mirror of
https://github.com/gdsports/USBHost_t36
synced 2024-11-23 17:42:22 -05:00
8aa67ff939
Needed HID Parser to support Bidirectional Transfers The HidParser code was setup such that the claim for a report, the caller could say I want to claim the whole thinig and allowed callback functions for processing of in buffer and out buffer. Allow RawHID to contribute Transfer_t Since RawHID may need more resources than most, maybe it should contribute the additional structures The constructor for a RAWHID object allows you to specify the top usage that it wishes to connect to. I used this for example to be able to connect to a Teensy with the RAWHID associated with emulating the Serial object. If a HID Input class says that it wants to claim the whole interface, I reuse the buffer associated with holding the HID descriptor and use it for output buffers.
642 lines
20 KiB
C++
642 lines
20 KiB
C++
/* USB EHCI Host for Teensy 3.6
|
|
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "USBHost_t36.h" // Read this header first for key info
|
|
|
|
|
|
// This HID driver claims a USB interface and parses its incoming
|
|
// data (reports). It doesn't actually use the data, but it allows
|
|
// drivers which inherit the USBHIDInput base class to claim the
|
|
// top level collections within the reports. Those drivers get
|
|
// callbacks with the arriving data full decoded to data/usage
|
|
// pairs.
|
|
|
|
#define print USBHost::print_
|
|
#define println USBHost::println_
|
|
|
|
void USBHIDParser::init()
|
|
{
|
|
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
|
|
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
|
|
contribute_String_Buffers(mystring_bufs, sizeof(mystring_bufs)/sizeof(strbuf_t));
|
|
driver_ready_for_device(this);
|
|
}
|
|
|
|
bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
|
|
{
|
|
println("HIDParser claim this=", (uint32_t)this, HEX);
|
|
|
|
// only claim at interface level
|
|
if (type != 1) return false;
|
|
if (len < 9+9+7) return false;
|
|
|
|
// interface descriptor
|
|
uint32_t numendpoint = descriptors[4];
|
|
if (numendpoint < 1 || numendpoint > 2) return false;
|
|
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
|
|
println(" bInterfaceClass = ", descriptors[5]);
|
|
println(" bInterfaceSubClass = ", descriptors[6]);
|
|
println(" bInterfaceProtocol = ", descriptors[7]);
|
|
// do not claim boot protocol keyboards
|
|
if (descriptors[6] == 1 && descriptors[7] == 1) return false;
|
|
|
|
print("HID Parser Claim: ");
|
|
print_hexbytes(descriptors, len);
|
|
|
|
|
|
// hid interface descriptor
|
|
uint32_t hidlen = descriptors[9];
|
|
if (hidlen < 9) return false;
|
|
if (descriptors[10] != 33) return false; // descriptor type, 33=HID
|
|
if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor
|
|
if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size
|
|
if (9 + hidlen > len) return false;
|
|
uint32_t i=0;
|
|
while (1) {
|
|
if (descriptors[15 + i * 3] == 34) { // found HID report descriptor
|
|
descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8);
|
|
println("report descriptor size = ", descsize);
|
|
break;
|
|
}
|
|
i++;
|
|
if (i >= descriptors[14]) return false;
|
|
}
|
|
if (descsize > sizeof(descriptor)) return false; // can't fit the report descriptor
|
|
|
|
// endpoint descriptor(s)
|
|
uint32_t offset = 9 + hidlen;
|
|
if (len < offset + numendpoint * 7) return false; // not enough data
|
|
if (numendpoint == 1) {
|
|
println("Single endpoint HID:");
|
|
if (descriptors[offset] != 7) return false;
|
|
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+3] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint = descriptors[offset+2];
|
|
uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8);
|
|
uint32_t interval = descriptors[offset+6];
|
|
println(" endpoint = ", endpoint, HEX);
|
|
println(" size = ", size);
|
|
println(" interval = ", interval);
|
|
if ((endpoint & 0x0F) == 0) return false;
|
|
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
|
|
in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval);
|
|
out_pipe = NULL;
|
|
in_size = size;
|
|
} else {
|
|
println("Two endpoint HID:");
|
|
if (descriptors[offset] != 7) return false;
|
|
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+3] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint1 = descriptors[offset+2];
|
|
uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8);
|
|
uint32_t interval1 = descriptors[offset+6];
|
|
println(" endpoint = ", endpoint1, HEX);
|
|
println(" size = ", size1);
|
|
println(" interval = ", interval1);
|
|
if ((endpoint1 & 0x0F) == 0) return false;
|
|
if (descriptors[offset+7] != 7) return false;
|
|
if (descriptors[offset+8] != 5) return false; // endpoint descriptor
|
|
if (descriptors[offset+10] != 3) return false; // must be interrupt type
|
|
uint32_t endpoint2 = descriptors[offset+9];
|
|
uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8);
|
|
uint32_t interval2 = descriptors[offset+13];
|
|
println(" endpoint = ", endpoint2, HEX);
|
|
println(" size = ", size2);
|
|
println(" interval = ", interval2);
|
|
if ((endpoint2 & 0x0F) == 0) return false;
|
|
if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) {
|
|
// first endpoint is IN, second endpoint is OUT
|
|
in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1);
|
|
out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2);
|
|
in_size = size1;
|
|
out_size = size2;
|
|
} else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) {
|
|
// first endpoint is OUT, second endpoint is IN
|
|
in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2);
|
|
out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1);
|
|
in_size = size2;
|
|
out_size = size1;
|
|
} else {
|
|
return false;
|
|
}
|
|
out_pipe->callback_function = out_callback;
|
|
}
|
|
in_pipe->callback_function = in_callback;
|
|
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
|
|
//topusage_list[i] = 0;
|
|
topusage_drivers[i] = NULL;
|
|
}
|
|
// request the HID report descriptor
|
|
mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc
|
|
queue_Control_Transfer(dev, &setup, descriptor, this);
|
|
return true;
|
|
}
|
|
|
|
void USBHIDParser::control(const Transfer_t *transfer)
|
|
{
|
|
println("control callback (hid)");
|
|
print_hexbytes(transfer->buffer, transfer->length);
|
|
// To decode hex dump to human readable HID report summary:
|
|
// http://eleccelerator.com/usbdescreqparser/
|
|
uint32_t mesg = transfer->setup.word1;
|
|
println(" mesg = ", mesg, HEX);
|
|
if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor
|
|
println(" got report descriptor");
|
|
parse();
|
|
queue_Data_Transfer(in_pipe, report, in_size, this);
|
|
if (device->idVendor == 0x054C && device->idProduct == 0x0268) {
|
|
println("send special PS3 feature command");
|
|
mk_setup(setup, 0x21, 9, 0x03F4, 0, 4); // ps3 tell to send report 1?
|
|
static uint8_t ps3_feature_F4_report[] = {0x42, 0x0c, 0x00, 0x00};
|
|
queue_Control_Transfer(device, &setup, ps3_feature_F4_report, this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void USBHIDParser::in_callback(const Transfer_t *transfer)
|
|
{
|
|
if (transfer->driver) {
|
|
((USBHIDParser*)(transfer->driver))->in_data(transfer);
|
|
}
|
|
}
|
|
|
|
void USBHIDParser::out_callback(const Transfer_t *transfer)
|
|
{
|
|
//println("USBHIDParser:: out_callback (static)");
|
|
if (transfer->driver) {
|
|
((USBHIDParser*)(transfer->driver))->out_data(transfer);
|
|
}
|
|
}
|
|
|
|
// When the device goes away, we need to call disconnect_collection()
|
|
// for all drivers which claimed a top level collection
|
|
void USBHIDParser::disconnect()
|
|
{
|
|
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
|
|
USBHIDInput *driver = topusage_drivers[i];
|
|
if (driver) {
|
|
driver->disconnect_collection(device);
|
|
topusage_drivers[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called when the HID device sends a report
|
|
void USBHIDParser::in_data(const Transfer_t *transfer)
|
|
{
|
|
/*Serial.print("HID: ");
|
|
uint8_t *pb = (uint8_t*)transfer->buffer;
|
|
for (uint8_t i = 0; i < transfer->length; i++) {
|
|
Serial.print(pb[i], HEX);
|
|
Serial.print(" ");
|
|
}
|
|
Serial.println(); */
|
|
|
|
print("HID: ");
|
|
print(use_report_id);
|
|
print(" - ");
|
|
print_hexbytes(transfer->buffer, transfer->length);
|
|
const uint8_t *buf = (const uint8_t *)transfer->buffer;
|
|
uint32_t len = transfer->length;
|
|
|
|
// See if the first top report wishes to bypass the
|
|
// parse...
|
|
if (!(topusage_drivers[0] && topusage_drivers[0]->hid_process_in_data(transfer))) {
|
|
|
|
if (use_report_id == false) {
|
|
parse(0x0100, buf, len);
|
|
} else {
|
|
if (len > 1) {
|
|
parse(0x0100 | buf[0], buf + 1, len - 1);
|
|
}
|
|
}
|
|
}
|
|
queue_Data_Transfer(in_pipe, report, in_size, this);
|
|
}
|
|
|
|
|
|
void USBHIDParser::out_data(const Transfer_t *transfer)
|
|
{
|
|
println("USBHIDParser:out_data called (instance)");
|
|
// A packet completed. lets mark it as done and call back
|
|
// to top reports handler. We unmark our checkmark to
|
|
// handle case where they may want to queue up another one.
|
|
if (transfer->buffer == tx1) txstate &= ~1;
|
|
if (transfer->buffer == tx2) txstate &= ~2;
|
|
if (topusage_drivers[0]) {
|
|
topusage_drivers[0]->hid_process_out_data(transfer);
|
|
}
|
|
}
|
|
|
|
bool USBHIDParser::sendPacket(const uint8_t *buffer) {
|
|
if (!out_size || !out_pipe) return false;
|
|
if (!tx1) {
|
|
// Was not init before, for now lets put it at end of descriptor
|
|
// TODO: should verify that either don't exceed overlap descsize
|
|
// Or that we have taken over this device
|
|
tx1 = &descriptor[sizeof(descriptor) - out_size];
|
|
tx2 = tx1 - out_size;
|
|
}
|
|
if ((txstate & 3) == 3) return false; // both transmit buffers are full
|
|
uint8_t *p = tx1;
|
|
if ((txstate & 1) == 0) {
|
|
txstate |= 1;
|
|
} else {
|
|
txstate |= 2;
|
|
p = tx2;
|
|
}
|
|
// copy the users data into our out going buffer
|
|
memcpy(p, buffer, out_size);
|
|
println("USBHIDParser Send packet");
|
|
print_hexbytes(buffer, out_size);
|
|
queue_Data_Transfer(out_pipe, p, out_size, this);
|
|
println(" Queue_data transfer returned");
|
|
return true;
|
|
}
|
|
|
|
|
|
// This no-inputs parse is meant to be used when we first get the
|
|
// HID report descriptor. It finds all the top level collections
|
|
// and allows drivers to claim them. This is always where we
|
|
// learn whether the reports will or will not use a Report ID byte.
|
|
void USBHIDParser::parse()
|
|
{
|
|
const uint8_t *p = descriptor;
|
|
const uint8_t *end = p + descsize;
|
|
uint16_t usage_page = 0;
|
|
uint16_t usage = 0;
|
|
uint8_t collection_level = 0;
|
|
uint8_t topusage_count = 0;
|
|
|
|
use_report_id = false;
|
|
while (p < end) {
|
|
uint8_t tag = *p;
|
|
if (tag == 0xFE) { // Long Item
|
|
p += *p + 3;
|
|
continue;
|
|
}
|
|
uint32_t val;
|
|
switch (tag & 0x03) { // Short Item data
|
|
case 0: val = 0;
|
|
p++;
|
|
break;
|
|
case 1: val = p[1];
|
|
p += 2;
|
|
break;
|
|
case 2: val = p[1] | (p[2] << 8);
|
|
p += 3;
|
|
break;
|
|
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
|
|
p += 5;
|
|
break;
|
|
}
|
|
if (p > end) break;
|
|
|
|
switch (tag & 0xFC) {
|
|
case 0x84: // Report ID (global)
|
|
use_report_id = true;
|
|
break;
|
|
case 0x04: // Usage Page (global)
|
|
usage_page = val;
|
|
break;
|
|
case 0x08: // Usage (local)
|
|
usage = val;
|
|
break;
|
|
case 0xA0: // Collection
|
|
if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) {
|
|
uint32_t topusage = ((uint32_t)usage_page << 16) | usage;
|
|
println("Found top level collection ", topusage, HEX);
|
|
//topusage_list[topusage_count] = topusage;
|
|
topusage_drivers[topusage_count] = find_driver(topusage);
|
|
topusage_count++;
|
|
}
|
|
collection_level++;
|
|
usage = 0;
|
|
break;
|
|
case 0xC0: // End Collection
|
|
if (collection_level > 0) {
|
|
collection_level--;
|
|
}
|
|
case 0x80: // Input
|
|
case 0x90: // Output
|
|
case 0xB0: // Feature
|
|
usage = 0;
|
|
break;
|
|
}
|
|
}
|
|
while (topusage_count < TOPUSAGE_LIST_LEN) {
|
|
//topusage_list[topusage_count] = 0;
|
|
topusage_drivers[topusage_count] = NULL;
|
|
topusage_count++;
|
|
}
|
|
}
|
|
|
|
// This is a list of all the drivers inherited from the USBHIDInput class.
|
|
// Unlike the list of USBDriver (managed in enumeration.cpp), drivers stay
|
|
// on this list even when they have claimed a top level collection.
|
|
USBHIDInput * USBHIDParser::available_hid_drivers_list = NULL;
|
|
|
|
void USBHIDParser::driver_ready_for_hid_collection(USBHIDInput *driver)
|
|
{
|
|
driver->next = NULL;
|
|
if (available_hid_drivers_list == NULL) {
|
|
available_hid_drivers_list = driver;
|
|
} else {
|
|
USBHIDInput *last = available_hid_drivers_list;
|
|
while (last->next) last = last->next;
|
|
last->next = driver;
|
|
}
|
|
}
|
|
|
|
// When a new top level collection is found, this function asks drivers
|
|
// if they wish to claim it. The driver taking ownership of the
|
|
// collection is returned, or NULL if no driver wants it.
|
|
USBHIDInput * USBHIDParser::find_driver(uint32_t topusage)
|
|
{
|
|
println("find_driver");
|
|
USBHIDInput *driver = available_hid_drivers_list;
|
|
hidclaim_t claim_type;
|
|
while (driver) {
|
|
println(" driver ", (uint32_t)driver, HEX);
|
|
if ((claim_type = driver->claim_collection(this, device, topusage)) != CLAIM_NO) {
|
|
if (claim_type == CLAIM_INTERFACE) hid_driver_claimed_control_ = true;
|
|
return driver;
|
|
}
|
|
driver = driver->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Extract 1 to 32 bits from the data array, starting at bitindex.
|
|
static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits)
|
|
{
|
|
uint32_t output = 0;
|
|
uint32_t bitcount = 0;
|
|
data += (bitindex >> 3);
|
|
uint32_t offset = bitindex & 7;
|
|
if (offset) {
|
|
output = (*data++) >> offset;
|
|
bitcount = 8 - offset;
|
|
}
|
|
while (bitcount < numbits) {
|
|
output |= (uint32_t)(*data++) << bitcount;
|
|
bitcount += 8;
|
|
}
|
|
if (bitcount > numbits && numbits < 32) {
|
|
output &= ((1 << numbits) - 1);
|
|
}
|
|
return output;
|
|
}
|
|
|
|
// convert a number with the specified number of bits from unsigned to signed,
|
|
// so the result is a proper 32 bit signed integer.
|
|
static int32_t signext(uint32_t num, uint32_t bitcount)
|
|
{
|
|
if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) {
|
|
num |= ~((1 << bitcount) - 1);
|
|
}
|
|
return (int32_t)num;
|
|
}
|
|
|
|
// convert a tag's value to a signed integer.
|
|
static int32_t signedval(uint32_t num, uint8_t tag)
|
|
{
|
|
tag &= 3;
|
|
if (tag == 1) return (int8_t)num;
|
|
if (tag == 2) return (int16_t)num;
|
|
return (int32_t)num;
|
|
}
|
|
|
|
// parse the report descriptor and use it to feed the fields of the report
|
|
// to the drivers which have claimed its top level collections
|
|
void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len)
|
|
{
|
|
const uint8_t *p = descriptor;
|
|
const uint8_t *end = p + descsize;
|
|
USBHIDInput *driver = NULL;
|
|
uint32_t topusage = 0;
|
|
uint8_t topusage_index = 0;
|
|
uint8_t collection_level = 0;
|
|
uint16_t usage[USAGE_LIST_LEN] = {0, 0};
|
|
uint8_t usage_count = 0;
|
|
uint8_t report_id = 0;
|
|
uint16_t report_size = 0;
|
|
uint16_t report_count = 0;
|
|
uint16_t usage_page = 0;
|
|
int32_t logical_min = 0;
|
|
int32_t logical_max = 0;
|
|
uint32_t bitindex = 0;
|
|
|
|
while (p < end) {
|
|
uint8_t tag = *p;
|
|
if (tag == 0xFE) { // Long Item (unsupported)
|
|
p += p[1] + 3;
|
|
continue;
|
|
}
|
|
uint32_t val;
|
|
switch (tag & 0x03) { // Short Item data
|
|
case 0: val = 0;
|
|
p++;
|
|
break;
|
|
case 1: val = p[1];
|
|
p += 2;
|
|
break;
|
|
case 2: val = p[1] | (p[2] << 8);
|
|
p += 3;
|
|
break;
|
|
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
|
|
p += 5;
|
|
break;
|
|
}
|
|
if (p > end) break;
|
|
bool reset_local = false;
|
|
switch (tag & 0xFC) {
|
|
case 0x04: // Usage Page (global)
|
|
usage_page = val;
|
|
break;
|
|
case 0x14: // Logical Minimum (global)
|
|
logical_min = signedval(val, tag);
|
|
break;
|
|
case 0x24: // Logical Maximum (global)
|
|
logical_max = signedval(val, tag);
|
|
break;
|
|
case 0x74: // Report Size (global)
|
|
report_size = val;
|
|
break;
|
|
case 0x94: // Report Count (global)
|
|
report_count = val;
|
|
break;
|
|
case 0x84: // Report ID (global)
|
|
report_id = val;
|
|
break;
|
|
case 0x08: // Usage (local)
|
|
if (usage_count < USAGE_LIST_LEN) {
|
|
// Usages: 0 is reserved 0x1-0x1f is sort of reserved for top level things like
|
|
// 0x1 - Pointer - A collection... So lets try ignoring these
|
|
if (val > 0x1f) {
|
|
usage[usage_count++] = val;
|
|
}
|
|
}
|
|
break;
|
|
case 0x18: // Usage Minimum (local)
|
|
usage[0] = val;
|
|
usage_count = 255;
|
|
break;
|
|
case 0x28: // Usage Maximum (local)
|
|
usage[1] = val;
|
|
usage_count = 255;
|
|
break;
|
|
case 0xA0: // Collection
|
|
if (collection_level == 0) {
|
|
topusage = ((uint32_t)usage_page << 16) | usage[0];
|
|
driver = NULL;
|
|
if (topusage_index < TOPUSAGE_LIST_LEN) {
|
|
driver = topusage_drivers[topusage_index++];
|
|
}
|
|
}
|
|
// discard collection info if not top level, hopefully that's ok?
|
|
collection_level++;
|
|
reset_local = true;
|
|
break;
|
|
case 0xC0: // End Collection
|
|
if (collection_level > 0) {
|
|
collection_level--;
|
|
if (collection_level == 0 && driver != NULL) {
|
|
driver->hid_input_end();
|
|
driver = NULL;
|
|
}
|
|
}
|
|
reset_local = true;
|
|
break;
|
|
case 0x80: // Input
|
|
if (use_report_id && (report_id != (type_and_report_id & 0xFF))) {
|
|
// completely ignore and do not advance bitindex
|
|
// for descriptors of other report IDs
|
|
reset_local = true;
|
|
break;
|
|
}
|
|
if ((val & 1) || (driver == NULL)) {
|
|
// skip past constant fields or when no driver is listening
|
|
bitindex += report_count * report_size;
|
|
} else {
|
|
println("begin, usage=", topusage, HEX);
|
|
println(" type= ", val, HEX);
|
|
println(" min= ", logical_min);
|
|
println(" max= ", logical_max);
|
|
println(" reportcount=", report_count);
|
|
println(" usage count=", usage_count);
|
|
driver->hid_input_begin(topusage, val, logical_min, logical_max);
|
|
println("Input, total bits=", report_count * report_size);
|
|
if ((val & 2)) {
|
|
// ordinary variable format
|
|
uint32_t uindex = 0;
|
|
bool uminmax = false;
|
|
if (usage_count > USAGE_LIST_LEN || usage_count == 0) {
|
|
// usage numbers by min/max, not from list
|
|
uindex = usage[0];
|
|
uminmax = true;
|
|
}
|
|
for (uint32_t i=0; i < report_count; i++) {
|
|
uint32_t u;
|
|
if (uminmax) {
|
|
u = uindex;
|
|
if (uindex < usage[1]) uindex++;
|
|
} else {
|
|
u = usage[uindex++];
|
|
if (uindex >= USAGE_LIST_LEN-1) {
|
|
uindex = USAGE_LIST_LEN-1;
|
|
}
|
|
}
|
|
u |= (uint32_t)usage_page << 16;
|
|
print(" usage = ", u, HEX);
|
|
|
|
uint32_t n = bitfield(data, bitindex, report_size);
|
|
if (logical_min >= 0) {
|
|
println(" data = ", n);
|
|
driver->hid_input_data(u, n);
|
|
} else {
|
|
int32_t sn = signext(n, report_size);
|
|
println(" sdata = ", sn);
|
|
driver->hid_input_data(u, sn);
|
|
}
|
|
bitindex += report_size;
|
|
}
|
|
} else {
|
|
// array format, each item is a usage number
|
|
for (uint32_t i=0; i < report_count; i++) {
|
|
uint32_t u = bitfield(data, bitindex, report_size);
|
|
int n = u;
|
|
if (n >= logical_min && n <= logical_max) {
|
|
u |= (uint32_t)usage_page << 16;
|
|
print(" usage = ", u, HEX);
|
|
println(" data = 1");
|
|
driver->hid_input_data(u, 1);
|
|
} else {
|
|
print (" usage =", u, HEX);
|
|
print(" out of range: ", logical_min, HEX);
|
|
println(" ", logical_max, HEX);
|
|
}
|
|
bitindex += report_size;
|
|
}
|
|
}
|
|
}
|
|
reset_local = true;
|
|
break;
|
|
case 0x90: // Output
|
|
// TODO.....
|
|
reset_local = true;
|
|
break;
|
|
case 0xB0: // Feature
|
|
// TODO.....
|
|
reset_local = true;
|
|
break;
|
|
|
|
case 0x34: // Physical Minimum (global)
|
|
case 0x44: // Physical Maximum (global)
|
|
case 0x54: // Unit Exponent (global)
|
|
case 0x64: // Unit (global)
|
|
break; // Ignore these commonly used tags. Hopefully not needed?
|
|
|
|
case 0xA4: // Push (yikes! Hope nobody really uses this?!)
|
|
case 0xB4: // Pop (yikes! Hope nobody really uses this?!)
|
|
case 0x38: // Designator Index (local)
|
|
case 0x48: // Designator Minimum (local)
|
|
case 0x58: // Designator Maximum (local)
|
|
case 0x78: // String Index (local)
|
|
case 0x88: // String Minimum (local)
|
|
case 0x98: // String Maximum (local)
|
|
case 0xA8: // Delimiter (local)
|
|
default:
|
|
println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX);
|
|
break;
|
|
}
|
|
if (reset_local) {
|
|
usage_count = 0;
|
|
usage[0] = 0;
|
|
usage[1] = 0;
|
|
}
|
|
}
|
|
}
|
|
|