaceSubClass = ", descriptors[6]);
println(" bInterfaceProtocol = ", descriptors[7]);
// hid interface descriptor
uint32_t hidlen = descriptors[9];
if (hidlen < 9) return false;
if (descriptors[10] != 33) return false; // descriptor type, 33=HID
if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor
if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size
if (9 + hidlen > len) return false;
uint32_t i=0;
while (1) {
if (descriptors[15 + i * 3] == 34) { // found HID report descriptor
descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8);
println("report descriptor size = ", descsize);
break;
}
i++;
if (i >= descriptors[14]) return false;
}
if (descsize > sizeof(descriptor)) return false; // can't fit the report descriptor
// endpoint descriptor(s)
uint32_t offset = 9 + hidlen;
if (len < offset + numendpoint * 7) return false; // not enough data
if (numendpoint == 1) {
println("Single endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint = descriptors[offset+2];
uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval = descriptors[offset+6];
println(" endpoint = ", endpoint, HEX);
println(" size = ", size);
println(" interval = ", interval);
if ((endpoint & 0x0F) == 0) return false;
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval);
out_pipe = NULL;
in_size = size;
} else {
println("Two endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint1 = descriptors[offset+2];
uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval1 = descriptors[offset+6];
println(" endpoint = ", endpoint1, HEX);
println(" size = ", size1);
println(" interval = ", interval1);
if ((endpoint1 & 0x0F) == 0) return false;
if (descriptors[offset+7] != 7) return false;
if (descriptors[offset+8] != 5) return false; // endpoint descriptor
if (descriptors[offset+10] != 3) return false; // must be interrupt type
uint32_t endpoint2 = descriptors[offset+9];
uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8);
uint32_t interval2 = descriptors[offset+13];
println(" endpoint = ", endpoint2, HEX);
println(" size = ", size2);
println(" interval = ", interval2);
if ((endpoint2 & 0x0F) == 0) return false;
if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) {
// first endpoint is IN, second endpoint is OUT
in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1);
//out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2);
out_pipe = NULL; // TODO; fixme
in_size = size1;
out_size = size2;
} else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) {
// first endpoint is OUT, second endpoint is IN
in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2);
//out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1);
out_pipe = NULL; // TODO; fixme
in_size = size2;
out_size = size1;
} else {
return false;
}
out_pipe->callback_function = out_callback;
}
in_pipe->callback_function = in_callback;
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
//topusage_list[i] = 0;
topusage_drivers[i] = NULL;
}
// request the HID report descriptor
mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc
queue_Control_Transfer(dev, &setup, descriptor, this);
return true;
}
void USBHIDParser::control(const Transfer_t *transfer)
{
println("control callback (hid)");
print_hexbytes(transfer->buffer, transfer->length);
uint32_t mesg = transfer->setup.word1;
//println(" mesg = ", mesg, HEX);
if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor
println(" got report descriptor");
queue_Data_Transfer(in_pipe, report, in_size, this);
}
}
void USBHIDParser::in_callback(const Transfer_t *transfer)
{
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->in_data(transfer);
}
}
void USBHIDParser::out_callback(const Transfer_t *transfer)
{
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->out_data(transfer);
}
}
void USBHIDParser::disconnect()
{
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
USBHIDInput *driver = topusage_drivers[i];
if (driver) {
driver->disconnect_collection(device);
topusage_drivers[i] = NULL;
}
}
}
void USBHIDParser::in_data(const Transfer_t *transfer)
{
print("HID: ");
print_hexbytes(transfer->buffer, transfer->length);
parse(0x0100, (const uint8_t *)transfer->buffer, transfer->length);
queue_Data_Transfer(in_pipe, report, in_size, this);
}
void USBHIDParser::out_data(const Transfer_t *transfer)
{
}
void USBHIDParser::parse()
{
const uint8_t *p = descriptor;
const uint8_t *end = p + descsize;
uint16_t usage_page = 0;
uint16_t usage = 0;
uint8_t collection_level = 0;
uint8_t topusage_count = 0;
use_report_id = false;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item
p += *p + 3;
continue;
}
uint32_t val;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
switch (tag & 0xFC) {
case 0x84: // Report ID (global)
use_report_id = true;
break;
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x08: // Usage (local)
usage = val;
break;
case 0xA0: // Collection
if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) {
uint32_t topusage = ((uint32_t)usage_page << 16) | usage;
//topusage_list[topusage_count] = topusage;
topusage_drivers[topusage_count] = find_driver(topusage);
topusage_count++;
}
collection_level++;
usage = 0;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
}
case 0x80: // Input
case 0x90: // Output
case 0xB0: // Feature
usage = 0;
break;
}
}
while (topusage_count < TOPUSAGE_LIST_LEN) {
//topusage_list[topusage_count] = 0;
topusage_drivers[topusage_count] = NULL;
topusage_count++;
}
}
USBHIDInput * USBHIDInput::list = NULL;
USBHIDInput::USBHIDInput()
{
next = NULL;
if (list == NULL) {
list = this;
} else {
USBHIDInput *last = list;
while (last->next) last = last->next;
last->next = this;
}
}
USBHIDInput * USBHIDParser::find_driver(uint32_t topusage)
{
USBHIDInput *driver = USBHIDInput::list;
while (driver) {
if (driver->claim_collection(device, topusage)) {
return driver;
}
driver = driver->next;
}
return NULL;
}
static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits)
{
uint32_t output = 0;
uint32_t bitcount = 0;
data += (bitindex >> 3);
uint32_t offset = bitindex & 7;
if (offset) {
output = (*data++) >> offset;
bitcount = 8 - offset;
}
while (bitcount < numbits) {
output |= (uint32_t)(*data++) << bitcount;
bitcount += 8;
}
if (bitcount > numbits && numbits < 32) {
output &= ((1 << numbits) - 1);
}
return output;
}
static int32_t signext(uint32_t num, uint32_t bitcount)
{
if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) {
num |= ~((1 << bitcount) - 1);
}
return (int32_t)num;
}
static int32_t signedval(uint32_t num, uint8_t tag)
{
tag &= 3;
if (tag == 1) return (int8_t)num;
if (tag == 2) return (int16_t)num;
return (int32_t)num;
}
void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len)
{
const uint8_t *p = descriptor;
const uint8_t *end = p + descsize;
USBHIDInput *driver = NULL;
uint32_t topusage = 0;
uint8_t topusage_index = 0;
uint8_t collection_level = 0;
uint8_t usage[USAGE_LIST_LEN] = {0, 0};
uint8_t usage_count = 0;
uint16_t report_size = 0;
uint16_t report_count = 0;
uint16_t usage_page = 0;
int32_t logical_min = 0;
int32_t logical_max = 0;
uint32_t bitindex = 0;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item (unsupported)
p += p[1] + 3;
continue;
}
uint32_t val;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
bool reset_local = false;
switch (tag & 0xFC) {
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x14: // Logical Minimum (global)
logical_min = signedval(val, tag);
break;
case 0x24: // Logical Maximum (global)
logical_max = signedval(val, tag);
break;
case 0x74: // Report Size (global)
report_size = val;
break;
case 0x94: // Report Count (global)
report_count = val;
break;
case 0x84: // Report ID (global)
// TODO
break;
case 0x08: // Usage (local)
if (usage_count < USAGE_LIST_LEN) {
usage[usage_count++] = val;
}
break;
case 0x18: // Usage Minimum (local)
usage[0] = val;
usage_count = 255;
break;
case 0x28: // Usage Maximum (local)
usage[1] = val;
usage_count = 255;
break;
case 0xA0: // Collection
if (collection_level == 0) {
topusage = ((uint32_t)usage_page << 16) | usage[0];
driver = NULL;
if (topusage_index < TOPUSAGE_LIST_LEN) {
driver = topusage_drivers[topusage_index++];
}
}
collection_level++;
reset_local = true;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
if (collection_level == 0 && driver != NULL) {
driver->hid_input_end();
driver = NULL;
}
}
reset_local = true;
break;
case 0x80: // Input
if ((val & 1) == 0) {
println("begin, usage=", topusage, HEX);
println(" type= ", val, HEX);
println(" min= ", logical_min);
println(" max= ", logical_max);
if (driver) {
driver->hid_input_begin(topusage, val,
logical_min, logical_max);
}
println("Input, total bits=", report_count * report_size);
if ((val & 2)) {
// ordinary variable format
uint32_t uindex = 0;
bool uminmax = false;
if (usage_count > USAGE_LIST_LEN || usage_count == 0) {
// usage numbers by min/max, not from list
uindex = usage[0];
uminmax = true;
}
for (uint32_t i=0; i < report_count; i++) {
uint32_t u;
if (uminmax) {
u = uindex;
if (uindex < usage[1]) uindex++;
} else {
u = usage[uindex++];
if (uindex >= USAGE_LIST_LEN-1) {
uindex = USAGE_LIST_LEN-1;
}
}
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
uint32_t n = bitfield(data, bitindex, report_size);
if (logical_min >= 0) {
println(" data = ", n);
if (driver) driver->hid_input_data(u, n);
} else {
int32_t sn = signext(n, report_size);
println(" sdata = ", sn);
if (driver) driver->hid_input_data(u, sn);
}
bitindex += report_size;
}
} else {
// array format, each item is a usage number
for (uint32_t i=0; i < report_count; i++) {
uint32_t u = bitfield(data, bitindex, report_size);
int n = u;
if (n >= logical_min && n <= logical_max) {
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
println(" data = 1");
if (driver) driver->hid_input_data(u, 1);
}
bitindex += report_size;
}
}
} else {
// skip past constant fields
bitindex += report_count * report_size;
}
reset_local = true;
break;
case 0x90: // Output
// TODO.....
reset_local = true;
break;
case 0xB0: // Feature
// TODO.....
reset_local = true;
break;
case 0xA4: // Push (yikes! Hope nobody really uses this?!)
case 0xB4: // Pop (yikes! Hope nobody really uses this?!)
case 0x34: // Physical Minimum (global)
case 0x44: // Physical Maximum (global)
case 0x54: // Unit Exponent (global)
case 0x64: // Unit (global)
case 0x38: // Designator Index (local)
case 0x48: // Designator Minimum (local)
case 0x58: // Designator Maximum (local)
case 0x78: // String Index (local)
case 0x88: // String Minimum (local)
case 0x98: // String Maximum (local)
case 0xA8: // Delimiter (local)
default:
println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX);
}
if (reset_local) {
usage_count = 0;
usage[0] = 0;
usage[1] = 0;
}
}
}