1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-04 16:25:10 -05:00
USBHost_t36/hid.cpp
Kurt Eckhardt dbe5292471 Keyboard HID extras plus map extra keys
This delta, adds an extra keyboard object to handle those keys that are not part of the main keyboard class.  In particular there are separate HID reports for some of the keys, such as Power keys, and multimedia keys.

These reports might be on separate Interface or in cases where the mouse and keyboard are on the same device, the extra reports may be on the Mouse Interface.

So far I have not tried to combine with Keyboard object as might require multiple inheritance which I would like to avoid.

Also I extended the special key mapping table to map several other keys like F1-12, Arrow, Home/end... To special values where the 0x80 bit is set.  I used the same values as used for the Arduino Keyboard library.  I did not use their defines as they used defines like KEY_F1, which already exists in core, but in core it is the scan code from the keyboard and not the end user value.
2017-10-12 10:27:41 -07:00

593 lines
18 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "USBHost_t36.h" // Read this header first for key info
// This HID driver claims a USB interface and parses its incoming
// data (reports). It doesn't actually use the data, but it allows
// drivers which inherit the USBHIDInput base class to claim the
// top level collections within the reports. Those drivers get
// callbacks with the arriving data full decoded to data/usage
// pairs.
void USBHIDParser::init()
{
contribute_Pipes(mypipes, sizeof(mypipes)/sizeof(Pipe_t));
contribute_Transfers(mytransfers, sizeof(mytransfers)/sizeof(Transfer_t));
driver_ready_for_device(this);
}
bool USBHIDParser::claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len)
{
println("HIDParser claim this=", (uint32_t)this, HEX);
// only claim at interface level
if (type != 1) return false;
if (len < 9+9+7) return false;
// interface descriptor
uint32_t numendpoint = descriptors[4];
if (numendpoint < 1 || numendpoint > 2) return false;
if (descriptors[5] != 3) return false; // bInterfaceClass, 3 = HID
println(" bInterfaceClass = ", descriptors[5]);
println(" bInterfaceSubClass = ", descriptors[6]);
println(" bInterfaceProtocol = ", descriptors[7]);
// do not claim boot protocol keyboards
if (descriptors[6] == 1 && descriptors[7] == 1) return false;
print("HID Parser Claim: ");
print_hexbytes(descriptors, len);
// hid interface descriptor
uint32_t hidlen = descriptors[9];
if (hidlen < 9) return false;
if (descriptors[10] != 33) return false; // descriptor type, 33=HID
if (descriptors[14] < 1) return false; // must be at least 1 extra descriptor
if (hidlen != (uint32_t)(6 + descriptors[14] * 3)) return false; // must be correct size
if (9 + hidlen > len) return false;
uint32_t i=0;
while (1) {
if (descriptors[15 + i * 3] == 34) { // found HID report descriptor
descsize = descriptors[16 + i * 3] | (descriptors[17 + i * 3] << 8);
println("report descriptor size = ", descsize);
break;
}
i++;
if (i >= descriptors[14]) return false;
}
if (descsize > sizeof(descriptor)) return false; // can't fit the report descriptor
// endpoint descriptor(s)
uint32_t offset = 9 + hidlen;
if (len < offset + numendpoint * 7) return false; // not enough data
if (numendpoint == 1) {
println("Single endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint = descriptors[offset+2];
uint32_t size = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval = descriptors[offset+6];
println(" endpoint = ", endpoint, HEX);
println(" size = ", size);
println(" interval = ", interval);
if ((endpoint & 0x0F) == 0) return false;
if ((endpoint & 0xF0) != 0x80) return false; // must be IN direction
in_pipe = new_Pipe(dev, 3, endpoint & 0x0F, 1, size, interval);
out_pipe = NULL;
in_size = size;
} else {
println("Two endpoint HID:");
if (descriptors[offset] != 7) return false;
if (descriptors[offset+1] != 5) return false; // endpoint descriptor
if (descriptors[offset+3] != 3) return false; // must be interrupt type
uint32_t endpoint1 = descriptors[offset+2];
uint32_t size1 = descriptors[offset+4] | (descriptors[offset+5] << 8);
uint32_t interval1 = descriptors[offset+6];
println(" endpoint = ", endpoint1, HEX);
println(" size = ", size1);
println(" interval = ", interval1);
if ((endpoint1 & 0x0F) == 0) return false;
if (descriptors[offset+7] != 7) return false;
if (descriptors[offset+8] != 5) return false; // endpoint descriptor
if (descriptors[offset+10] != 3) return false; // must be interrupt type
uint32_t endpoint2 = descriptors[offset+9];
uint32_t size2 = descriptors[offset+11] | (descriptors[offset+12] << 8);
uint32_t interval2 = descriptors[offset+13];
println(" endpoint = ", endpoint2, HEX);
println(" size = ", size2);
println(" interval = ", interval2);
if ((endpoint2 & 0x0F) == 0) return false;
if (((endpoint1 & 0xF0) == 0x80) && ((endpoint2 & 0xF0) == 0)) {
// first endpoint is IN, second endpoint is OUT
in_pipe = new_Pipe(dev, 3, endpoint1 & 0x0F, 1, size1, interval1);
//out_pipe = new_Pipe(dev, 3, endpoint2, 0, size2, interval2);
out_pipe = NULL; // TODO; fixme
in_size = size1;
out_size = size2;
} else if (((endpoint1 & 0xF0) == 0) && ((endpoint2 & 0xF0) == 0x80)) {
// first endpoint is OUT, second endpoint is IN
in_pipe = new_Pipe(dev, 3, endpoint2 & 0x0F, 1, size2, interval2);
//out_pipe = new_Pipe(dev, 3, endpoint1, 0, size1, interval1);
out_pipe = NULL; // TODO; fixme
in_size = size2;
out_size = size1;
} else {
return false;
}
//out_pipe->callback_function = out_callback;
}
in_pipe->callback_function = in_callback;
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
//topusage_list[i] = 0;
topusage_drivers[i] = NULL;
}
// request the HID report descriptor
mk_setup(setup, 0x81, 6, 0x2200, descriptors[2], descsize); // get report desc
queue_Control_Transfer(dev, &setup, descriptor, this);
return true;
}
void USBHIDParser::control(const Transfer_t *transfer)
{
println("control callback (hid)");
print_hexbytes(transfer->buffer, transfer->length);
// To decode hex dump to human readable HID report summary:
// http://eleccelerator.com/usbdescreqparser/
uint32_t mesg = transfer->setup.word1;
println(" mesg = ", mesg, HEX);
if (mesg == 0x22000681 && transfer->length == descsize) { // HID report descriptor
println(" got report descriptor");
parse();
queue_Data_Transfer(in_pipe, report, in_size, this);
if (device->idVendor == 0x054C && device->idProduct == 0x0268) {
println("send special PS3 feature command");
mk_setup(setup, 0x21, 9, 0x03F4, 0, 4); // ps3 tell to send report 1?
static uint8_t ps3_feature_F4_report[] = {0x42, 0x0c, 0x00, 0x00};
queue_Control_Transfer(device, &setup, ps3_feature_F4_report, this);
}
}
}
void USBHIDParser::in_callback(const Transfer_t *transfer)
{
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->in_data(transfer);
}
}
void USBHIDParser::out_callback(const Transfer_t *transfer)
{
if (transfer->driver) {
((USBHIDParser*)(transfer->driver))->out_data(transfer);
}
}
// When the device goes away, we need to call disconnect_collection()
// for all drivers which claimed a top level collection
void USBHIDParser::disconnect()
{
for (uint32_t i=0; i < TOPUSAGE_LIST_LEN; i++) {
USBHIDInput *driver = topusage_drivers[i];
if (driver) {
driver->disconnect_collection(device);
topusage_drivers[i] = NULL;
}
}
}
// Called when the HID device sends a report
void USBHIDParser::in_data(const Transfer_t *transfer)
{
/*Serial.print("HID: ");
uint8_t *pb = (uint8_t*)transfer->buffer;
for (uint8_t i = 0; i < transfer->length; i++) {
Serial.print(pb[i], HEX);
Serial.print(" ");
}
Serial.println(); */
print("HID: ");
print_hexbytes(transfer->buffer, transfer->length);
const uint8_t *buf = (const uint8_t *)transfer->buffer;
uint32_t len = transfer->length;
if (use_report_id == false) {
parse(0x0100, buf, len);
} else {
if (len > 1) {
parse(0x0100 | buf[0], buf + 1, len - 1);
}
}
queue_Data_Transfer(in_pipe, report, in_size, this);
}
void USBHIDParser::out_data(const Transfer_t *transfer)
{
}
// This no-inputs parse is meant to be used when we first get the
// HID report descriptor. It finds all the top level collections
// and allows drivers to claim them. This is always where we
// learn whether the reports will or will not use a Report ID byte.
void USBHIDParser::parse()
{
const uint8_t *p = descriptor;
const uint8_t *end = p + descsize;
uint16_t usage_page = 0;
uint16_t usage = 0;
uint8_t collection_level = 0;
uint8_t topusage_count = 0;
use_report_id = false;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item
p += *p + 3;
continue;
}
uint32_t val;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
switch (tag & 0xFC) {
case 0x84: // Report ID (global)
use_report_id = true;
break;
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x08: // Usage (local)
usage = val;
break;
case 0xA0: // Collection
if (collection_level == 0 && topusage_count < TOPUSAGE_LIST_LEN) {
uint32_t topusage = ((uint32_t)usage_page << 16) | usage;
println("Found top level collection ", topusage, HEX);
//topusage_list[topusage_count] = topusage;
topusage_drivers[topusage_count] = find_driver(topusage);
topusage_count++;
}
collection_level++;
usage = 0;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
}
case 0x80: // Input
case 0x90: // Output
case 0xB0: // Feature
usage = 0;
break;
}
}
while (topusage_count < TOPUSAGE_LIST_LEN) {
//topusage_list[topusage_count] = 0;
topusage_drivers[topusage_count] = NULL;
topusage_count++;
}
}
// This is a list of all the drivers inherited from the USBHIDInput class.
// Unlike the list of USBDriver (managed in enumeration.cpp), drivers stay
// on this list even when they have claimed a top level collection.
USBHIDInput * USBHIDParser::available_hid_drivers_list = NULL;
void USBHIDParser::driver_ready_for_hid_collection(USBHIDInput *driver)
{
driver->next = NULL;
if (available_hid_drivers_list == NULL) {
available_hid_drivers_list = driver;
} else {
USBHIDInput *last = available_hid_drivers_list;
while (last->next) last = last->next;
last->next = driver;
}
}
// When a new top level collection is found, this function asks drivers
// if they wish to claim it. The driver taking ownership of the
// collection is returned, or NULL if no driver wants it.
USBHIDInput * USBHIDParser::find_driver(uint32_t topusage)
{
println("find_driver");
USBHIDInput *driver = available_hid_drivers_list;
while (driver) {
println(" driver ", (uint32_t)driver, HEX);
if (driver->claim_collection(device, topusage)) {
return driver;
}
driver = driver->next;
}
return NULL;
}
// Extract 1 to 32 bits from the data array, starting at bitindex.
static uint32_t bitfield(const uint8_t *data, uint32_t bitindex, uint32_t numbits)
{
uint32_t output = 0;
uint32_t bitcount = 0;
data += (bitindex >> 3);
uint32_t offset = bitindex & 7;
if (offset) {
output = (*data++) >> offset;
bitcount = 8 - offset;
}
while (bitcount < numbits) {
output |= (uint32_t)(*data++) << bitcount;
bitcount += 8;
}
if (bitcount > numbits && numbits < 32) {
output &= ((1 << numbits) - 1);
}
return output;
}
// convert a number with the specified number of bits from unsigned to signed,
// so the result is a proper 32 bit signed integer.
static int32_t signext(uint32_t num, uint32_t bitcount)
{
if (bitcount < 32 && bitcount > 0 && (num & (1 << (bitcount-1)))) {
num |= ~((1 << bitcount) - 1);
}
return (int32_t)num;
}
// convert a tag's value to a signed integer.
static int32_t signedval(uint32_t num, uint8_t tag)
{
tag &= 3;
if (tag == 1) return (int8_t)num;
if (tag == 2) return (int16_t)num;
return (int32_t)num;
}
// parse the report descriptor and use it to feed the fields of the report
// to the drivers which have claimed its top level collections
void USBHIDParser::parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len)
{
const uint8_t *p = descriptor;
const uint8_t *end = p + descsize;
USBHIDInput *driver = NULL;
uint32_t topusage = 0;
uint8_t topusage_index = 0;
uint8_t collection_level = 0;
uint16_t usage[USAGE_LIST_LEN] = {0, 0};
uint8_t usage_count = 0;
uint8_t report_id = 0;
uint16_t report_size = 0;
uint16_t report_count = 0;
uint16_t usage_page = 0;
int32_t logical_min = 0;
int32_t logical_max = 0;
uint32_t bitindex = 0;
while (p < end) {
uint8_t tag = *p;
if (tag == 0xFE) { // Long Item (unsupported)
p += p[1] + 3;
continue;
}
uint32_t val;
switch (tag & 0x03) { // Short Item data
case 0: val = 0;
p++;
break;
case 1: val = p[1];
p += 2;
break;
case 2: val = p[1] | (p[2] << 8);
p += 3;
break;
case 3: val = p[1] | (p[2] << 8) | (p[3] << 16) | (p[4] << 24);
p += 5;
break;
}
if (p > end) break;
bool reset_local = false;
switch (tag & 0xFC) {
case 0x04: // Usage Page (global)
usage_page = val;
break;
case 0x14: // Logical Minimum (global)
logical_min = signedval(val, tag);
break;
case 0x24: // Logical Maximum (global)
logical_max = signedval(val, tag);
break;
case 0x74: // Report Size (global)
report_size = val;
break;
case 0x94: // Report Count (global)
report_count = val;
break;
case 0x84: // Report ID (global)
report_id = val;
break;
case 0x08: // Usage (local)
if (usage_count < USAGE_LIST_LEN) {
// Usages: 0 is reserved 0x1-0x1f is sort of reserved for top level things like
// 0x1 - Pointer - A collection... So lets try ignoring these
if (val > 0x1f) {
usage[usage_count++] = val;
}
}
break;
case 0x18: // Usage Minimum (local)
usage[0] = val;
usage_count = 255;
break;
case 0x28: // Usage Maximum (local)
usage[1] = val;
usage_count = 255;
break;
case 0xA0: // Collection
if (collection_level == 0) {
topusage = ((uint32_t)usage_page << 16) | usage[0];
driver = NULL;
if (topusage_index < TOPUSAGE_LIST_LEN) {
driver = topusage_drivers[topusage_index++];
}
}
// discard collection info if not top level, hopefully that's ok?
collection_level++;
reset_local = true;
break;
case 0xC0: // End Collection
if (collection_level > 0) {
collection_level--;
if (collection_level == 0 && driver != NULL) {
driver->hid_input_end();
driver = NULL;
}
}
reset_local = true;
break;
case 0x80: // Input
if (use_report_id && (report_id != (type_and_report_id & 0xFF))) {
// completely ignore and do not advance bitindex
// for descriptors of other report IDs
reset_local = true;
break;
}
if ((val & 1) || (driver == NULL)) {
// skip past constant fields or when no driver is listening
bitindex += report_count * report_size;
} else {
println("begin, usage=", topusage, HEX);
println(" type= ", val, HEX);
println(" min= ", logical_min);
println(" max= ", logical_max);
println(" reportcount=", report_count);
println(" usage count=", usage_count);
driver->hid_input_begin(topusage, val, logical_min, logical_max);
println("Input, total bits=", report_count * report_size);
if ((val & 2)) {
// ordinary variable format
uint32_t uindex = 0;
bool uminmax = false;
if (usage_count > USAGE_LIST_LEN || usage_count == 0) {
// usage numbers by min/max, not from list
uindex = usage[0];
uminmax = true;
}
for (uint32_t i=0; i < report_count; i++) {
uint32_t u;
if (uminmax) {
u = uindex;
if (uindex < usage[1]) uindex++;
} else {
u = usage[uindex++];
if (uindex >= USAGE_LIST_LEN-1) {
uindex = USAGE_LIST_LEN-1;
}
}
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
uint32_t n = bitfield(data, bitindex, report_size);
if (logical_min >= 0) {
println(" data = ", n);
driver->hid_input_data(u, n);
} else {
int32_t sn = signext(n, report_size);
println(" sdata = ", sn);
driver->hid_input_data(u, sn);
}
bitindex += report_size;
}
} else {
// array format, each item is a usage number
for (uint32_t i=0; i < report_count; i++) {
uint32_t u = bitfield(data, bitindex, report_size);
int n = u;
if (n >= logical_min && n <= logical_max) {
u |= (uint32_t)usage_page << 16;
print(" usage = ", u, HEX);
println(" data = 1");
driver->hid_input_data(u, 1);
} else {
print (" usage =", u, HEX);
print(" out of range: ", logical_min, HEX);
println(" ", logical_max, HEX);
}
bitindex += report_size;
}
}
}
reset_local = true;
break;
case 0x90: // Output
// TODO.....
reset_local = true;
break;
case 0xB0: // Feature
// TODO.....
reset_local = true;
break;
case 0x34: // Physical Minimum (global)
case 0x44: // Physical Maximum (global)
case 0x54: // Unit Exponent (global)
case 0x64: // Unit (global)
break; // Ignore these commonly used tags. Hopefully not needed?
case 0xA4: // Push (yikes! Hope nobody really uses this?!)
case 0xB4: // Pop (yikes! Hope nobody really uses this?!)
case 0x38: // Designator Index (local)
case 0x48: // Designator Minimum (local)
case 0x58: // Designator Maximum (local)
case 0x78: // String Index (local)
case 0x88: // String Minimum (local)
case 0x98: // String Maximum (local)
case 0xA8: // Delimiter (local)
default:
println("Ruh Roh, unsupported tag, not a good thing Scoob ", tag, HEX);
break;
}
if (reset_local) {
usage_count = 0;
usage[0] = 0;
usage[1] = 0;
}
}
}