1
0
mirror of https://github.com/gdsports/USBHost_t36 synced 2024-11-04 08:15:08 -05:00
USBHost_t36/USBHost_t36.h
Kurt Eckhardt dbe5292471 Keyboard HID extras plus map extra keys
This delta, adds an extra keyboard object to handle those keys that are not part of the main keyboard class.  In particular there are separate HID reports for some of the keys, such as Power keys, and multimedia keys.

These reports might be on separate Interface or in cases where the mouse and keyboard are on the same device, the extra reports may be on the Mouse Interface.

So far I have not tried to combine with Keyboard object as might require multiple inheritance which I would like to avoid.

Also I extended the special key mapping table to map several other keys like F1-12, Arrow, Home/end... To special values where the 0x80 bit is set.  I used the same values as used for the Arduino Keyboard library.  I did not use their defines as they used defines like KEY_F1, which already exists in core, but in core it is the scan code from the keyboard and not the end user value.
2017-10-12 10:27:41 -07:00

851 lines
31 KiB
C++

/* USB EHCI Host for Teensy 3.6
* Copyright 2017 Paul Stoffregen (paul@pjrc.com)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef USB_HOST_TEENSY36_
#define USB_HOST_TEENSY36_
#include <stdint.h>
#if !defined(__MK66FX1M0__)
#error "USBHost_t36 only works with Teensy 3.6. Please select it in Tools > Boards"
#endif
// Dear inquisitive reader, USB is a complex protocol defined with
// very specific terminology. To have any chance of understand this
// source code, you absolutely must have solid knowledge of specific
// USB terms such as host, device, endpoint, pipe, enumeration....
// You really must also have at least a basic knowledge of the
// different USB transfers: control, bulk, interrupt, isochronous.
//
// The USB 2.0 specification explains these in chapter 4 (pages 15
// to 24), and provides more detail in the first part of chapter 5
// (pages 25 to 55). The USB spec is published for free at
// www.usb.org. Here is a convenient link to just the main PDF:
//
// https://www.pjrc.com/teensy/beta/usb20.pdf
//
// This is a huge file, but chapter 4 is short and easy to read.
// If you're not familiar with the USB lingo, please do yourself
// a favor by reading at least chapter 4 to get up to speed on the
// meaning of these important USB concepts and terminology.
//
// If you wish to ask questions (which belong on the forum, not
// github issues) or discuss development of this library, you
// ABSOLUTELY MUST know the basic USB terminology from chapter 4.
// Please repect other people's valuable time & effort by making
// your best effort to read chapter 4 before asking USB questions!
//#define USBHOST_PRINT_DEBUG
/************************************************/
/* Data Types */
/************************************************/
// These 6 types are the key to understanding how this USB Host
// library really works.
// USBHost is a static class controlling the hardware.
// All common USB functionality is implemented here.
class USBHost;
// These 3 structures represent the actual USB entities
// USBHost manipulates. One Device_t is created for
// each active USB device. One Pipe_t is create for
// each endpoint. Transfer_t structures are created
// when any data transfer is added to the EHCI work
// queues, and then returned to the free pool after the
// data transfer completes and the driver has processed
// the results.
typedef struct Device_struct Device_t;
typedef struct Pipe_struct Pipe_t;
typedef struct Transfer_struct Transfer_t;
// All USB device drivers inherit use these classes.
// Drivers build user-visible functionality on top
// of these classes, which receive USB events from
// USBHost.
class USBDriver;
class USBDriverTimer;
/************************************************/
/* Added Defines */
/************************************************/
#define KEYD_UP 0xDA
#define KEYD_DOWN 0xD9
#define KEYD_LEFT 0xD8
#define KEYD_RIGHT 0xD7
#define KEYD_INSERT 0xD1
#define KEYD_DELETE 0xD4
#define KEYD_PAGE_UP 0xD3
#define KEYD_PAGE_DOWN 0xD6
#define KEYD_HOME 0xD2
#define KEYD_END 0xD5
#define KEYD_F1 0xC2
#define KEYD_F2 0xC3
#define KEYD_F3 0xC4
#define KEYD_F4 0xC5
#define KEYD_F5 0xC6
#define KEYD_F6 0xC7
#define KEYD_F7 0xC8
#define KEYD_F8 0xC9
#define KEYD_F9 0xCA
#define KEYD_F10 0xCB
#define KEYD_F11 0xCC
#define KEYD_F12 0xCD
/************************************************/
/* Data Structure Definitions */
/************************************************/
// setup_t holds the 8 byte USB SETUP packet data.
// These unions & structs allow convenient access to
// the setup fields.
typedef union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup_t;
// Device_t holds all the information about a USB device
struct Device_struct {
Pipe_t *control_pipe;
Pipe_t *data_pipes;
Device_t *next;
USBDriver *drivers;
uint8_t speed; // 0=12, 1=1.5, 2=480 Mbit/sec
uint8_t address;
uint8_t hub_address;
uint8_t hub_port;
uint8_t enum_state;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bmAttributes;
uint8_t bMaxPower;
uint16_t idVendor;
uint16_t idProduct;
uint16_t LanguageID;
};
// Pipe_t holes all information about each USB endpoint/pipe
// The first half is an EHCI QH structure for the pipe.
struct Pipe_struct {
// Queue Head (QH), EHCI page 46-50
struct { // must be aligned to 32 byte boundary
volatile uint32_t horizontal_link;
volatile uint32_t capabilities[2];
volatile uint32_t current;
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qh;
Device_t *device;
uint8_t type; // 0=control, 1=isochronous, 2=bulk, 3=interrupt
uint8_t direction; // 0=out, 1=in (changes for control, others fixed)
uint8_t start_mask;
uint8_t complete_mask;
Pipe_t *next;
void (*callback_function)(const Transfer_t *);
uint16_t periodic_interval;
uint16_t periodic_offset;
uint32_t unused1;
uint32_t unused2;
uint32_t unused3;
uint32_t unused4;
uint32_t unused5;
uint32_t unused6;
uint32_t unused7;
};
// Transfer_t represents a single transaction on the USB bus.
// The first portion is an EHCI qTD structure. Transfer_t are
// allocated as-needed from a memory pool, loaded with pointers
// to the actual data buffers, linked into a followup list,
// and placed on ECHI Queue Heads. When the ECHI interrupt
// occurs, the followup lists are used to find the Transfer_t
// in memory. Callbacks are made, and then the Transfer_t are
// returned to the memory pool.
struct Transfer_struct {
// Queue Element Transfer Descriptor (qTD), EHCI pg 40-45
struct { // must be aligned to 32 byte boundary
volatile uint32_t next;
volatile uint32_t alt_next;
volatile uint32_t token;
volatile uint32_t buffer[5];
} qtd;
// Linked list of queued, not-yet-completed transfers
Transfer_t *next_followup;
Transfer_t *prev_followup;
Pipe_t *pipe;
// Data to be used by callback function. When a group
// of Transfer_t are created, these fields and the
// interrupt-on-complete bit in the qTD token are only
// set in the last Transfer_t of the list.
void *buffer;
uint32_t length;
setup_t setup;
USBDriver *driver;
};
/************************************************/
/* Main USB EHCI Controller */
/************************************************/
class USBHost {
public:
static void begin();
static void Task();
protected:
static Pipe_t * new_Pipe(Device_t *dev, uint32_t type, uint32_t endpoint,
uint32_t direction, uint32_t maxlen, uint32_t interval=0);
static bool queue_Control_Transfer(Device_t *dev, setup_t *setup,
void *buf, USBDriver *driver);
static bool queue_Data_Transfer(Pipe_t *pipe, void *buffer,
uint32_t len, USBDriver *driver);
static Device_t * new_Device(uint32_t speed, uint32_t hub_addr, uint32_t hub_port);
static void disconnect_Device(Device_t *dev);
static void enumeration(const Transfer_t *transfer);
static void driver_ready_for_device(USBDriver *driver);
static void contribute_Devices(Device_t *devices, uint32_t num);
static void contribute_Pipes(Pipe_t *pipes, uint32_t num);
static void contribute_Transfers(Transfer_t *transfers, uint32_t num);
static volatile bool enumeration_busy;
private:
static void isr();
static void claim_drivers(Device_t *dev);
static uint32_t assign_address(void);
static bool queue_Transfer(Pipe_t *pipe, Transfer_t *transfer);
static void init_Device_Pipe_Transfer_memory(void);
static Device_t * allocate_Device(void);
static void delete_Pipe(Pipe_t *pipe);
static void free_Device(Device_t *q);
static Pipe_t * allocate_Pipe(void);
static void free_Pipe(Pipe_t *q);
static Transfer_t * allocate_Transfer(void);
static void free_Transfer(Transfer_t *q);
static bool allocate_interrupt_pipe_bandwidth(Pipe_t *pipe,
uint32_t maxlen, uint32_t interval);
static void add_qh_to_periodic_schedule(Pipe_t *pipe);
static bool followup_Transfer(Transfer_t *transfer);
static void followup_Error(void);
protected:
#ifdef USBHOST_PRINT_DEBUG
static void print(const Transfer_t *transfer);
static void print(const Transfer_t *first, const Transfer_t *last);
static void print_token(uint32_t token);
static void print(const Pipe_t *pipe);
static void print_driverlist(const char *name, const USBDriver *driver);
static void print_qh_list(const Pipe_t *list);
static void print_hexbytes(const void *ptr, uint32_t len);
static void print(const char *s) { Serial.print(s); }
static void print(int n) { Serial.print(n); }
static void print(unsigned int n) { Serial.print(n); }
static void print(long n) { Serial.print(n); }
static void print(unsigned long n) { Serial.print(n); }
static void println(const char *s) { Serial.println(s); }
static void println(int n) { Serial.println(n); }
static void println(unsigned int n) { Serial.println(n); }
static void println(long n) { Serial.println(n); }
static void println(unsigned long n) { Serial.println(n); }
static void println() { Serial.println(); }
static void print(uint32_t n, uint8_t b) { Serial.print(n, b); }
static void println(uint32_t n, uint8_t b) { Serial.println(n, b); }
static void print(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void print(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.print(n, b); }
static void println(const char *s, int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, unsigned int n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
static void println(const char *s, unsigned long n, uint8_t b = DEC) {
Serial.print(s); Serial.println(n, b); }
#else
static void print(const Transfer_t *transfer) {}
static void print(const Transfer_t *first, const Transfer_t *last) {}
static void print_token(uint32_t token) {}
static void print(const Pipe_t *pipe) {}
static void print_driverlist(const char *name, const USBDriver *driver) {}
static void print_qh_list(const Pipe_t *list) {}
static void print_hexbytes(const void *ptr, uint32_t len) {}
static void print(const char *s) {}
static void print(int n) {}
static void print(unsigned int n) {}
static void print(long n) {}
static void print(unsigned long n) {}
static void println(const char *s) {}
static void println(int n) {}
static void println(unsigned int n) {}
static void println(long n) {}
static void println(unsigned long n) {}
static void println() {}
static void print(uint32_t n, uint8_t b) {}
static void println(uint32_t n, uint8_t b) {}
static void print(const char *s, int n, uint8_t b = DEC) {}
static void print(const char *s, unsigned int n, uint8_t b = DEC) {}
static void print(const char *s, long n, uint8_t b = DEC) {}
static void print(const char *s, unsigned long n, uint8_t b = DEC) {}
static void println(const char *s, int n, uint8_t b = DEC) {}
static void println(const char *s, unsigned int n, uint8_t b = DEC) {}
static void println(const char *s, long n, uint8_t b = DEC) {}
static void println(const char *s, unsigned long n, uint8_t b = DEC) {}
#endif
static void mk_setup(setup_t &s, uint32_t bmRequestType, uint32_t bRequest,
uint32_t wValue, uint32_t wIndex, uint32_t wLength) {
s.word1 = bmRequestType | (bRequest << 8) | (wValue << 16);
s.word2 = wIndex | (wLength << 16);
}
};
/************************************************/
/* USB Device Driver Common Base Class */
/************************************************/
// All USB device drivers inherit from this base class.
class USBDriver : public USBHost {
public:
operator bool() { return (device != nullptr); }
uint16_t idVendor() { return (device != nullptr) ? device->idVendor : 0; }
uint16_t idProduct() { return (device != nullptr) ? device->idProduct : 0; }
// TODO: user-level functions
// check if device is bound/active/online
// query vid, pid
// query string: manufacturer, product, serial number
protected:
USBDriver() : next(NULL), device(NULL) {}
// Check if a driver wishes to claim a device or interface or group
// of interfaces within a device. When this function returns true,
// the driver is considered bound or loaded for that device. When
// new devices are detected, enumeration.cpp calls this function on
// all unbound driver objects, to give them an opportunity to bind
// to the new device.
// device has its vid&pid, class/subclass fields initialized
// type is 0 for device level, 1 for interface level, 2 for IAD
// descriptors points to the specific descriptor data
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
// When an unknown (not chapter 9) control transfer completes, this
// function is called for all drivers bound to the device. Return
// true means this driver originated this control transfer, so no
// more drivers need to be offered an opportunity to process it.
// This function is optional, only needed if the driver uses control
// transfers and wishes to be notified when they complete.
virtual void control(const Transfer_t *transfer) { }
// When any of the USBDriverTimer objects a driver creates generates
// a timer event, this function is called.
virtual void timer_event(USBDriverTimer *whichTimer) { }
// When the user calls USBHost::Task, this Task function for all
// active drivers is called, so they may update state and/or call
// any attached user callback functions.
virtual void Task() { }
// When a device disconnects from the USB, this function is called.
// The driver must free all resources it allocated and update any
// internal state necessary to deal with the possibility of user
// code continuing to call its API. However, pipes and transfers
// are the handled by lower layers, so device drivers do not free
// pipes they created or cancel transfers they had in progress.
virtual void disconnect();
// Drivers are managed by this single-linked list. All inactive
// (not bound to any device) drivers are linked from
// available_drivers in enumeration.cpp. When bound to a device,
// drivers are linked from that Device_t drivers list.
USBDriver *next;
// The device this object instance is bound to. In words, this
// is the specific device this driver is using. When not bound
// to any device, this must be NULL. Drivers may set this to
// any non-NULL value if they are in a state where they do not
// wish to claim any device or interface (eg, if getting data
// from the HID parser).
Device_t *device;
friend class USBHost;
};
// Device drivers may create these timer objects to schedule a timer call
class USBDriverTimer {
public:
USBDriverTimer() { }
USBDriverTimer(USBDriver *d) : driver(d) { }
void init(USBDriver *d) { driver = d; };
void start(uint32_t microseconds);
void *pointer;
uint32_t integer;
uint32_t started_micros; // testing only
private:
USBDriver *driver;
uint32_t usec;
USBDriverTimer *next;
USBDriverTimer *prev;
friend class USBHost;
};
// Device drivers may inherit from this base class, if they wish to receive
// HID input data fully decoded by the USBHIDParser driver
class USBHIDInput {
public:
operator bool() { return (mydevice != nullptr); }
uint16_t idVendor() { return (mydevice != nullptr) ? mydevice->idVendor : 0; }
uint16_t idProduct() { return (mydevice != nullptr) ? mydevice->idProduct : 0; }
private:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
void add_to_list();
USBHIDInput *next;
friend class USBHIDParser;
protected:
Device_t *mydevice = NULL;
};
/************************************************/
/* USB Device Drivers */
/************************************************/
class USBHub : public USBDriver {
public:
USBHub(USBHost &host) : debouncetimer(this), resettimer(this) { init(); }
USBHub(USBHost *host) : debouncetimer(this), resettimer(this) { init(); }
// Hubs with more more than 7 ports are built from two tiers of hubs
// using 4 or 7 port hub chips. While the USB spec seems to allow
// hubs to have up to 255 ports, in practice all hub chips on the
// market are only 2, 3, 4 or 7 ports.
enum { MAXPORTS = 7 };
typedef uint8_t portbitmask_t;
enum {
PORT_OFF = 0,
PORT_DISCONNECT = 1,
PORT_DEBOUNCE1 = 2,
PORT_DEBOUNCE2 = 3,
PORT_DEBOUNCE3 = 4,
PORT_DEBOUNCE4 = 5,
PORT_DEBOUNCE5 = 6,
PORT_RESET = 7,
PORT_RECOVERY = 8,
PORT_ACTIVE = 9
};
protected:
virtual bool claim(Device_t *dev, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void timer_event(USBDriverTimer *whichTimer);
virtual void disconnect();
void init();
bool can_send_control_now();
void send_poweron(uint32_t port);
void send_getstatus(uint32_t port);
void send_clearstatus_connect(uint32_t port);
void send_clearstatus_enable(uint32_t port);
void send_clearstatus_suspend(uint32_t port);
void send_clearstatus_overcurrent(uint32_t port);
void send_clearstatus_reset(uint32_t port);
void send_setreset(uint32_t port);
static void callback(const Transfer_t *transfer);
void status_change(const Transfer_t *transfer);
void new_port_status(uint32_t port, uint32_t status);
void start_debounce_timer(uint32_t port);
void stop_debounce_timer(uint32_t port);
private:
Device_t mydevices[MAXPORTS];
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
USBDriverTimer debouncetimer;
USBDriverTimer resettimer;
setup_t setup;
Pipe_t *changepipe;
Device_t *devicelist[MAXPORTS];
uint32_t changebits;
uint32_t statusbits;
uint8_t hub_desc[16];
uint8_t endpoint;
uint8_t interval;
uint8_t numports;
uint8_t characteristics;
uint8_t powertime;
uint8_t sending_control_transfer;
uint8_t port_doing_reset;
uint8_t port_doing_reset_speed;
uint8_t portstate[MAXPORTS];
portbitmask_t send_pending_poweron;
portbitmask_t send_pending_getstatus;
portbitmask_t send_pending_clearstatus_connect;
portbitmask_t send_pending_clearstatus_enable;
portbitmask_t send_pending_clearstatus_suspend;
portbitmask_t send_pending_clearstatus_overcurrent;
portbitmask_t send_pending_clearstatus_reset;
portbitmask_t send_pending_setreset;
portbitmask_t debounce_in_use;
static volatile bool reset_busy;
};
class USBHIDParser : public USBDriver {
public:
USBHIDParser(USBHost &host) { init(); }
static void driver_ready_for_hid_collection(USBHIDInput *driver);
protected:
enum { TOPUSAGE_LIST_LEN = 4 };
enum { USAGE_LIST_LEN = 24 };
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void in_callback(const Transfer_t *transfer);
static void out_callback(const Transfer_t *transfer);
void in_data(const Transfer_t *transfer);
void out_data(const Transfer_t *transfer);
bool check_if_using_report_id();
void parse();
USBHIDInput * find_driver(uint32_t topusage);
void parse(uint16_t type_and_report_id, const uint8_t *data, uint32_t len);
void init();
private:
Pipe_t *in_pipe;
Pipe_t *out_pipe;
static USBHIDInput *available_hid_drivers_list;
//uint32_t topusage_list[TOPUSAGE_LIST_LEN];
USBHIDInput *topusage_drivers[TOPUSAGE_LIST_LEN];
uint16_t in_size;
uint16_t out_size;
setup_t setup;
uint8_t descriptor[512];
uint8_t report[64];
uint16_t descsize;
bool use_report_id;
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
};
class KeyboardController : public USBDriver /* , public USBHIDInput */ {
public:
typedef union {
struct {
uint8_t numLock : 1;
uint8_t capsLock : 1;
uint8_t scrollLock : 1;
uint8_t compose : 1;
uint8_t kana : 1;
uint8_t reserved : 3;
};
uint8_t byte;
} KBDLeds_t;
public:
KeyboardController(USBHost &host) { init(); }
KeyboardController(USBHost *host) { init(); }
int available();
int read();
uint16_t getKey() { return keyCode; }
uint8_t getModifiers() { return modifiers; }
uint8_t getOemKey() { return keyOEM; }
void attachPress(void (*f)(int unicode)) { keyPressedFunction = f; }
void attachRelease(void (*f)(int unicode)) { keyReleasedFunction = f; }
void LEDS(uint8_t leds);
uint8_t LEDS() {return leds_.byte;}
void updateLEDS(void);
bool numLock() {return leds_.numLock;}
bool capsLock() {return leds_.capsLock;}
bool scrollLock() {return leds_.scrollLock;}
void numLock(bool f);
void capsLock(bool f);
void scrollLock(bool f);
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void control(const Transfer_t *transfer);
virtual void disconnect();
static void callback(const Transfer_t *transfer);
void new_data(const Transfer_t *transfer);
void init();
private:
void update();
uint16_t convert_to_unicode(uint32_t mod, uint32_t key);
void key_press(uint32_t mod, uint32_t key);
void key_release(uint32_t mod, uint32_t key);
void (*keyPressedFunction)(int unicode);
void (*keyReleasedFunction)(int unicode);
Pipe_t *datapipe;
setup_t setup;
uint8_t report[8];
uint16_t keyCode;
uint8_t modifiers;
uint8_t keyOEM;
uint8_t prev_report[8];
KBDLeds_t leds_ = {0};
bool update_leds_ = false;
bool processing_new_data_ = false;
Pipe_t mypipes[2] __attribute__ ((aligned(32)));
Transfer_t mytransfers[4] __attribute__ ((aligned(32)));
};
class MIDIDevice : public USBDriver {
public:
enum { SYSEX_MAX_LEN = 60 };
MIDIDevice(USBHost &host) { init(); }
MIDIDevice(USBHost *host) { init(); }
bool read(uint8_t channel=0, uint8_t cable=0);
uint8_t getType(void) {
return msg_type;
};
uint8_t getChannel(void) {
return msg_channel;
};
uint8_t getData1(void) {
return msg_data1;
};
uint8_t getData2(void) {
return msg_data2;
};
void setHandleNoteOff(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleNoteOff = f;
};
void setHandleNoteOn(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleNoteOn = f;
};
void setHandleVelocityChange(void (*f)(uint8_t channel, uint8_t note, uint8_t velocity)) {
handleVelocityChange = f;
};
void setHandleControlChange(void (*f)(uint8_t channel, uint8_t control, uint8_t value)) {
handleControlChange = f;
};
void setHandleProgramChange(void (*f)(uint8_t channel, uint8_t program)) {
handleProgramChange = f;
};
void setHandleAfterTouch(void (*f)(uint8_t channel, uint8_t pressure)) {
handleAfterTouch = f;
};
void setHandlePitchChange(void (*f)(uint8_t channel, int pitch)) {
handlePitchChange = f;
};
void setHandleSysEx(void (*f)(const uint8_t *data, uint16_t length, bool complete)) {
handleSysEx = (void (*)(const uint8_t *, uint16_t, uint8_t))f;
}
void setHandleRealTimeSystem(void (*f)(uint8_t realtimebyte)) {
handleRealTimeSystem = f;
};
void setHandleTimeCodeQuarterFrame(void (*f)(uint16_t data)) {
handleTimeCodeQuarterFrame = f;
};
void sendNoteOff(uint32_t note, uint32_t velocity, uint32_t channel) {
write_packed(0x8008 | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((velocity & 0x7F) << 24));
}
void sendNoteOn(uint32_t note, uint32_t velocity, uint32_t channel) {
write_packed(0x9009 | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((velocity & 0x7F) << 24));
}
void sendPolyPressure(uint32_t note, uint32_t pressure, uint32_t channel) {
write_packed(0xA00A | (((channel - 1) & 0x0F) << 8)
| ((note & 0x7F) << 16) | ((pressure & 0x7F) << 24));
}
void sendControlChange(uint32_t control, uint32_t value, uint32_t channel) {
write_packed(0xB00B | (((channel - 1) & 0x0F) << 8)
| ((control & 0x7F) << 16) | ((value & 0x7F) << 24));
}
void sendProgramChange(uint32_t program, uint32_t channel) {
write_packed(0xC00C | (((channel - 1) & 0x0F) << 8)
| ((program & 0x7F) << 16));
}
void sendAfterTouch(uint32_t pressure, uint32_t channel) {
write_packed(0xD00D | (((channel - 1) & 0x0F) << 8)
| ((pressure & 0x7F) << 16));
}
void sendPitchBend(uint32_t value, uint32_t channel) {
write_packed(0xE00E | (((channel - 1) & 0x0F) << 8)
| ((value & 0x7F) << 16) | ((value & 0x3F80) << 17));
}
void sendSysEx(uint32_t length, const void *data);
void sendRealTime(uint32_t type) {
switch (type) {
case 0xF8: // Clock
case 0xFA: // Start
case 0xFC: // Stop
case 0xFB: // Continue
case 0xFE: // ActiveSensing
case 0xFF: // SystemReset
write_packed((type << 8) | 0x0F);
break;
default: // Invalid Real Time marker
break;
}
}
void sendTimeCodeQuarterFrame(uint32_t type, uint32_t value) {
uint32_t data = ( ((type & 0x07) << 4) | (value & 0x0F) );
sendTimeCodeQuarterFrame(data);
}
void sendTimeCodeQuarterFrame(uint32_t data) {
write_packed(0xF108 | ((data & 0x7F) << 16));
}
protected:
virtual bool claim(Device_t *device, int type, const uint8_t *descriptors, uint32_t len);
virtual void disconnect();
static void rx_callback(const Transfer_t *transfer);
static void tx_callback(const Transfer_t *transfer);
void rx_data(const Transfer_t *transfer);
void tx_data(const Transfer_t *transfer);
void init();
void write_packed(uint32_t data);
void sysex_byte(uint8_t b);
private:
Pipe_t *rxpipe;
Pipe_t *txpipe;
enum { MAX_PACKET_SIZE = 64 };
enum { RX_QUEUE_SIZE = 80 }; // must be more than MAX_PACKET_SIZE/4
uint32_t rx_buffer[MAX_PACKET_SIZE/4];
uint32_t tx_buffer[MAX_PACKET_SIZE/4];
uint16_t rx_size;
uint16_t tx_size;
uint32_t rx_queue[RX_QUEUE_SIZE];
bool rx_packet_queued;
uint16_t rx_head;
uint16_t rx_tail;
uint8_t rx_ep;
uint8_t tx_ep;
uint8_t msg_channel;
uint8_t msg_type;
uint8_t msg_data1;
uint8_t msg_data2;
uint8_t msg_sysex[SYSEX_MAX_LEN];
uint8_t msg_sysex_len;
void (*handleNoteOff)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleNoteOn)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleVelocityChange)(uint8_t ch, uint8_t note, uint8_t vel);
void (*handleControlChange)(uint8_t ch, uint8_t control, uint8_t value);
void (*handleProgramChange)(uint8_t ch, uint8_t program);
void (*handleAfterTouch)(uint8_t ch, uint8_t pressure);
void (*handlePitchChange)(uint8_t ch, int pitch);
void (*handleSysEx)(const uint8_t *data, uint16_t length, uint8_t complete);
void (*handleRealTimeSystem)(uint8_t rtb);
void (*handleTimeCodeQuarterFrame)(uint16_t data);
Pipe_t mypipes[3] __attribute__ ((aligned(32)));
Transfer_t mytransfers[7] __attribute__ ((aligned(32)));
};
class MouseController : public USBHIDInput {
public:
MouseController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
bool available() { return mouseEvent; }
void mouseDataClear();
uint8_t getButtons() { return buttons; }
int getMouseX() { return mouseX; }
int getMouseY() { return mouseY; }
int getWheel() { return wheel; }
int getWheelH() { return wheelH; }
protected:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
uint8_t collections_claimed = 0;
volatile bool mouseEvent = false;
volatile bool hid_input_begin_ = false;
uint8_t buttons = 0;
int mouseX = 0;
int mouseY = 0;
int wheel = 0;
int wheelH = 0;
};
class JoystickController : public USBHIDInput {
public:
JoystickController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
bool available() { return joystickEvent; }
void joystickDataClear();
uint32_t getButtons() { return buttons; }
int getAxis(uint32_t index) { return (index < (sizeof(axis)/sizeof(axis[0]))) ? axis[index] : 0; }
protected:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
uint8_t collections_claimed = 0;
bool anychange = false;
volatile bool joystickEvent = false;
uint32_t buttons = 0;
int16_t axis[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
};
class KeyboardHIDExtrasController : public USBHIDInput {
public:
KeyboardHIDExtrasController(USBHost &host) { USBHIDParser::driver_ready_for_hid_collection(this); }
void clear() { event_ = false;}
bool available() { return event_; }
void attachPress(void (*f)(uint32_t top, uint16_t code)) { keyPressedFunction = f; }
void attachRelease(void (*f)(uint32_t top, uint16_t code)) { keyReleasedFunction = f; }
enum {MAX_KEYS_DOWN=4};
// uint32_t buttons() { return buttons_; }
protected:
virtual bool claim_collection(Device_t *dev, uint32_t topusage);
virtual void hid_input_begin(uint32_t topusage, uint32_t type, int lgmin, int lgmax);
virtual void hid_input_data(uint32_t usage, int32_t value);
virtual void hid_input_end();
virtual void disconnect_collection(Device_t *dev);
private:
void (*keyPressedFunction)(uint32_t top, uint16_t code);
void (*keyReleasedFunction)(uint32_t top, uint16_t code);
uint32_t topusage_ = 0; // What top report am I processing?
uint8_t collections_claimed_ = 0;
volatile bool event_ = false;
volatile bool hid_input_begin_ = false;
volatile bool hid_input_data_ = false; // did we receive any valid data with report?
uint8_t count_keys_down_ = 0;
uint16_t keys_down[MAX_KEYS_DOWN];
};
#endif