1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-21 08:35:03 -05:00
USBHost_t36/USBHost_t36.h
Paul Stoffregen 84d1df0065
Merge pull request #14 from KurtE/Joystick_More_Axis_Rumble
Joystick - USB enhance More Axis, Rumble, LEDS
2018-01-14 19:31:25 -08:00

1536 lines
56 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USB_HOST_TEENSY36_
#define USB_HOST_TEENSY36_
#include <stdint.h>
#if !defined(__MK66FX1M0__)
#error "USBHost_t36 only works with Teensy 3.6. Please select it in Tools > Boards"
#endif
// Dear inquisitive reader, USB is a complex protocol defined with
// very specific terminology. To have any chance of understand this
// source code, you absolutely must have solid knowledge of specific
// USB terms such as host, device, endpoint, pipe, enumeration....
// You really must also have at least a basic knowledge of the
// different USB transfers: control, bulk, interrupt, isochronous.
//
// The USB 2.0 specification explains these in chapter 4 (pages 15
// to 24), and provides more detail in the first part of chapter 5
// (pages 25 to 55). The USB spec is published for free at
// www.usb.org. Here is a convenient link to just the main PDF:
//
// https://www.pjrc.com/teensy/beta/usb20.pdf
//
// This is a huge file, but chapter 4 is short and easy to read.
// If you're not familiar with the USB lingo, please do yourself
// a favor by reading at least chapter 4 to get up to speed on the
// meaning of these important USB concepts and terminology.
//
// If you wish to ask questions (which belong on the forum, not
// github issues) or discuss development of this library, you
// ABSOLUTELY MUST know the basic USB terminology from chapter 4.
// Please repect other people's valuable time & effort by making
// your best effort to read chapter 4 before asking USB questions!
//#define USBHOST_PRINT_DEBUG
/************************************************/
/* Data Types */
/************************************************/
// These 6 types are the key to understanding how this USB Host
// library really works.
// USBHost is a static class controlling the hardware.
// All common USB functionality is implemented here.
class USBHost;
// These 3 structures represent the actual USB entities
// USBHost manipulates. One Device_t is created for
// each active USB device. One Pipe_t is create for
// each endpoint. Transfer_t structures are created
// when any data transfer is added to the EHCI work
// queues, and then returned to the free pool after the
// data transfer completes and the driver has processed
// the results.
typedef struct Device_struct Device_t;
typedef struct Pipe_struct Pipe_t;
typedef struct Transfer_struct Transfer_t;
typedef enum { CLAIM_NO=0, CLAIM_REPORT, CLAIM_INTERFACE} hidclaim_t;
// All USB device drivers inherit use these classes.
// Drivers build user-visible functionality on top
// of these classes, which receive USB events from
// USBHost.
class USBDriver;
class USBDriverTimer;
/************************************************/
/* Added Defines */
/************************************************/
// Keyboard special Keys
#define KEYD_UP 0xDA
#define KEYD_DOWN 0xD9
#define KEYD_LEFT 0xD8
#define KEYD_RIGHT 0xD7
#define KEYD_INSERT 0xD1
#define KEYD_DELETE 0xD4
#define KEYD_PAGE_UP 0xD3
#define KEYD_PAGE_DOWN 0xD6
#define KEYD_HOME 0xD2
#define KEYD_END 0xD5
#define KEYD_F1 0xC2
#define KEYD_F2 0xC3
#define KEYD_F3 0xC4
#define KEYD_F4 0xC5
#define KEYD_F5 0xC6
#define KEYD_F6 0xC7
#define KEYD_F7 0xC8
#define KEYD_F8 0xC9
#define KEYD_F9 0xCA
#define KEYD_F10 0xCB
#define KEYD_F11 0xCC
#define KEYD_F12 0xCD
// USBSerial formats - Lets encode format into bits
// Bits: 0-4 - Number of data bits
// Bits: 5-7 - Parity (0=none, 1=odd, 2 = even)
// bits: 8-9 - Stop bits. 0=1, 1=2
#define USBHOST_SERIAL_7E1 0x047
#define USBHOST_SERIAL_7O1 0x027
#define USBHOST_SERIAL_8N1 0x08
#define USBHOST_SERIAL_8N2 0x108
#define USBHOST_SERIAL_8E1 0x048
#define USBHOST_SERIAL_8O1 0x028
/************************************************/
/* Data Structure Definitions */
/************************************************/
// setup_t holds the 8 byte USB SETUP packet data.
// These unions & structs allow convenient access to
// the setup fields.
typedef union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup_t;
typedef struct {
enum {STRING_BUF_SIZE=50};
enum {STR_ID_MAN=0, STR_ID_PROD, STR_ID_SERIAL, STR_ID_CNT};
uint8_t iStrings[STR_ID_CNT]; // Index into array for the three indexes
uint8_t buffer[STRING_BUF_SIZE];
} strbuf_t;
#define DEVICE_STRUCT_STRING_BUF_SIZE 50
// Device_t holds all the information about a USB device
struct Device_struct {
Pipe_t *control_pipe;
Pipe_t *data_pipes;
Device_t *next;
USBDriver *drivers;
strbuf_t *strbuf;
uint8_t speed; // 0=12, 1=1.5, 2=480 Mbit/sec
uint8_t address;
uint8_t hub_address;
uint8_t hub_port;
uint8_t enum_state;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bmAttributes;
uint8_t bMaxPower;
uint16_t idVendor;
uint16_t idProduct;
uint16_t LanguageID;
};
// Pipe_t holes all information about each USB endpoint/pipe
// The first half is an EHCI QH structure for the pipe.
struct Pipe_struct {
// Queue Head (QH), EHCI page 46-50
struct { // must be aligned to 32 byte boundary
volatile uint32_t horizontal_link;
volatile uint32_t capabilities[2];
volatile uint32_t current;
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qh;
Device_t *device;
uint8_t type; // 0=control, 1=isochronous, 2=bulk, 3=interrupt
uint8_t direction; // 0=out, 1=in (changes for control, others fixed)
uint8_t start_mask;
uint8_t complete_mask;
Pipe_t *next;
void (*callback_function)(const Transfer_t *);
uint16_t periodic_interval;
uint16_t periodic_offset;
uint16_t bandwidth_interval;
uint16_t bandwidth_offset;
uint16_t bandwidth_shift;
uint8_t bandwidth_stime;
uint8_t bandwidth_ctime;
uint32_t unused1;
uint32_t unused2;
uint32_t unused3;
uint32_t unused4;
uint32_t unused5;
};
// Transfer_t represents a single transaction on the USB bus.
// The first portion is an EHCI qTD structure. Transfer_t are
// allocated as-needed from a memory pool, loaded with pointers
// to the actual data buffers, linked into a followup list,
// and placed on ECHI Queue Heads. When the ECHI interrupt
// occurs, the followup lists are used to find the Transfer_t
// in memory. Callbacks are made, and then the Transfer_t are
// returned to the memory pool.
struct Transfer_struct {
// Queue Element Transfer Descriptor (qTD), EHCI pg 40-45
struct { // must be aligned to 32 byte boundary
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qtd;
// Linked list of queued, not-yet-completed transfers
Transfer_t *next_followup;
Transfer_t *prev_followup;
Pipe_t *pipe;
// Data to be used by callback function. When a group
// of Transfer_t are created, these fields and the
// interrupt-on-complete bit in the qTD token are only
// set in the last Transfer_t of the list.
void *buffer;
uint32_t length;
setup_t setup;
USBDriver *driver;
};
/************************************************/
/* Main USB EHCI Controller */
/************************************************/
class USBHost {
public:
static void begin();
static void Task();
static void countFree(uint32_t &devices, uint32_t &pipes, uint32_t &trans, uint32_t &strs);
protected:
static Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
uint32_t direction, uint32_t maxlen, uint32_t interval=0);
static bool queue_Control_Transfer(Device_t *dev, setup_t *setup,
void *buf, USBDriver *driver);
static bool queue_Data_Transfer(Pipe_t *pipe, void *buffer,
uint32_t len, USBDriver *driver);
static Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port);
static void disconnect_Device(Device_t *dev);
static void enumeration(const Transfer_t *transfer);
static void driver_ready_for_device(USBDriver *driver);
static volatile bool enumeration_busy;
public: // Maybe others may want/need to contribute memory example HID devices may want to add transfers.
static void contribute_Devices(Device_t *devices, uint32_t num);
static void contribute_Pipes(Pipe_t *pipes, uint32_t num);
static void contribute_Transfers(Transfer_t *transfers, uint32_t num);
static void contribute_String_Buffers(strbuf_t *strbuf, uint32_t num);
private:
static void isr();
static void convertStringDescriptorToASCIIString(uint8_t string_index, Device_t *dev, const Transfer_t *transfer);
static void claim_drivers(Device_t *dev);
static uint32_t assign_address(void);
static bool queue_Transfer(Pipe_t *pipe, Transfer_t *transfer);
static void init_Device_Pipe_Transfer_memory(void);
static Device_t * allocate_Device(void);
static void delete_Pipe(Pipe_t *pipe);
static void free_Device(Device_t *q);
static Pipe_t * allocate_Pipe(void);
static void free_Pipe(Pipe_t *q);
static Transfer_t * allocate_Transfer(void);
static void free_Transfer(Transfer_t *q);
static strbuf_t * allocate_string_buffer(void);
static void free_string_buffer(strbuf_t *strbuf);
static bool allocate_interrupt_pipe_bandwidth(Pipe_t *pipe,
uint32_t maxlen, uint32_t interval);
static void add_qh_to_periodic_schedule(Pipe_t *pipe);
static bool followup_Transfer(Transfer_t *transfer);
static void followup_Error(void);
protected:
#ifdef USBHOST_PRINT_DEBUG
static void print_(const Transfer_t *transfer);
static void print_(const Transfer_t *first, const Transfer_t *last);
static void print_token(uint32_t token);
static void print_(const Pipe_t *pipe);
static void print_driverlist(const char *name, const USBDriver *driver);
static void print_qh_list(const Pipe_t *list);
static void print_hexbytes(const void *ptr, uint32_t len);
static void print_(const char *s) { Serial.print(s); }
static void print_(int n) { Serial.print(n); }
static void print_(unsigned int n) { Serial.print(n); }
static void print_(long n) { Serial.print(n); }
static void print_(unsigned long n) { Serial.print(n); }
static void println_(const char *s) { Serial.println(s); }
static void println_(int n) { Serial.println(n); }
static void println_(unsigned int n) { Serial.println(n); }
static void println_(long n) { Serial.println(n); }
static void println_(unsigned long n) { Serial.println(n); }
static void println_() { Serial.println(); }
static void print_(uint32_t n, uint8_t b) { Serial.print(n, b); }
static void println_(uint32_t n, uint8_t b) { Serial.println(n, b); }
static void print_(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print_(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print_(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print_(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void println_(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println_(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println_(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println_(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
friend class USBDriverTimer; // for access to print & println
#else
static void print_(const Transfer_t *transfer) {}
static void print_(const Transfer_t *first, const Transfer_t *last) {}
static void print_token(uint32_t token) {}
static void print_(const Pipe_t *pipe) {}
static void print_driverlist(const char *name, const USBDriver *driver) {}
static void print_qh_list(const Pipe_t *list) {}
static void print_hexbytes(const void *ptr, uint32_t len) {}
static void print_(const char *s) {}
static void print_(int n) {}
static void print_(unsigned int n) {}
static void print_(long n) {}
static void print_(unsigned long n) {}
static void println_(const char *s) {}
static void println_(int n) {}
static void println_(unsigned int n) {}
static void println_(long n) {}
static void println_(unsigned long n) {}
static void println_() {}
static void print_(uint32_t n, uint8_t b) {}
static void println_(uint32_t n, uint8_t b) {}
static void print_(const char *s, int n, uint8_t b = DEC) {}
static void print_(const char *s, unsigned int n, uint8_t b = DEC) {}
static void print_(const char *s, long n, uint8_t b = DEC) {}
static void print_(const char *s, unsigned long n, uint8_t b = DEC) {}
static void println_(const char *s, int n, uint8_t b = DEC) {}
static void println_(const char *s, unsigned int n, uint8_t b = DEC) {}
static void println_(const char *s, long n, uint8_t b = DEC) {}
static void println_(const char *s, unsigned long n, uint8_t b = DEC) {}
#endif
static void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength) {
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
s.word2 = wIndex | (wLength << 16);
}
};
/************************************************/
/* USB Device Driver Common Base Class */
/************************************************/
// All USB device drivers inherit from this base class.
class USBDriver : public USBHost {
public:
operator bool() {
Device_t *dev = *(Device_t * volatile *)&device;
return dev != nullptr;
}
uint16_t idVendor() {
Device_t *dev = *(Device_t * volatile *)&device;
return (dev != nullptr) ? dev->idVendor : 0;
}
uint16_t idProduct() {
Device_t *dev = *(Device_t * volatile *)&device;
return (dev != nullptr) ? dev->idProduct : 0;
}
const uint8_t *manufacturer() {
Device_t *dev = *(Device_t * volatile *)&device;
if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_MAN]];
}
const uint8_t *product() {
Device_t *dev = *(Device_t * volatile *)&device;
if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_PROD]];
}
const uint8_t *serialNumber() {
Device_t *dev = *(Device_t * volatile *)&device;
if (dev == nullptr || dev->strbuf == nullptr) return nullptr;
return &dev->strbuf->buffer[dev->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]];
}
protected:
USBDriver() : next(NULL), device(NULL) {}
// Check if a driver wishes to claim a device or interface or group
// of interfaces within a device. When this function returns true,
// the driver is considered bound or loaded for that device. When
// new devices are detected, enumeration.cpp calls this function on
// all unbound driver objects, to give them an opportunity to bind
// to the new device.
// device has its vid&pid, class/subclass fields initialized
// type is 0 for device level, 1 for interface level, 2 for IAD
// descriptors points to the specific descriptor data
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
// When an unknown (not chapter 9) control transfer completes, this
// function is called for all drivers bound to the device. Return
// true means this driver originated this control transfer, so no
// more drivers need to be offered an opportunity to process it.
// This function is optional, only needed if the driver uses control
// transfers and wishes to be notified when they complete.
virtual void control(const Transfer_t *transfer) { }
// When any of the USBDriverTimer objects a driver creates generates
// a timer event, this function is called.
virtual void timer_event(USBDriverTimer *whichTimer) { }
// When the user calls USBHost::Task, this Task function for all
// active drivers is called, so they may update state and/or call
// any attached user callback functions.
virtual void Task() { }
// When a device disconnects from the USB, this function is called.
// The driver must free all resources it allocated and update any
// internal state necessary to deal with the possibility of user
// code continuing to call its API. However, pipes and transfers
// are the handled by lower layers, so device drivers do not free
// pipes they created or cancel transfers they had in progress.
virtual void disconnect();
// Drivers are managed by this single-linked list. All inactive
// (not bound to any device) drivers are linked from
// available_drivers in enumeration.cpp. When bound to a device,
// drivers are linked from that Device_t drivers list.
USBDriver *next;
// The device this object instance is bound to. In words, this
// is the specific device this driver is using. When not bound
// to any device, this must be NULL. Drivers may set this to
// any non-NULL value if they are in a state where they do not
// wish to claim any device or interface (eg, if getting data
// from the HID parser).
Device_t *device;
friend class USBHost;
};
// Device drivers may create these timer objects to schedule a timer call
class USBDriverTimer {
public:
USBDriverTimer() { }
USBDriverTimer(USBDriver *d) : driver(d) { }
void init(USBDriver *d) { driver = d; };
void start(uint32_t microseconds);
void stop();
void *pointer;
uint32_t integer;
uint32_t started_micros; // testing only
private:
USBDriver *driver;
uint32_t usec;
USBDriverTimer *next;
USBDriverTimer *prev;
friend class USBHost;
};
// Device drivers may inherit from this base class, if they wish to receive
// HID input data fully decoded by the USBHIDParser driver
class USBHIDParser;
class USBHIDInput {
public:
operator bool() { return (mydevice != nullptr); }
uint16_t idVendor() { return (mydevice != nullptr) ? mydevice->idVendor : 0; }
uint16_t idProduct() { return (mydevice != nullptr) ? mydevice->idProduct : 0; }
const uint8_t *manufacturer()
{ return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_MAN]]; }
const uint8_t *product()
{ return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_PROD]]; }
const uint8_t *serialNumber()
{ return ((mydevice == nullptr) || (mydevice->strbuf == nullptr)) ? nullptr : &mydevice->strbuf->buffer[mydevice->strbuf->iStrings[strbuf_t::STR_ID_SERIAL]]; }
private:
virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
virtual bool hid_process_in_data(const Transfer_t *transfer) {return false;}
virtual bool hid_process_out_data(const Transfer_t *transfer) {return false;}
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
void add_to_list();
USBHIDInput *next;
friend class USBHIDParser;
protected:
Device_t *mydevice = NULL;
};
/************************************************/
/* USB Device Drivers */
/************************************************/
class USBHub : public USBDriver {
public:
USBHub(USBHost &host) : debouncetimer(this), resettimer(this) { init(); }
USBHub(USBHost *host) : debouncetimer(this), resettimer(this) { init(); }
// Hubs with more more than 7 ports are built from two tiers of hubs
// using 4 or 7 port hub chips. While the USB spec seems to allow
// hubs to have up to 255 ports, in practice all hub chips on the
// market are only 2, 3, 4 or 7 ports.
enum { MAXPORTS = 7 };
typedef uint8_t portbitmask_t;
enum {
PORT_OFF = 0,
PORT_DISCONNECT = 1,
PORT_DEBOUNCE1 = 2,
PORT_DEBOUNCE2 = 3,
PORT_DEBOUNCE3 = 4,
PORT_DEBOUNCE4 = 5,
PORT_DEBOUNCE5 = 6,
PORT_RESET = 7,
PORT_RECOVERY = 8,
PORT_ACTIVE = 9
};
protected:
virtual bool claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void timer_event(USBDriverTimer *whichTimer);
virtual void disconnect();
void init();
bool can_send_control_now();
void send_poweron(uint32_t port);
void send_getstatus(uint32_t port);
void send_clearstatus_connect(uint32_t port);
void send_clearstatus_enable(uint32_t port);
void send_clearstatus_suspend(uint32_t port);
void send_clearstatus_overcurrent(uint32_t port);
void send_clearstatus_reset(uint32_t port);
void send_setreset(uint32_t port);
static void callback(const Transfer_t *transfer);
void status_change(const Transfer_t *transfer);
void new_port_status(uint32_t port, uint32_t status);
void start_debounce_timer(uint32_t port);
void stop_debounce_timer(uint32_t port);
private:
Device_t mydevices[MAXPORTS];
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
USBDriverTimer debouncetimer;
USBDriverTimer resettimer;
setup_t setup;
Pipe_t *changepipe;
Device_t *devicelist[MAXPORTS];
uint32_t changebits;
uint32_t statusbits;
uint8_t hub_desc[16];
uint8_t endpoint;
uint8_t interval;
uint8_t numports;
uint8_t characteristics;
uint8_t powertime;
uint8_t sending_control_transfer;
uint8_t port_doing_reset;
uint8_t port_doing_reset_speed;
uint8_t portstate[MAXPORTS];
portbitmask_t send_pending_poweron;
portbitmask_t send_pending_getstatus;
portbitmask_t send_pending_clearstatus_connect;
portbitmask_t send_pending_clearstatus_enable;
portbitmask_t send_pending_clearstatus_suspend;
portbitmask_t send_pending_clearstatus_overcurrent;
portbitmask_t send_pending_clearstatus_reset;
portbitmask_t send_pending_setreset;
portbitmask_t debounce_in_use;
static volatile bool reset_busy;
};
//--------------------------------------------------------------------------
class USBHIDParser : public USBDriver {
public:
USBHIDParser(USBHost &host) { init(); }
static void driver_ready_for_hid_collection(USBHIDInput *driver);
bool sendPacket(const uint8_t *buffer, int cb=-1);
void setTXBuffers(uint8_t *buffer1, uint8_t *buffer2, uint8_t cb);
bool sendControlPacket(uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength, void *buf);
protected:
enum { TOPUSAGE_LIST_LEN = 4 };
enum { USAGE_LIST_LEN = 24 };
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void in_callback(const Transfer_t *transfer);
static void out_callback(const Transfer_t *transfer);
void in_data(const Transfer_t *transfer);
void out_data(const Transfer_t *transfer);
bool check_if_using_report_id();
void parse();
USBHIDInput * find_driver(uint32_t topusage);
void parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len);
void init();
// Atempt for RAWhid to take over processing of data
//
uint16_t inSize(void) {return in_size;}
uint16_t outSize(void) {return out_size;}
uint8_t activeSendMask(void) {return txstate;}
private:
Pipe_t *in_pipe;
Pipe_t *out_pipe;
static USBHIDInput *available_hid_drivers_list;
//uint32_t topusage_list[TOPUSAGE_LIST_LEN];
USBHIDInput *topusage_drivers[TOPUSAGE_LIST_LEN];
uint16_t in_size;
uint16_t out_size;
setup_t setup;
uint8_t descriptor[512];
uint8_t report[64];
uint16_t descsize;
bool use_report_id;
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
uint8_t txstate = 0;
uint8_t *tx1 = nullptr;
uint8_t *tx2 = nullptr;
bool hid_driver_claimed_control_ = false;
};
//--------------------------------------------------------------------------
class KeyboardController : public USBDriver , public USBHIDInput {
public:
typedef union {
struct {
uint8_t numLock : 1;
uint8_t capsLock : 1;
uint8_t scrollLock : 1;
uint8_t compose : 1;
uint8_t kana : 1;
uint8_t reserved : 3;
};
uint8_t byte;
} KBDLeds_t;
public:
KeyboardController(USBHost &host) { init(); }
KeyboardController(USBHost *host) { init(); }
// Some methods are in both public classes so we need to figure out which one to use
operator bool() { return (device != nullptr); }
// Main boot keyboard functions.
uint16_t getKey() { return keyCode; }
uint8_t getModifiers() { return modifiers; }
uint8_t getOemKey() { return keyOEM; }
void attachPress(void (*f)(int unicode)) { keyPressedFunction = f; }
void attachRelease(void (*f)(int unicode)) { keyReleasedFunction = f; }
void LEDS(uint8_t leds);
uint8_t LEDS() {return leds_.byte;}
void updateLEDS(void);
bool numLock() {return leds_.numLock;}
bool capsLock() {return leds_.capsLock;}
bool scrollLock() {return leds_.scrollLock;}
void numLock(bool f);
void capsLock(bool f);
void scrollLock(bool f);
// Added for extras information.
void attachExtrasPress(void (*f)(uint32_t top, uint16_t code)) { extrasKeyPressedFunction = f; }
void attachExtrasRelease(void (*f)(uint32_t top, uint16_t code)) { extrasKeyReleasedFunction = f; }
enum {MAX_KEYS_DOWN=4};
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void callback(const Transfer_t *transfer);
void new_data(const Transfer_t *transfer);
void init();
protected: // HID functions for extra keyboard data.
virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
void update();
uint16_t convert_to_unicode(uint32_t mod, uint32_t key);
void key_press(uint32_t mod, uint32_t key);
void key_release(uint32_t mod, uint32_t key);
void (*keyPressedFunction)(int unicode);
void (*keyReleasedFunction)(int unicode);
Pipe_t *datapipe;
setup_t setup;
uint8_t report[8];
uint16_t keyCode;
uint8_t modifiers;
uint8_t keyOEM;
uint8_t prev_report[8];
KBDLeds_t leds_ = {0};
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
// Added to process secondary HID data.
void (*extrasKeyPressedFunction)(uint32_t top, uint16_t code);
void (*extrasKeyReleasedFunction)(uint32_t top, uint16_t code);
uint32_t topusage_ = 0; // What top report am I processing?
uint8_t collections_claimed_ = 0;
volatile bool hid_input_begin_ = false;
volatile bool hid_input_data_ = false; // did we receive any valid data with report?
uint8_t count_keys_down_ = 0;
uint16_t keys_down[MAX_KEYS_DOWN];
};
class MouseController : public USBHIDInput {
public:
MouseController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
bool available() { return mouseEvent; }
void mouseDataClear();
uint8_t getButtons() { return buttons; }
int getMouseX() { return mouseX; }
int getMouseY() { return mouseY; }
int getWheel() { return wheel; }
int getWheelH() { return wheelH; }
protected:
virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
uint8_t collections_claimed = 0;
volatile bool mouseEvent = false;
volatile bool hid_input_begin_ = false;
uint8_t buttons = 0;
int mouseX = 0;
int mouseY = 0;
int wheel = 0;
int wheelH = 0;
};
//--------------------------------------------------------------------------
class JoystickController : public USBDriver, public USBHIDInput {
public:
JoystickController(USBHost &host) { init(); }
uint16_t idVendor();
uint16_t idProduct();
const uint8_t *manufacturer();
const uint8_t *product();
const uint8_t *serialNumber();
operator bool() { return ((device != nullptr) || (mydevice != nullptr)); } // override as in both USBDriver and in USBHIDInput
bool available() { return joystickEvent; }
void joystickDataClear();
uint32_t getButtons() { return buttons; }
int getAxis(uint32_t index) { return (index < (sizeof(axis)/sizeof(axis[0]))) ? axis[index] : 0; }
uint64_t axisMask() {return axis_mask_;}
uint64_t axisChangedMask() { return axis_changed_mask_;}
uint64_t axisChangeNotifyMask() {return axis_change_notify_mask_;}
void axisChangeNotifyMask(uint64_t notify_mask) {axis_change_notify_mask_ = notify_mask;}
// set functions functionality depends on underlying joystick.
bool setRumble(uint8_t lValue, uint8_t rValue, uint8_t timeout=0xff);
// setLEDs on PS4(RGB), PS3 simple LED setting (only uses lr)
bool setLEDs(uint8_t lr, uint8_t lg=0, uint8_t lb=0); // sets Leds,
enum { STANDARD_AXIS_COUNT = 10, ADDITIONAL_AXIS_COUNT = 54, TOTAL_AXIS_COUNT = (STANDARD_AXIS_COUNT+ADDITIONAL_AXIS_COUNT) };
typedef enum { UNKNOWN=0, PS3, PS4, XBOXONE} joytype_t;
joytype_t joystickType = UNKNOWN;
protected:
// From USBDriver
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
// From USBHIDInput
virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
virtual bool hid_process_out_data(const Transfer_t *transfer);
private:
// Class specific
void init();
USBHIDParser *driver_ = nullptr;
joytype_t mapVIDPIDtoJoystickType(uint16_t idVendor, uint16_t idProduct, bool exclude_hid_devices);
bool transmitPS4UserFeedbackMsg();
bool transmitPS3UserFeedbackMsg();
bool anychange = false;
volatile bool joystickEvent = false;
uint32_t buttons = 0;
int axis[TOTAL_AXIS_COUNT] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint64_t axis_mask_ = 0; // which axis have valid data
uint64_t axis_changed_mask_ = 0;
uint64_t axis_change_notify_mask_ = 0x3ff; // assume the low 10 values only.
uint16_t additional_axis_usage_page_ = 0;
uint16_t additional_axis_usage_start_ = 0;
uint16_t additional_axis_usage_count_ = 0;
// State values to output to Joystick.
uint8_t rumble_lValue_ = 0;
uint8_t rumble_rValue_ = 0;
uint8_t rumble_timeout_ = 0;
uint8_t leds_[3] = {0,0,0};
// Used by HID code
uint8_t collections_claimed = 0;
// Used by USBDriver code
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
uint16_t rx_size_ = 0;
uint16_t tx_size_ = 0;
Pipe_t *rxpipe_;
Pipe_t *txpipe_;
uint8_t rxbuf_[64]; // receive circular buffer
uint8_t txbuf_[64]; // buffer to use to send commands to joystick
// Mapping table to say which devices we handle
typedef struct {
uint16_t idVendor;
uint16_t idProduct;
joytype_t joyType;
bool hidDevice;
} product_vendor_mapping_t;
static product_vendor_mapping_t pid_vid_mapping[];
};
//--------------------------------------------------------------------------
class MIDIDevice : public USBDriver {
public:
enum { SYSEX_MAX_LEN = 290 };
// Message type names for compatibility with Arduino MIDI library 4.3.1
enum MidiType {
InvalidType = 0x00, // For notifying errors
NoteOff = 0x80, // Note Off
NoteOn = 0x90, // Note On
AfterTouchPoly = 0xA0, // Polyphonic AfterTouch
ControlChange = 0xB0, // Control Change / Channel Mode
ProgramChange = 0xC0, // Program Change
AfterTouchChannel = 0xD0, // Channel (monophonic) AfterTouch
PitchBend = 0xE0, // Pitch Bend
SystemExclusive = 0xF0, // System Exclusive
TimeCodeQuarterFrame = 0xF1, // System Common - MIDI Time Code Quarter Frame
SongPosition = 0xF2, // System Common - Song Position Pointer
SongSelect = 0xF3, // System Common - Song Select
TuneRequest = 0xF6, // System Common - Tune Request
Clock = 0xF8, // System Real Time - Timing Clock
Start = 0xFA, // System Real Time - Start
Continue = 0xFB, // System Real Time - Continue
Stop = 0xFC, // System Real Time - Stop
ActiveSensing = 0xFE, // System Real Time - Active Sensing
SystemReset = 0xFF, // System Real Time - System Reset
};
MIDIDevice(USBHost &host) { init(); }
MIDIDevice(USBHost *host) { init(); }
void sendNoteOff(uint8_t note, uint8_t velocity, uint8_t channel, uint8_t cable=0) {
send(0x80, note, velocity, channel, cable);
}
void sendNoteOn(uint8_t note, uint8_t velocity, uint8_t channel, uint8_t cable=0) {
send(0x90, note, velocity, channel, cable);
}
void sendPolyPressure(uint8_t note, uint8_t pressure, uint8_t channel, uint8_t cable=0) {
send(0xA0, note, pressure, channel, cable);
}
void sendAfterTouchPoly(uint8_t note, uint8_t pressure, uint8_t channel, uint8_t cable=0) {
send(0xA0, note, pressure, channel, cable);
}
void sendControlChange(uint8_t control, uint8_t value, uint8_t channel, uint8_t cable=0) {
send(0xB0, control, value, channel, cable);
}
void sendProgramChange(uint8_t program, uint8_t channel, uint8_t cable=0) {
send(0xC0, program, 0, channel, cable);
}
void sendAfterTouch(uint8_t pressure, uint8_t channel, uint8_t cable=0) {
send(0xD0, pressure, 0, channel, cable);
}
void sendPitchBend(int value, uint8_t channel, uint8_t cable=0) {
if (value < -8192) {
value = -8192;
} else if (value > 8191) {
value = 8191;
}
value += 8192;
send(0xE0, value, value >> 7, channel, cable);
}
void sendSysEx(uint32_t length, const uint8_t *data, bool hasTerm=false, uint8_t cable=0) {
//if (cable >= MIDI_NUM_CABLES) return;
if (hasTerm) {
send_sysex_buffer_has_term(data, length, cable);
} else {
send_sysex_add_term_bytes(data, length, cable);
}
}
void sendRealTime(uint8_t type, uint8_t cable=0) {
switch (type) {
case 0xF8: // Clock
case 0xFA: // Start
case 0xFB: // Continue
case 0xFC: // Stop
case 0xFE: // ActiveSensing
case 0xFF: // SystemReset
send(type, 0, 0, 0, cable);
break;
default: // Invalid Real Time marker
break;
}
}
void sendTimeCodeQuarterFrame(uint8_t type, uint8_t value, uint8_t cable=0) {
send(0xF1, ((type & 0x07) << 4) | (value & 0x0F), 0, 0, cable);
}
void sendSongPosition(uint16_t beats, uint8_t cable=0) {
send(0xF2, beats, beats >> 7, 0, cable);
}
void sendSongSelect(uint8_t song, uint8_t cable=0) {
send(0xF3, song, 0, 0, cable);
}
void sendTuneRequest(uint8_t cable=0) {
send(0xF6, 0, 0, 0, cable);
}
void beginRpn(uint16_t number, uint8_t channel, uint8_t cable=0) {
sendControlChange(101, number >> 7, channel, cable);
sendControlChange(100, number, channel, cable);
}
void sendRpnValue(uint16_t value, uint8_t channel, uint8_t cable=0) {
sendControlChange(6, value >> 7, channel, cable);
sendControlChange(38, value, channel, cable);
}
void sendRpnIncrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
sendControlChange(96, amount, channel, cable);
}
void sendRpnDecrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
sendControlChange(97, amount, channel, cable);
}
void endRpn(uint8_t channel, uint8_t cable=0) {
sendControlChange(101, 0x7F, channel, cable);
sendControlChange(100, 0x7F, channel, cable);
}
void beginNrpn(uint16_t number, uint8_t channel, uint8_t cable=0) {
sendControlChange(99, number >> 7, channel, cable);
sendControlChange(98, number, channel, cable);
}
void sendNrpnValue(uint16_t value, uint8_t channel, uint8_t cable=0) {
sendControlChange(6, value >> 7, channel, cable);
sendControlChange(38, value, channel, cable);
}
void sendNrpnIncrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
sendControlChange(96, amount, channel, cable);
}
void sendNrpnDecrement(uint8_t amount, uint8_t channel, uint8_t cable=0) {
sendControlChange(97, amount, channel, cable);
}
void endNrpn(uint8_t channel, uint8_t cable=0) {
sendControlChange(99, 0x7F, channel, cable);
sendControlChange(98, 0x7F, channel, cable);
}
void send(uint8_t type, uint8_t data1, uint8_t data2, uint8_t channel, uint8_t cable=0) {
//if (cable >= MIDI_NUM_CABLES) return;
if (type < 0xF0) {
if (type < 0x80) return;
type &= 0xF0;
write_packed((type << 8) | (type >> 4) | ((cable & 0x0F) << 4)
| (((channel - 1) & 0x0F) << 8) | ((data1 & 0x7F) << 16)
| ((data2 & 0x7F) << 24));
} else if (type >= 0xF8 || type == 0xF6) {
write_packed((type << 8) | 0x0F | ((cable & 0x0F) << 4));
} else if (type == 0xF1 || type == 0xF3) {
write_packed((type << 8) | 0x02 | ((cable & 0x0F) << 4)
| ((data1 & 0x7F) << 16));
} else if (type == 0xF2) {
write_packed((type << 8) | 0x03 | ((cable & 0x0F) << 4)
| ((data1 & 0x7F) << 16) | ((data2 & 0x7F) << 24));
}
}
void send_now(void) __attribute__((always_inline)) {
}
bool read(uint8_t channel=0);
uint8_t getType(void) {
return msg_type;
};
uint8_t getCable(void) {
return msg_cable;
}
uint8_t getChannel(void) {
return msg_channel;
};
uint8_t getData1(void) {
return msg_data1;
};
uint8_t getData2(void) {
return msg_data2;
};
uint8_t * getSysExArray(void) {
return msg_sysex;
}
void setHandleNoteOff(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
// type: 0x80 NoteOff
handleNoteOff = fptr;
}
void setHandleNoteOn(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
// type: 0x90 NoteOn
handleNoteOn = fptr;
}
void setHandleVelocityChange(void (*fptr)(uint8_t channel, uint8_t note, uint8_t velocity)) {
// type: 0xA0 AfterTouchPoly
handleVelocityChange = fptr;
}
void setHandleAfterTouchPoly(void (*fptr)(uint8_t channel, uint8_t note, uint8_t pressure)) {
// type: 0xA0 AfterTouchPoly
handleVelocityChange = fptr;
}
void setHandleControlChange(void (*fptr)(uint8_t channel, uint8_t control, uint8_t value)) {
// type: 0xB0 ControlChange
handleControlChange = fptr;
}
void setHandleProgramChange(void (*fptr)(uint8_t channel, uint8_t program)) {
// type: 0xC0 ProgramChange
handleProgramChange = fptr;
}
void setHandleAfterTouch(void (*fptr)(uint8_t channel, uint8_t pressure)) {
// type: 0xD0 AfterTouchChannel
handleAfterTouch = fptr;
}
void setHandleAfterTouchChannel(void (*fptr)(uint8_t channel, uint8_t pressure)) {
// type: 0xD0 AfterTouchChannel
handleAfterTouch = fptr;
}
void setHandlePitchChange(void (*fptr)(uint8_t channel, int pitch)) {
// type: 0xE0 PitchBend
handlePitchChange = fptr;
}
void setHandleSysEx(void (*fptr)(const uint8_t *data, uint16_t length, bool complete)) {
// type: 0xF0 SystemExclusive - multiple calls for message bigger than buffer
handleSysExPartial = (void (*)(const uint8_t *, uint16_t, uint8_t))fptr;
}
void setHandleSystemExclusive(void (*fptr)(const uint8_t *data, uint16_t length, bool complete)) {
// type: 0xF0 SystemExclusive - multiple calls for message bigger than buffer
handleSysExPartial = (void (*)(const uint8_t *, uint16_t, uint8_t))fptr;
}
void setHandleSystemExclusive(void (*fptr)(uint8_t *data, unsigned int size)) {
// type: 0xF0 SystemExclusive - single call, message larger than buffer is truncated
handleSysExComplete = fptr;
}
void setHandleTimeCodeQuarterFrame(void (*fptr)(uint8_t data)) {
// type: 0xF1 TimeCodeQuarterFrame
handleTimeCodeQuarterFrame = fptr;
}
void setHandleSongPosition(void (*fptr)(uint16_t beats)) {
// type: 0xF2 SongPosition
handleSongPosition = fptr;
}
void setHandleSongSelect(void (*fptr)(uint8_t songnumber)) {
// type: 0xF3 SongSelect
handleSongSelect = fptr;
}
void setHandleTuneRequest(void (*fptr)(void)) {
// type: 0xF6 TuneRequest
handleTuneRequest = fptr;
}
void setHandleClock(void (*fptr)(void)) {
// type: 0xF8 Clock
handleClock = fptr;
}
void setHandleStart(void (*fptr)(void)) {
// type: 0xFA Start
handleStart = fptr;
}
void setHandleContinue(void (*fptr)(void)) {
// type: 0xFB Continue
handleContinue = fptr;
}
void setHandleStop(void (*fptr)(void)) {
// type: 0xFC Stop
handleStop = fptr;
}
void setHandleActiveSensing(void (*fptr)(void)) {
// type: 0xFE ActiveSensing
handleActiveSensing = fptr;
}
void setHandleSystemReset(void (*fptr)(void)) {
// type: 0xFF SystemReset
handleSystemReset = fptr;
}
void setHandleRealTimeSystem(void (*fptr)(uint8_t realtimebyte)) {
// type: 0xF8-0xFF - if more specific handler not configured
handleRealTimeSystem = fptr;
}
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void disconnect();
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
void init();
void write_packed(uint32_t data);
void send_sysex_buffer_has_term(const uint8_t *data, uint32_t length, uint8_t cable);
void send_sysex_add_term_bytes(const uint8_t *data, uint32_t length, uint8_t cable);
void sysex_byte(uint8_t b);
private:
Pipe_t *rxpipe;
Pipe_t *txpipe;
enum { MAX_PACKET_SIZE = 64 };
enum { RX_QUEUE_SIZE = 80 }; // must be more than MAX_PACKET_SIZE/4
uint32_t rx_buffer[MAX_PACKET_SIZE/4];
uint32_t tx_buffer1[MAX_PACKET_SIZE/4];
uint32_t tx_buffer2[MAX_PACKET_SIZE/4];
uint16_t rx_size;
uint16_t tx_size;
uint32_t rx_queue[RX_QUEUE_SIZE];
bool rx_packet_queued;
uint16_t rx_head;
uint16_t rx_tail;
volatile uint8_t tx1_count;
volatile uint8_t tx2_count;
uint8_t rx_ep;
uint8_t tx_ep;
uint8_t rx_ep_type;
uint8_t tx_ep_type;
uint8_t msg_cable;
uint8_t msg_channel;
uint8_t msg_type;
uint8_t msg_data1;
uint8_t msg_data2;
uint8_t msg_sysex[SYSEX_MAX_LEN];
uint8_t msg_sysex_len;
void (*handleNoteOff)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleNoteOn)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleVelocityChange)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleControlChange)(uint8_t ch, uint8_t control, uint8_t value);
void (*handleProgramChange)(uint8_t ch, uint8_t program);
void (*handleAfterTouch)(uint8_t ch, uint8_t pressure);
void (*handlePitchChange)(uint8_t ch, int pitch);
void (*handleSysExPartial)(const uint8_t *data, uint16_t length, uint8_t complete);
void (*handleSysExComplete)(uint8_t *data, unsigned int size);
void (*handleTimeCodeQuarterFrame)(uint8_t data);
void (*handleSongPosition)(uint16_t beats);
void (*handleSongSelect)(uint8_t songnumber);
void (*handleTuneRequest)(void);
void (*handleClock)(void);
void (*handleStart)(void);
void (*handleContinue)(void);
void (*handleStop)(void);
void (*handleActiveSensing)(void);
void (*handleSystemReset)(void);
void (*handleRealTimeSystem)(uint8_t rtb);
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
};
//--------------------------------------------------------------------------
class USBSerial: public USBDriver, public Stream {
public:
// FIXME: need different USBSerial, with bigger buffers for 480 Mbit & faster speed
enum { BUFFER_SIZE = 648 }; // must hold at least 6 max size packets, plus 2 extra bytes
enum { DEFAULT_WRITE_TIMEOUT = 3500};
USBSerial(USBHost &host) : txtimer(this) { init(); }
void begin(uint32_t baud, uint32_t format=USBHOST_SERIAL_8N1);
void end(void);
uint32_t writeTimeout() {return write_timeout_;}
void writeTimeOut(uint32_t write_timeout) {write_timeout_ = write_timeout;} // Will not impact current ones.
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual int availableForWrite();
virtual size_t write(uint8_t c);
virtual void flush(void);
using Print::write;
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
virtual void timer_event(USBDriverTimer *whichTimer);
private:
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
void rx_queue_packets(uint32_t head, uint32_t tail);
void init();
static bool check_rxtx_ep(uint32_t &rxep, uint32_t &txep);
bool init_buffers(uint32_t rsize, uint32_t tsize);
void ch341_setBaud(uint8_t byte_index);
private:
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
USBDriverTimer txtimer;
uint32_t bigbuffer[(BUFFER_SIZE+3)/4];
setup_t setup;
uint8_t setupdata[16]; //
uint32_t baudrate;
uint32_t format_;
uint32_t write_timeout_ = DEFAULT_WRITE_TIMEOUT;
Pipe_t *rxpipe;
Pipe_t *txpipe;
uint8_t *rx1; // location for first incoming packet
uint8_t *rx2; // location for second incoming packet
uint8_t *rxbuf; // receive circular buffer
uint8_t *tx1; // location for first outgoing packet
uint8_t *tx2; // location for second outgoing packet
uint8_t *txbuf;
volatile uint16_t rxhead;// receive head
volatile uint16_t rxtail;// receive tail
volatile uint16_t txhead;
volatile uint16_t txtail;
uint16_t rxsize;// size of receive circular buffer
uint16_t txsize;// size of transmit circular buffer
volatile uint8_t rxstate;// bitmask: which receive packets are queued
volatile uint8_t txstate;
uint8_t pending_control;
uint8_t setup_state; // PL2303 - has several steps... Could use pending control?
uint8_t pl2303_v1; // Which version do we have
uint8_t pl2303_v2;
uint8_t interface;
bool control_queued;
typedef enum { UNKNOWN=0, CDCACM, FTDI, PL2303, CH341, CP210X } sertype_t;
sertype_t sertype;
typedef struct {
uint16_t idVendor;
uint16_t idProduct;
sertype_t sertype;
} product_vendor_mapping_t;
static product_vendor_mapping_t pid_vid_mapping[];
};
//--------------------------------------------------------------------------
class AntPlus: public USBDriver {
// Please post any AntPlus feedback or contributions on this forum thread:
// https://forum.pjrc.com/threads/43110-Ant-libarary-and-USB-driver-for-Teensy-3-5-6
public:
AntPlus(USBHost &host) : /* txtimer(this),*/ updatetimer(this) { init(); }
void begin(const uint8_t key=0);
void onStatusChange(void (*function)(int channel, int status)) {
user_onStatusChange = function;
}
void onDeviceID(void (*function)(int channel, int devId, int devType, int transType)) {
user_onDeviceID = function;
}
void onHeartRateMonitor(void (*f)(int bpm, int msec, int seqNum), uint32_t devid=0) {
profileSetup_HRM(&ant.dcfg[PROFILE_HRM], devid);
memset(&hrm, 0, sizeof(hrm));
user_onHeartRateMonitor = f;
}
void onSpeedCadence(void (*f)(float speed, float distance, float rpm), uint32_t devid=0) {
profileSetup_SPDCAD(&ant.dcfg[PROFILE_SPDCAD], devid);
memset(&spdcad, 0, sizeof(spdcad));
user_onSpeedCadence = f;
}
void onSpeed(void (*f)(float speed, float distance), uint32_t devid=0) {
profileSetup_SPEED(&ant.dcfg[PROFILE_SPEED], devid);
memset(&spd, 0, sizeof(spd));
user_onSpeed = f;
}
void onCadence(void (*f)(float rpm), uint32_t devid=0) {
profileSetup_CADENCE(&ant.dcfg[PROFILE_CADENCE], devid);
memset(&cad, 0, sizeof(cad));
user_onCadence = f;
}
void setWheelCircumference(float meters) {
wheelCircumference = meters * 1000.0f;
}
protected:
virtual void Task();
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void disconnect();
virtual void timer_event(USBDriverTimer *whichTimer);
private:
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
void init();
size_t write(const void *data, const size_t size);
int read(void *data, const size_t size);
void transmit();
private:
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[3] __attribute__ ((aligned(32)));
strbuf_t mystring_bufs[1];
//USBDriverTimer txtimer;
USBDriverTimer updatetimer;
Pipe_t *rxpipe;
Pipe_t *txpipe;
bool first_update;
uint8_t txbuffer[240];
uint8_t rxpacket[64];
volatile uint16_t txhead;
volatile uint16_t txtail;
volatile bool txready;
volatile uint8_t rxlen;
volatile bool do_polling;
private:
enum _eventi {
EVENTI_MESSAGE = 0,
EVENTI_CHANNEL,
EVENTI_TOTAL
};
enum _profiles {
PROFILE_HRM = 0,
PROFILE_SPDCAD,
PROFILE_POWER,
PROFILE_STRIDE,
PROFILE_SPEED,
PROFILE_CADENCE,
PROFILE_TOTAL
};
typedef struct {
uint8_t channel;
uint8_t RFFreq;
uint8_t networkNumber;
uint8_t stub;
uint8_t searchTimeout;
uint8_t channelType;
uint8_t deviceType;
uint8_t transType;
uint16_t channelPeriod;
uint16_t searchWaveform;
uint32_t deviceNumber; // deviceId
struct {
uint8_t chanIdOnce;
uint8_t keyAccepted;
uint8_t profileValid;
uint8_t channelStatus;
uint8_t channelStatusOld;
} flags;
} TDCONFIG;
struct {
uint8_t initOnce;
uint8_t key; // key index
int iDevice; // index to the antplus we're interested in, if > one found
TDCONFIG dcfg[PROFILE_TOTAL]; // channel config, we're using one channel per device
} ant;
void (*user_onStatusChange)(int channel, int status);
void (*user_onDeviceID)(int channel, int devId, int devType, int transType);
void (*user_onHeartRateMonitor)(int beatsPerMinute, int milliseconds, int sequenceNumber);
void (*user_onSpeedCadence)(float speed, float distance, float cadence);
void (*user_onSpeed)(float speed, float distance);
void (*user_onCadence)(float cadence);
void dispatchPayload(TDCONFIG *cfg, const uint8_t *payload, const int len);
static const uint8_t *getAntKey(const uint8_t keyIdx);
static uint8_t calcMsgChecksum (const uint8_t *buffer, const uint8_t len);
static uint8_t * findStreamSync(uint8_t *stream, const size_t rlen, int *pos);
static int msgCheckIntegrity(uint8_t *stream, const int len);
static int msgGetLength(uint8_t *stream);
int handleMessages(uint8_t *buffer, int tBytes);
void sendMessageChannelStatus(TDCONFIG *cfg, const uint32_t channelStatus);
void message_channel(const int chan, const int eventId,
const uint8_t *payload, const size_t dataLength);
void message_response(const int chan, const int msgId,
const uint8_t *payload, const size_t dataLength);
void message_event(const int channel, const int msgId,
const uint8_t *payload, const size_t dataLength);
int ResetSystem();
int RequestMessage(const int channel, const int message);
int SetNetworkKey(const int netNumber, const uint8_t *key);
int SetChannelSearchTimeout(const int channel, const int searchTimeout);
int SetChannelPeriod(const int channel, const int period);
int SetChannelRFFreq(const int channel, const int freq);
int SetSearchWaveform(const int channel, const int wave);
int OpenChannel(const int channel);
int CloseChannel(const int channel);
int AssignChannel(const int channel, const int channelType, const int network);
int SetChannelId(const int channel, const int deviceNum, const int deviceType,
const int transmissionType);
int SendBurstTransferPacket(const int channelSeq, const uint8_t *data);
int SendBurstTransfer(const int channel, const uint8_t *data, const int nunPackets);
int SendBroadcastData(const int channel, const uint8_t *data);
int SendAcknowledgedData(const int channel, const uint8_t *data);
int SendExtAcknowledgedData(const int channel, const int devNum, const int devType,
const int TranType, const uint8_t *data);
int SendExtBroadcastData(const int channel, const int devNum, const int devType,
const int TranType, const uint8_t *data);
int SendExtBurstTransferPacket(const int chanSeq, const int devNum,
const int devType, const int TranType, const uint8_t *data);
int SendExtBurstTransfer(const int channel, const int devNum, const int devType,
const int tranType, const uint8_t *data, const int nunPackets);
static void profileSetup_HRM(TDCONFIG *cfg, const uint32_t deviceId);
static void profileSetup_SPDCAD(TDCONFIG *cfg, const uint32_t deviceId);
static void profileSetup_POWER(TDCONFIG *cfg, const uint32_t deviceId);
static void profileSetup_STRIDE(TDCONFIG *cfg, const uint32_t deviceId);
static void profileSetup_SPEED(TDCONFIG *cfg, const uint32_t deviceId);
static void profileSetup_CADENCE(TDCONFIG *cfg, const uint32_t deviceId);
struct {
struct {
uint8_t bpm;
uint8_t sequence;
uint16_t time;
} previous;
} hrm;
void payload_HRM(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
struct {
struct {
uint16_t cadenceTime;
uint16_t cadenceCt;
uint16_t speedTime;
uint16_t speedCt;
} previous;
float distance;
} spdcad;
void payload_SPDCAD(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
/* struct {
struct {
uint8_t sequence;
uint16_t pedalPowerContribution;
uint8_t pedalPower;
uint8_t instantCadence;
uint16_t sumPower;
uint16_t instantPower;
} current;
struct {
uint16_t stub;
} previous;
} pwr; */
void payload_POWER(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
/* struct {
struct {
uint16_t speed;
uint16_t cadence;
uint8_t strides;
} current;
struct {
uint8_t strides;
uint16_t speed;
uint16_t cadence;
} previous;
} stride; */
void payload_STRIDE(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
struct {
struct {
uint16_t speedTime;
uint16_t speedCt;
} previous;
float distance;
} spd;
void payload_SPEED(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
struct {
struct {
uint16_t cadenceTime;
uint16_t cadenceCt;
} previous;
} cad;
void payload_CADENCE(TDCONFIG *cfg, const uint8_t *data, const size_t dataLength);
uint16_t wheelCircumference; // default is WHEEL_CIRCUMFERENCE (2122cm)
};
//--------------------------------------------------------------------------
class RawHIDController : public USBHIDInput {
public:
RawHIDController(USBHost &host, uint32_t usage = 0) : fixed_usage_(usage) { init(); }
uint32_t usage(void) {return usage_;}
void attachReceive(bool (*f)(uint32_t usage, const uint8_t *data, uint32_t len)) {receiveCB = f;}
bool sendPacket(const uint8_t *buffer);
protected:
virtual hidclaim_t claim_collection(USBHIDParser *driver, Device_t *dev, uint32_t topusage);
virtual bool hid_process_in_data(const Transfer_t *transfer);
virtual bool hid_process_out_data(const Transfer_t *transfer);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
void init();
USBHIDParser *driver_;
enum { MAX_PACKET_SIZE = 64 };
bool (*receiveCB)(uint32_t usage, const uint8_t *data, uint32_t len) = nullptr;
uint8_t collections_claimed = 0;
//volatile bool hid_input_begin_ = false;
uint32_t fixed_usage_;
uint32_t usage_ = 0;
// See if we can contribute transfers
Transfer_t mytransfers[2] __attribute__ ((aligned(32)));
};
#endif