1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-12-21 23:08:55 -05:00
USBHost_t36/keyboard.cpp
Kurt Eckhardt c5edb1c25f Add Xbox One controller support
While the other Joystick objects currently supported by the USB Host
code are driven by HID data, the Xbox does not contain HID data and
instead works at the top level.

To handle this I made the Joystick object use multiple InHeritence like:
class JoystickController : public USBDriver, public USBHIDInput

This allowed me to have the object work either way.  This did add some
complexity in that some of the methods like  is the object connected
(The bool operator) had to be overwritten as both of the bases classes
had it.  In addition needed to update the other query functions to be
able to grab the data from mydevice or device depending on which type of
controller was connected.

Since this looked like a valid way, I then merged the Keyboard Extras
code that Keyboard and made it also do a similar multiple inheritance.
In this case however I restricted the HID top level report handle code
to only accept it if on the same object that claimed the keyboard.

The mouse test app was updated as well
2017-11-20 09:19:25 -08:00

429 lines
13 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
#include "keylayouts.h" // from Teensyduino core library
typedef struct {
KEYCODE_TYPE code;
uint8_t ascii;
} keycode_extra_t;
typedef struct {
KEYCODE_TYPE code;
KEYCODE_TYPE codeNumlockOff;
uint8_t charNumlockOn; // We will assume when num lock is on we have all characters...
} keycode_numlock_t;
#ifdef M
#undef M
#endif
#define M(n) ((n) & KEYCODE_MASK)
keycode_extra_t keycode_extras[] = {
{M(KEY_ENTER), '\n'},
{M(KEY_ESC), 0x1b},
{M(KEY_TAB), 0x9 },
{M(KEY_UP), KEYD_UP },
{M(KEY_DOWN), KEYD_DOWN },
{M(KEY_LEFT), KEYD_LEFT },
{M(KEY_RIGHT), KEYD_RIGHT },
{M(KEY_INSERT), KEYD_INSERT },
{M(KEY_DELETE), KEYD_DELETE },
{M(KEY_PAGE_UP), KEYD_PAGE_UP },
{M(KEY_PAGE_DOWN), KEYD_PAGE_DOWN },
{M(KEY_HOME), KEYD_HOME },
{M(KEY_END), KEYD_END },
{M(KEY_F1), KEYD_F1 },
{M(KEY_F2), KEYD_F2 },
{M(KEY_F3), KEYD_F3 },
{M(KEY_F4), KEYD_F4 },
{M(KEY_F5), KEYD_F5 },
{M(KEY_F6), KEYD_F6 },
{M(KEY_F7), KEYD_F7 },
{M(KEY_F8), KEYD_F8 },
{M(KEY_F9), KEYD_F9 },
{M(KEY_F10), KEYD_F10 },
{M(KEY_F11), KEYD_F11 },
{M(KEY_F12), KEYD_F12 }
};
// Some of these mapped to key + shift.
keycode_numlock_t keycode_numlock[] = {
{M(KEYPAD_SLASH), '/', '/'},
{M(KEYPAD_ASTERIX), '*', '*'},
{M(KEYPAD_MINUS), '-', '-'},
{M(KEYPAD_PLUS), '+', '+'},
{M(KEYPAD_ENTER), '\n', '\n'},
{M(KEYPAD_1), 0x80 | M(KEY_END), '1'},
{M(KEYPAD_2), 0x80 | M(KEY_DOWN), '2'},
{M(KEYPAD_3), 0x80 | M(KEY_PAGE_DOWN), '3'},
{M(KEYPAD_4), 0x80 | M(KEY_LEFT), '4'},
{M(KEYPAD_5), 0x00, '5'},
{M(KEYPAD_6), 0x80 | M(KEY_RIGHT), '6'},
{M(KEYPAD_7), 0x80 | M(KEY_HOME), '7'},
{M(KEYPAD_8), 0x80 | M(KEY_UP), '8'},
{M(KEYPAD_9), 0x80 | M(KEY_PAGE_UP), '9'},
{M(KEYPAD_0), 0x80 | M(KEY_INSERT), '0'},
{M(KEYPAD_PERIOD), 0x80 | M(KEY_DELETE), '.'}
};
#define print USBHost::print_
#define println USBHost::println_
void KeyboardController::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
driver_ready_for_device(this);
USBHIDParser::driver_ready_for_hid_collection(this);
}
bool KeyboardController::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
println("KeyboardController claim this=", (uint32_t)this, HEX);
// only claim at interface level
if (type != 1) return false;
if (len < 9+9+7) return false;
uint32_t numendpoint = descriptors[4];
if (numendpoint < 1) return false;
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
if (descriptors[6] != 1) return false; // bInterfaceSubClass, 1 = Boot Device
if (descriptors[7] != 1) return false; // bInterfaceProtocol, 1 = Keyboard
if (descriptors[9] != 9) return false;
if (descriptors[10] != 33) return false; // HID descriptor (ignored, Boot Protocol)
if (descriptors[18] != 7) return false;
if (descriptors[19] != 5) return false; // endpoint descriptor
uint32_t endpoint = descriptors[20];
println("ep = ", endpoint, HEX);
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
endpoint &= 0x0F;
if (endpoint == 0) return false;
if (descriptors[21] != 3) return false; // must be interrupt type
uint32_t size = descriptors[22] | (descriptors[23] << 8);
println("packet size = ", size);
if ((size < 8) || (size > 64)) {
return false; // Keyboard Boot Protocol is 8 bytes, but maybe others have longer...
}
#ifdef USBHS_KEYBOARD_INTERVAL
uint32_t interval = USBHS_KEYBOARD_INTERVAL;
#else
uint32_t interval = descriptors[24];
#endif
println("polling interval = ", interval);
datapipe = new_Pipe(dev, 3, endpoint, 1, 8, interval);
datapipe->callback_function = callback;
queue_Data_Transfer(datapipe, report, 8, this);
mk_setup(setup, 0x21, 10, 0, 0, 0); // 10=SET_IDLE
queue_Control_Transfer(dev, &setup, NULL, this);
return true;
}
void KeyboardController::control(const Transfer_t *transfer)
{
}
void KeyboardController::callback(const Transfer_t *transfer)
{
//println("KeyboardController Callback (static)");
if (transfer->driver) {
((KeyboardController *)(transfer->driver))->new_data(transfer);
}
}
void KeyboardController::disconnect()
{
// TODO: free resources
}
// Arduino defined this static weak symbol callback, and their
// examples use it as the only way to detect new key presses,
// so unfortunate as static weak callbacks are, it probably
// needs to be supported for compatibility
extern "C" {
void __keyboardControllerEmptyCallback() { }
}
void keyPressed() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
void keyReleased() __attribute__ ((weak, alias("__keyboardControllerEmptyCallback")));
static bool contains(uint8_t b, const uint8_t *data)
{
if (data[2] == b || data[3] == b || data[4] == b) return true;
if (data[5] == b || data[6] == b || data[7] == b) return true;
return false;
}
void KeyboardController::new_data(const Transfer_t *transfer)
{
println("KeyboardController Callback (member)");
print(" KB Data: ");
print_hexbytes(transfer->buffer, 8);
for (int i=2; i < 8; i++) {
uint32_t key = prev_report[i];
if (key >= 4 && !contains(key, report)) {
key_release(prev_report[0], key);
}
}
for (int i=2; i < 8; i++) {
uint32_t key = report[i];
if (key >= 4 && !contains(key, prev_report)) {
key_press(report[0], key);
}
}
memcpy(prev_report, report, 8);
queue_Data_Transfer(datapipe, report, 8, this);
}
void KeyboardController::numLock(bool f) {
if (leds_.numLock != f) {
leds_.numLock = f;
updateLEDS();
}
}
void KeyboardController::capsLock(bool f) {
if (leds_.capsLock != f) {
leds_.capsLock = f;
updateLEDS();
}
}
void KeyboardController::scrollLock(bool f) {
if (leds_.scrollLock != f) {
leds_.scrollLock = f;
updateLEDS();
}
}
void KeyboardController::key_press(uint32_t mod, uint32_t key)
{
// TODO: queue events, perform callback from Task
println(" press, key=", key);
modifiers = mod;
keyOEM = key;
keyCode = convert_to_unicode(mod, key);
println(" unicode = ", keyCode);
if (keyPressedFunction) {
keyPressedFunction(keyCode);
} else {
keyPressed();
}
}
void KeyboardController::key_release(uint32_t mod, uint32_t key)
{
// TODO: queue events, perform callback from Task
println(" release, key=", key);
modifiers = mod;
keyOEM = key;
// Look for modifier keys
if (key == M(KEY_NUM_LOCK)) {
numLock(!leds_.numLock);
// Lets toggle Numlock
} else if (key == M(KEY_CAPS_LOCK)) {
capsLock(!leds_.capsLock);
} else if (key == M(KEY_SCROLL_LOCK)) {
scrollLock(!leds_.scrollLock);
} else {
keyCode = convert_to_unicode(mod, key);
if (keyReleasedFunction) {
keyReleasedFunction(keyCode);
} else {
keyReleased();
}
}
}
uint16_t KeyboardController::convert_to_unicode(uint32_t mod, uint32_t key)
{
// WIP: special keys
// TODO: dead key sequences
if (key & SHIFT_MASK) {
// Many of these keys will look like they are other keys with shift mask...
// Check for any of our mapped extra keys
for (uint8_t i = 0; i < (sizeof(keycode_numlock)/sizeof(keycode_numlock[0])); i++) {
if (keycode_numlock[i].code == key) {
// See if the user is using numlock or not...
if (leds_.numLock) {
return keycode_numlock[i].charNumlockOn;
} else {
key = keycode_numlock[i].codeNumlockOff;
if (!(key & 0x80)) return key; // we have hard coded value
key &= 0x7f; // mask off the extra and break out to process as other characters...
break;
}
}
}
}
// Check for any of our mapped extra keys - Done early as some of these keys are
// above and some below the SHIFT_MASK value
for (uint8_t i = 0; i < (sizeof(keycode_extras)/sizeof(keycode_extras[0])); i++) {
if (keycode_extras[i].code == key) {
return keycode_extras[i].ascii;
}
}
// If we made it here without doing something then return 0;
if (key & SHIFT_MASK) return 0;
if ((mod & 0x02) || (mod & 0x20)) key |= SHIFT_MASK;
if (leds_.capsLock) key ^= SHIFT_MASK; // Caps lock will switch the Shift;
for (int i=0; i < 96; i++) {
if (keycodes_ascii[i] == key) {
if ((mod & 1) || (mod & 0x10)) return (i+32) & 0x1f; // Control key is down
return i + 32;
}
}
#ifdef ISO_8859_1_A0
for (int i=0; i < 96; i++) {
if (keycodes_iso_8859_1[i] == key) return i + 160;
}
#endif
return 0;
}
void KeyboardController::LEDS(uint8_t leds) {
println("Keyboard setLEDS ", leds, HEX);
leds_.byte = leds;
updateLEDS();
}
void KeyboardController::updateLEDS() {
// Now lets tell keyboard new state.
mk_setup(setup, 0x21, 9, 0x200, 0, sizeof(leds_.byte)); // hopefully this sets leds
queue_Control_Transfer(device, &setup, &leds_.byte, this);
}
//=============================================================================
// Keyboard Extras - Combined from other object
//=============================================================================
#define TOPUSAGE_SYS_CONTROL 0x10080
#define TOPUSAGE_CONSUMER_CONTROL 0x0c0001
hidclaim_t KeyboardController::claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage)
{
// Lets try to claim a few specific Keyboard related collection/reports
//Serial.printf("KBH Claim %x\n", topusage);
if ((topusage != TOPUSAGE_SYS_CONTROL)
&& (topusage != TOPUSAGE_CONSUMER_CONTROL)
) return CLAIM_NO;
// only claim from one physical device
//Serial.println("KeyboardController claim collection");
// Lets only claim if this is the same device as claimed Keyboard...
if (dev != device) return CLAIM_NO;
if (mydevice != NULL && dev != mydevice) return CLAIM_NO;
mydevice = dev;
collections_claimed_++;
return CLAIM_REPORT;
}
void KeyboardController::disconnect_collection(Device_t *dev)
{
if (--collections_claimed_ == 0) {
mydevice = NULL;
}
}
void KeyboardController::hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax)
{
//Serial.printf("KPC:hid_input_begin TUSE: %x TYPE: %x Range:%x %x\n", topusage, type, lgmin, lgmax);
topusage_ = topusage; // remember which report we are processing.
hid_input_begin_ = true;
hid_input_data_ = false;
}
void KeyboardController::hid_input_data(uint32_t usage, int32_t value)
{
// Hack ignore 0xff00 high words as these are user values...
if ((usage & 0xffff0000) == 0xff000000) return;
//Serial.printf("KeyboardController: topusage= %x usage=%X, value=%d\n", topusage_, usage, value);
// See if the value is in our keys_down list
usage &= 0xffff; // only keep the actual key
if (usage == 0) return; // lets not process 0, if only 0 happens, we will handle it on the end to remove existing pressed items.
// Remember if we have received any logical key up events. Some keyboard appear to send them
// others do no...
hid_input_data_ = true;
uint8_t key_index;
for (key_index = 0; key_index < count_keys_down_; key_index++) {
if (keys_down[key_index] == usage) {
if (value) return; // still down
if (extrasKeyReleasedFunction) {
extrasKeyReleasedFunction(topusage_, usage);
}
// Remove from list
count_keys_down_--;
for (;key_index < count_keys_down_; key_index++) {
keys_down[key_index] = keys_down[key_index+1];
}
return;
}
}
// Was not in list
if (!value) return; // still 0
if (extrasKeyPressedFunction) {
extrasKeyPressedFunction(topusage_, usage);
}
if (count_keys_down_ < MAX_KEYS_DOWN) {
keys_down[count_keys_down_++] = usage;
}
}
void KeyboardController::hid_input_end()
{
//Serial.println("KPC:hid_input_end");
if (hid_input_begin_) {
// See if we received any data from parser if not, assume all keys released...
if (!hid_input_data_ ) {
if (extrasKeyReleasedFunction) {
while (count_keys_down_) {
count_keys_down_--;
extrasKeyReleasedFunction(topusage_, keys_down[count_keys_down_]);
}
}
count_keys_down_ = 0;
}
hid_input_begin_ = false;
}
}